
Sub-class Error-Correcting Output Codes

Sergio Escalera, Oriol Pujol and Petia Radeva

Computer Vision Center, Campus UAB, Edifici O, 08193, Bellaterra, Spain.
Dept. Matemàtica Aplicada i Anàlisi, Universitat de Barcelona,

Gran Via 585, 08007, Barcelona, Spain.

Abstract. A common way to model multi-class classification problems
is by means of Error-Correcting Output Codes (ECOC). One of the main
requirements of the ECOC design is that the base classifier is capable
of splitting each sub-group of classes from each binary problem. In this
paper, we present a novel strategy to model multi-class classification
problems using sub-class information in the ECOC framework. Complex
problems are solved by splitting the original set of classes into sub-classes,
and embedding the binary problems in a problem-dependent ECOC de-
sign. Experimental results over a set of UCI data sets and on a real
multi-class traffic sign categorization problem show that the proposed
splitting procedure yields a better performance when the class overlap
or the distribution of the training objects conceil the decision boundaries
for the base classifier.

1 Introduction

In the literature, one can find several powerful binary classifiers. However, when
one needs to deal with multi-class classification problems, many learning tech-
niques fail to manage this information. Instead, it is common to construct the
classifiers to distinguish between just two classes, and to combine them in some
way. In this sense, Error Correcting Output Codes were born as a general frame-
work to combine binary problems to address the multi-class problem [3].

The ECOC technique can be broken down into two distinct stages: encoding
and decoding. Given a set of classes, the coding stage designs a codeword1 for
each class based on different binary problems, that are combined in a coding
matrix M . The decoding stage makes a classification decision for a given test
sample based on the value of the output code.

It was when Allwein et al. [8] introduced a third symbol (the zero symbol) in
the coding process when the coding step received special attention. This symbol
increases the number of partitions of classes to be considered in a ternary ECOC
framework by allowing some classes to be ignored. Then, the ternary coding
matrix becomes M ∈ {−1, 0, 1}N×n, for N number of classes and n number of
binary problems. In this case, the symbol zero means that a particular class is
not considered by a certain binary classifier. Recently, new improvements in the
1 The codeword is a sequence of bits of a code representing each class, where each bit

identifies the membership of the class for a given binary classifier.



ternary ECOC coding demonstrate the suitability of the ECOC methodology
to deal with multi-class classification problems [6][7]. These recent designs use
the knowledge of the problem-domain to learn relevant binary problems from
ternary codes. The basic idea of these methods is to use the training data to
guide the training process, and thus, to construct the coding matrix M focusing
on the binary problems that better fit the decision boundaries of a given data set.
However, the final accuracy is still based on the ability of the base classifier to
learn each individual problem. Difficult problems, those which the base classifier
is not able to find a solution for, require the use of complex classifiers, such as
Support Vector Machines with Radial Basis Function kernel [1], and expensive
parameter optimizations. Look at the example of fig. 1(a). A linear classifier is
used to split two classes. In this case, the base classifier is not able to find a
convex solution. On the other hand, in fig. 1(b), one of the previous classes has
been split into two sub-sets, that we call sub-classes. Then, the original problem
is solved using two linear classifiers, and the two new sub-classes have the same
original class label. Some studies in the literature tried to form sub-classes using
the labels information, which is called Supervised Clustering [10]. In these types
of systems, clusters are usually formed without taking into account the behavior
of the base classifier that learns the data. In a recent work [11], the authors
use the class labels to form the sub-classes that improve the performance of
particular Discriminant Analysis algorithms.

In this paper, we present a problem-dependent ECOC design where classes
are partitioned into sub-classes using a clustering approach for the cases that
the base classifier is not capable to distinguish the classes. Sub-groups of prob-
lems are split into more simple ones until the base classifier is able to learn the
original problem. In this way, multi-class problems which can not be modelled
by using the original set of classes are modelled without the need of using more
complex classifiers. The final ECOC design is obtained by combining the sub-
problems. The novel Sub-class ECOC design is compared with the state-of-art
ECOC designs over a set of UCI Machine Learning Repository data sets and on
a real multi-class traffic sign categorization problem using different base classi-
fiers. The results show that in most cases the sub-class strategy is able to obtain
significant performance improvements.

(a) (b)

Fig. 1. (a) Decision boundary of a linear classifier of a 2-class problem. (b) Decision
boundaries of a linear classifier splitting the problem of (a) into two more simple tasks.



2 Problem-dependent ECOC Sub-class

From an initial set of classes C of a given multi-class problem, the objective of the
Sub-class ECOC strategy is to define a new set of classes C ′, where |C ′| > |C|, so
that the new set of binary problems is easier to learn for a given base classifier.
For this purpose, we use a guided procedure that, in a problem-dependent way,
groups classes and splits them into sub-sets if necessary.

Recently, the authors of [6] proposed a ternary problem-dependent design of
ECOC, called DECOC. The method is based on the embedding of discriminant
tree structures derived from the problem domain. The binary trees are built by
looking for the partition that maximizes the mutual information (MI ) between
the data and their respective class labels. Look at the 3-class problem shown on
the top of fig. 2(a). The DECOC algorithm considers the whole set of classes
to split it into two sub-sets of classes ℘+ and ℘− maximizing the MI criterion
on a sequential forward floating search procedure (SFFS ). In the example, the
first sub-sets found correspond to ℘+ = {C1, C2} and ℘− = {C3}. Then, a base
classifier is used to train its corresponding dichotomizer h1. This classifier is
shown in the node h1 of the tree structure shown in fig. 2(d). The procedure is
repeated until all classes are split into separate sub-sets ℘. In the example, the
second classifier is trained to split the sub-sets of classes ℘+ = C1 from ℘− = C2

because the classes C1 and C2 were still contained in a single sub-set after the
first step. This second classifier is codified by the node h2 of fig. 2(d). When the
tree is constructed, the coding matrix M is obtained by codifying each internal
node of the tree as a column of the coding matrix (see fig. 2(c)).

In our case, sequential forward floating search (SFFS ) is also applied to look
for the sub-sets ℘+ and ℘− that maximizes the mutual information between the
data and their respective class labels [6]. The SFFS algorithm used is the one
proposed in [12], and the implementation details of the fast quadratic mutual
information can be found in [6]. To illustrate our procedure, let us to return to
the example of the top of fig. 2(a). On the first iteration of the sub-class ECOC
algorithm, SFFS finds the sub-set ℘+ = {C1, C2} against ℘− = {C3}. The
encoding of this problem is shown in the first matrix of fig. 2(c). The positions
of the column corresponding to the classes of the first partition are coded by
+1 and the classes corresponding to the second partition to -1, respectively. In
our procedure, the base classifier is used to test if the performance obtained by
the trained dichotomizers is sufficient. Observe the decision boundaries of the
picture next to the first column of the matrix in fig. 2(b). One can see that the
base classifier finds a good solution for this first problem.

Then, the second classifier is trained to split ℘+ = C1 against ℘− = C2,
and its performance is computed. To separate the current sub-sets is not a triv-
ial problem, and the classification performance is poor. Therefore, our procedure
tries to split the data J℘+ and J℘− from the current sub-sets ℘+ and ℘− into more
simple sub-sets. Applying a splitting criteria SC over the two sub-sets, two clus-
ters are found for ℘+ = C1 and for ℘− = C2. We select the split that maximizes
the distance between the means of the clusters. And then, the original encoding
of the problem C1 vs C2 is transformed to two more simple problems {C11}



(a) (b)

(c)

(d) (e)

Fig. 2. (a) Top: Original 3-class problem. Bottom: 4 sub-classes found. (b) Sub-class
ECOC encoding using the four sub-classes using Discrete Adaboost with 40 runs of De-
cision Stumps. (c) Learning evolution of the sub-class matrix M . (d) Original tree struc-
ture without applying sub-class. (e) New tree-based configuration using sub-classes.

against {C2} and {C12} against {C2}. It implies that the class C1 is split into
two sub-classes (look at the bottom of fig. 2(a)), and the original 3-class problem
C = {C1, C2, C3} becomes the 4-sub-class problem C ′ = {C11, C12, C2, C3}. As
the class C1 has been decomposed by the splitting of the second problem, pre-
vious dichotomizers that take this class into account need to be updated. The
dichotomizer h1 considers the sub-sets ℘+

1 = {C1, C2} and ℘−1 = {C3}. Then,
those positions containing class C1 are replaced with C11 and C12. Now, the
original tree encoding of the DECOC design shown in fig. 2(d) can be repre-
sented by the tree structure of fig. 2(e), where the original class associated to
each sub-class is shown in the leaves.



2.1 Sub-class algorithm

The encoding algorithm is shown in table 1. Given a N -class problem, the whole
set of classes is used to initialize the set L containing the sets of labels for the
classes to be learned. At the beginning of each iteration k (Step 1), the first
element of L is assigned to Sk in the first step of the algorithm, and the optimal
binary partition BP of Sk is found (Step 2).

Table 1. Problem-dependent Sub-class ECOC algorithm.

Inputs: J, C, θ = {θsize, θperf , θimpr} //Thresholds for the number of samples, performance,
and improvement between iterations

Outputs: C′, J ′, ℘′, M
[Initialization:]

Create the trivial partition {℘+
0 , ℘−0 } of the set of classes {Ci}: {℘+

0 , ℘−0 } =
{{∅}, {C1, C2, ..., CN}}
L0 = {℘−0 };J′ = J;C′ = C;℘′ = ∅;M = ∅;k = 1

Step 1 Sk is the first element of Lk−1
L′k = Lk−1\{Sk}

Step 2 Find the optimal binary partition BP (Sk):

{℘+
k , ℘−k } = argmaxBP (Sk)(I(x, d(BP (Sk))))

where I is the mutual information criterion, x is the random variable associated to the features
and d is the discrete random variable of the dichotomy labelsa, defined in the following terms,

d = d(x, BP (Sk)) =

�
1 if x ∈ Ci|Ci ∈ ℘+

k

−1 if x ∈ Ci|Ci ∈ ℘−k
Step 3 // Look for sub-classes

{C′, J ′, ℘′} = SPLIT (J
p
+
k

, J
p
−
k

, C′, J ′, J, ℘′, θ)b

Step 4 Lk = {L′k ∪ ℘i
k} if |℘i

k| > 1 ∀i ∈ {+,−}
Step 5 If |Lk| 6= 0

k = k + 1 go to Step 1
Step 6 Codify the coding matrix M using each partition {℘+

i , ℘−i } of ℘′, i ∈ [1, .., |℘′|] and each

class Cr ∈ ℘i = {℘+
i ∪ ℘−i } as follows:

M(Cr, i) =

8
<
:

0 if Cr 6∈ ℘i

+1 if Cr ∈ ℘+
i

−1 if Cr ∈ ℘−i

(1)

a
Use SFFS of [12] as the maximization procedure and MI of [6] to estimate I

b
Using the splitting algorithm of table 2.

At Step 3 of the algorithm, the splitting criteria SC takes as input a data
set J℘+ or J℘− from a sub-set ℘+ or ℘−, and splits it into two sub-sets J+

℘+ and
J−℘+ or J+

℘− and J−℘− . The splitting algorithm is shown in table 2.
When two data sub-sets {J+

℘+ , J−℘+} and {J+
℘− , J−℘−} are obtained, we select

the sub-sets that have the highest distance between the means of each cluster.
Suppose that the distance between J+

℘− and J−℘− is larger than between J+
℘+

and J−℘+ . Then, only J℘+ , J+
℘− , and J−℘− are used. If the new sub-sets improve

the classification performance, new sub-classes are formed, and the process is
repeated.

The function TEST PARAMETERS in table 2 is responsible for testing the
constraints based on the parameters {θsize, θperf , θimpr}. If the constraints are
satisfied, the new sub-sets are selected and used to recursively call the splitting
function (Step 3 of the algorithm in table 2). The constraints of the function
TEST PARAMETERS are fixed as: 1) The number of objects in J℘+ has to be



Table 2. Sub-class SPLIT algorithm.

Inputs: J℘1 , J℘2 , C′, J ′, J, ℘′, θ // C′ is the final set of classes, J′ the data for the final set of

classes, and ℘′ is the labels for all the partitions of classes of the final set.
Outputs: C′, J ′, ℘′

Step 1 Split problems:
{J+

℘+ , J−
℘+} = SC(J℘+ )a

{J+
℘− , J−

℘−} = SC(J℘− )

Step 2 Select sub-classes:

if |J+
℘+ , J−

℘+ | > |J+
℘− , J−

℘− | // find the largest distance between the means of each sub-set.

{J+
+ , J−+ } = {J+

℘+ , J℘−}; {J+
− , J−−} = {J−

℘+ , J℘−}
else
{J+

+ , J−+ } = {J+
℘− , J℘+}; {J+

− , J−−} = {J−
℘− , J℘+}

end
Step 3 Test parameters to continue splitting:

if TEST PARAMETERS(J℘1 , J℘2 , J1
1 , J2

1 , J1
2 , J2

2 , θ)// call the function with the new sub-
sets
{C′, J ′, ℘′} = SPLIT (J1

1 , J2
1 , C′, J ′, J, ℘′, θ)

{C′, J ′, ℘′} = SPLIT (J1
2 , J2

2 , C′, J ′, J, ℘′, θ)
end

Step 4 Save the current partition:
Update the data for the new sub-classes and previous sub-classes if intersections exists J′.
Update the final number of sub-classes C′.
Create ℘c = {℘c1 , ℘c2} the set of labels of the current partition.
Update the labels of the previous partitions ℘.
Update the set of partitions labels with the new partition ℘′ = ℘′ ∪ ℘c.

a
SC corresponds to the splitting method of the input data into two main clusters.

larger than θsize, 2) The number of objects in J℘− has to be larger than θsize, 3)
The error ξ(h(J℘− , J℘+)) obtained from the dichomomizer h using a particular
base classifier applied on the sets {℘+, ℘−} has to be larger than θperf , and 4)
The sum of the well-classified new objects (based on the confusion matrices)
divided by the total number of objects has to be greater than 1− θimpr.

θsize corresponds to the minimum number of object samples that has to be
in a sub-set, θperf is the threshold for the performance of the current binary
problem, and θimpr looks for the performance improvements of the split groups
in relation with the previous one.

When a new sub-class is formed, we need to save the information of the
current sub-sets {℘+, ℘−} and the previous sub-sets affected by the new splitting
(Step 4 of the splitting algorithm). When the final set of binary problems is
obtained, its respective set of labels ℘′ is used to create the coding matrix M
(eq. (1)).

Finally, to decode the new sub-class problem-dependent design of ECOC, we
take advantage of the recently proposed Loss-Weighted decoding design [9]. The
decoding strategy uses a set of normalized probabilities based on the performance
of the base classifier and the ternary ECOC constraints [9].

3 Experimental results

In order to evaluate the methodology, we discuss the data, compared methods,
experiments, and performance evaluation.

• Data: The data used for the experiments consists of eight arbitrary multi-
class data sets from the UCI Machine Learning Repository [4] and one real



9-class traffic sign classification problem from the Geomobil project of [5]. The
characteristics of the UCI data sets are shown in table 3.

Table 3. UCI Machine Learning Repository data sets characteristics.

Problem #Train #Attributes #Classes Problem #Train #Attributes #Classes
Iris 150 4 3 Thyroid 215 5 3

Ecoli 336 8 8 Vowel 990 10 11
Wine 178 13 3 Balance 625 4 3
Glass 214 9 7 Yeast 1484 8 10

• Compared methods: We compare our method with the state-of-the-art
ECOC coding designs: one-versus-one, one-versus-all, dense random, sparse ran-
dom [8], and DECOC [6]. Each strategy uses the previously mentioned Linear
Loss-weighted decoding to evaluate their performances at identical conditions.
Five different base classifiers are applied over each ECOC configuration: Near-
est Mean Classifier (NMC ) with the classification decision using the Euclidean
distance between the mean of the classes, Discrete Adaboost with 40 iterations
of Decision Stumps [2], Linear Discriminant Analysis, Linear Support Vector
Machines with the regularization parameter C set to 1 [1], and Support Vec-
tor Machines with Radial Basis Function kernel with the default values of the
regularization parameter C and the gamma parameter set to 1 [1]2.

• Experiments: First, we illustrate the effect of the sub-class algorithm over
toy problems. Second, we classify the set of UCI Machine Learning Repository
data sets with the ECOC designs and the different base classifiers. Finally, a real
multi-class traffic sign recognition problem is evaluated.

• Performance evaluation: To evaluate the performance of the different exper-
iments, we apply stratified ten-fold cross-validation and test for the confidence
interval at 95% with a two-tailed t-test.

3.1 Illustration over toy problems

To show the effect of the Sub-class ECOC strategy for different base classifiers,
we used the previous toy problem of the top of fig. 2(a). Using the previously
commented base classifiers on the toy problem, the original DECOC strategy
with the Loss-Weighted algorithm obtains the decision boundaries shown on the
top row of fig. 3. The new learned boundaries are shown on the bottom row of
fig. 3 for fixed parameters θ. Depending on the flexibility of the base classifier
more sub-classes are required, and thus, more binary problems. Observe that all
base classifiers are able to find a solution for the problem, although with different
types of decision boundaries.

3.2 UCI Machine Learning Repository

Using the UCI data sets of table 3, the five base classifiers, and the six ECOC
designs, we have performed a total of 240 ten-fold tests. The set of parameters
of the sub-class approach θ = {θsize, θperf , θimpr} has been fixed to θsize = |J|

50
minimum number of objects to apply sub-class (thus, 2% of the samples of

2 We selected this parameter after a preliminary set of experiments.



(a) (b) (c) (d) (e)

Fig. 3. Sub-class ECOC without sub-classes (top) and including sub-classes (bottom):
for FLDA (a), Discrete Adaboost (b), NMC (c), Linear SVM (d), and RBF SVM (e).

each particular problem), θperf = 0 to split classes if the binary problem does
not learn properly the training objects, and θimpr = 0.95, that means that the
split problems must improve at least a 5% of the performance of the problem
without splitting. The last measure is simply estimated by dividing the sum of
the well-classified objects from the two sub-problems the total number of objects
by looking at the confusion matrices. For simplicity and fast computation, the
used splitting criterion is k-means with k=2.3 The results of some UCI data sets
for NMC are shown graphically in fig. 4. One can see that the results of the
sub-class approach are significantly better for most of the cases because of the
failure of NMC to model the problems by only using the original set of classes.
The mean rank of each ECOC design for each base classifier and for the whole
set of UCI problems are numerically shown in table 44. The ranks are obtained
estimating each particular rank rj

i for each problem i and each ECOC design j,
and then, computing the mean rank R for each design as Rj = 1

P

∑
i rj

i , being
P the number of experiments. Observing the ranks of each ECOC design for
each base classifier and the global rank, one can see that the Sub-class approach
attains the best position, and thus, performance, in all cases.

Table 4. Rank positions of the classification strategies for the UCI experiments.

one-versus-one one-versus-all dense sparse DECOC Sub-class ECOC

Discrete Adaboost 2.2 3.2 2.6 3.5 2.2 1.3

NMC 2.2 4.7 5.0 5.2 2.6 1.1

FLDA 1.6 3.8 3.1 3.8 2.1 1.3

Linear SVM 2.1 3.5 3.3 3.2 1.8 1.0

RBF SVM 2.3 4.2 2.6 4.3 2.6 1.2

Global rank 2.1 3.9 3.3 4.0 2.3 1.2

3.3 Traffic sign categorization

For this experiment, we use the video sequences obtained from the Mobile Map-
ping System [5] to test a real traffic sign categorization problem. We choose the
speed data set since the low resolution of the image, the non-controlled condi-
tions, and the high similarity among classes make the categorization a difficult
3 It is important to save the history of splits to re-use the sub-groups if they are

required again. It speeds up the method and also reduces the variation in the results
induced by different random initializations of k-means.

4 We realize that averaging over data sets has a very limited meaning as it entirely
depends on the selected set of problems.



Thyroid Wine

Glass Vowel

Fig. 4. UCI experiments for NMC.

task. In this system, the position and orientation of the different traffic signs are
measured with fixed video cameras in a moving vehicle [5]. Fig. 5 shows several
samples of the speed data set used for the experiments. The data set contains
a total of 2500 samples divided into nine classes. Each sample is composed by
1200 pixel-based features after smoothing the image and applying a histogram
equalization. From this original feature space, about 150 features are derived
using a PCA that retained 90% of the total variance.

Fig. 5. Speed data set samples.

The performance and the estimated ranks using the different ECOC strate-
gies for the different base classifiers are shown in table 5. One can see that in
this particular problem, the sub-class is only required for Discrete Adaboost and
NMC, while the rest of base classifiers are able to find a solution for the train-
ing set without the need for sub-classes. In this case, RBF SVM obtains low
performances, and parameter optimization should be applied to improve these
results. Nevertheless, it is out of the scope of this paper. Finally, though the



results do not significantly differ between the strategies, the Sub-class ECOC
approach attains a better position in the global rank of table 5.

Table 5. Rank positions of the classification strategies for the Speed data set.

one-versus-one one-versus-all dense sparse DECOC Sub-class ECOC
D. Adaboost 66.1(3.1) 56.6(3.1) 55.2(2.8) 52.3(3.6) 58.6(3.2) 60.8(3.1)

NMC 60.7(3.2) 50.65(3.7) 47.4(3.8) 45.1(3.8) 51.9(3.2) 62.8(3.1)
FLDA 74.7(2.8) 71.4(2.9) 74.9(2.6) 72.7(2.5) 72.6(2.8) 76.2(3.0)

Linear SVM 74.9(2.7) 72.3(2.1) 71.8(2.1) 68.2(2.9) 78.9(2.1) 78.9(1.9)
RBF SVM 45.0(0.9) 45.0(0.9) 45.0(0.9) 44.0(0.9) 45.0(0.9) 45.0(0.9)

Global rank 1.8 3.6 3.4 4.6 2.6 1.2

4 Conclusions
The Sub-class ECOC strategy presents a novel way to model complex multi-
class classification problems. The method is based on embedding dichotomizers
in a problem-dependent ECOC design by considering sub-sets of the original
set of classes. In particular, difficult problems where the given base classifier is
not flexible enough to distinguish the classes benefit from the sub-class strategy.
Sequential Forward Floating Search based on maximizing the Mutual Informa-
tion is used to generate sub-groups of problems that are split until the desired
performance is achieved. The experimental results over a set of UCI data sets
and on a real multi-class traffic sign categorization problems for different base
classifiers over the state-of-the-art ECOC configurations show the utility of the
present methodology.

References

1. OSU-SVM-TOOLBOX [http://svm.sourceforge.net].
2. J. Friedman, T. Hastie, and R. Tibshirani, ”Additive logistic regression: a statistical

view of boosting”, The annals of statistics, vol. 38, pp. 337-374, 1998.
3. T. Dietterich and G. Bakiri, ”Solving multiclass learning problems via error-

correcting output codes”, JAIR, vol. 2, pp. 263-286, 1995.
4. A. Asuncion and D.J. Newman, UCI Machine Learning Repository”, University of

California, Irvine, School of Information and Computer Sciences, 2007.
5. J. Casacuberta, J. Miranda, M. Pla, S. Sanchez, A.Serra and J.Talaya, ”On the

accuracy and performance of the geomobil system”, International Society for Pho-
togrammetry and Remote Sensing, 2004.

6. O. Pujol, P. Radeva, and J. Vitrià, ”Discriminant ECOC: A heuristic method for
application dependent design of error correcting output codes”, Trans. on PAMI,
vol. 28, pp. 1001-1007, 2006.

7. O. Pujol, S. Escalera, and P. Radeva, ”An Incremental Node Embedding Technique
for Error Correcting Output Codes”, Pattern Recognition, to appear.

8. E. Allwein, R. Schapire, and Y. Singer, ”Reducing multiclass to binary: A unifying
approach for margin classifiers”, JMLR, vol. 1, pp. 113-141, 2002.

9. S. Escalera, O. Pujol, and P. Radeva, ”Loss-Weighted Decoding for Error-Correcting
Output Codes”, CVCRD, pp. 77-82, October 2007.

10. H. Daume and D. Marcu, ”A Bayesian Model for Supervised Clustering with the
Dirichlet Process Prior”, JMLR, vol. 6, pp. 1551-1577, 2005.

11. M. Zhu and A. M. Martinez, ”Subclass Discriminant Analysis”, IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 28, issue 8, pp. 1274-1286, 2006.

12. P. Pudil, F. Ferri, J. Novovicova, and J. Kittler, ”Floating Search Methods for
Feature Selection with Nonmonotonic Criterion Functions”, Proc. Int. Conf. Pattern
Recognition, pp. 279-283, 1994.


