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Abstract. One of the most widely applied techniques to deal with multi-
class categorization problems is the pairwise voting procedure. Recently,
this classical approach has been embedded in the Error-Correcting Out-
put Codes framework (ECOC). This framework is based on a coding
step, where a set of binary problems are learnt and coded in a matrix,
and a decoding step, where a new sample is tested and classified ac-
cording to a comparison with the positions of the coded matrix. In this
paper, we present a novel approach to redefine without retraining, in a
problem-dependent way, the one-versus-one coding matrix so that the
new coded information increases the generalization capability of the sys-
tem. Moreover, the final classification can be tuned with the inclusion
of a weighting matrix in the decoding step. The approach has been val-
idated over several UCI Machine Learning repository data sets and two
real multi-class problems: traffic sign and face categorization. The results
show that performance improvements are obtained when comparing the
new approach to one of the best ECOC designs (one-versus-one). Fur-
thermore, the novel methodology obtains at least the same performance
than the one-versus-one ECOC design.

1 Introduction

Recently, significant amount of robust binary classifiers have been proposed in
the bibliography with very high performance, such as Support Vector Machines,
Neural Networks, Adaboost [1], etc. However, the extension of many binary clas-
sifiers to the multi-class case, where N possible categories appear, is a hard task.
In this sense, a common strategy consists of defining a set of binary problems,
which are combined in a Multiple Classifier system.

Error-Correcting Output Codes (ECOC) were defined as a framework to
combine binary problems in order to deal with the multi-class case [2]. This
framework is based on two main steps. At the first step, named coding, a set of
binary problems (dichotomizers) are defined based on the learning of different
sub-partitions of classes by means of a base classifier. Then, each of the parti-
tions is embedded as a column of a coding matrix M, which rows correspond to
the codewords codifying each class. At the second step, named decoding, a new
data sample that arrives to the system is tested, and a codeword formed as a
result of the output of the binary problems is obtained. This test codeword is
compared with each class codeword based on a given decoding measure, and a
classification prediction is obtained for the new object. Unlike the voting proce-
dure, the information provided by the ECOC dichotomizers are shared among



classes in order to obtain a precise classification decision, being able to reduce
either the variance as the bias produced by the learners [3].

When Dietterich et. al. defined the binary ECOC framework in [2], all posi-
tions from the coding matrix M belonged to the {41, —1} symbols. It makes all
classes to be considered by each dichotomizer as a member of one of both possible
partitions of classes that define each binary problem. In this case, the one-versus-
all and dense random ECOC approaches were defined [2]. Afterwards, Allwein
et. al. in [4] defined the ternary ECOC, where the positions of the coding matrix
M can be either +1, -1 or 0, and the sparse random and one-versus-one (pairwise
voting) designs could be defined in the ECOC framework. In this case, the zero
symbol means that a given class is not considered in the learning process of a
particular dichotomizer. The huge set of possible bi-partitions of classes from this
ternary ECOC framework has recently suggested the use of problem-dependent
designs as well as new decoding strategies[5][6][7][8][9].

Concerning the one-versus-one ECOC strategy, it codifies the splitting of
each possible pair of classes as a dichotomizer, which results in N(N — 1)/2
binary problems for an N-class problem. This number is usually larger in com-
parison with the linear tendency of the rest of ECOC designs. Although this
suggests larger training times, the individual problems that we need to train on
are significantly smaller, and if the training algorithm scales superlinearly with
the training set size, it is actually possible to save time. Moreover, the problems
to be learnt are usually easier, since the classes have less overlapping. For all
these reasons, the one-versus-one ECOC design tends to obtain better results
than the rest of ECOC designs in real multi-class problems(5][7].

In this paper, we focus on the one-versus-one coding matrix design. Our
goal is to look for a better coding of the matrix without retraining the classi-
fiers involved. Training data are used in a problem-dependent way for updating
the zero positions to +1 or -1 symbols if a higher classification performance
can be achieved. Observe the 4-classes problem shown in Fig. 1(a). A decision
boundary of a non-linear classifier has been obtained in the learning process of
the dichotomizer hy that splits classes ¢; and co. The point of this article is
that without the necessity of retraining the classifier, the same decision bound-
ary can be used to give a prediction hypothesis about class c3. On the other
hand, note that the use of this decision boundary to classify class ¢4 may result
in a random decision function. Using this information, we recode the classical
problem-independent one-versus-one into a problem-dependent one-versus-one
design extending the trained classifier on new classes for the binary classifier for
which the dichotomizer is relevant. The design is possible thanks to a new weight-
ing procedure that takes into account the performance of the dichotimizers at
the decoding step [7]. Moreover, the approach requires almost the same training
and testing computational complexity than the classical one (since retraining of
classifiers is not required).

The paper is organized as follows: Section 2 describes the recoded problem-
dependent one-versus-one approach. Section 3 evaluates the methodology over



a set of UCI data sets and two real multi-class problems: traffic sign and faces
categorization. Finally, section 4 concludes the paper.

2 Recoded one-versus-one ECOC

In this section, we present a problem-dependent redefinition of the classical one-
versus-one ECOC design. The one-versus-one ECOC technique is defined in the
ternary ECOC framework MN*M ¢ {—1,0,+1}, being M a coding matrix of
N rows (as the number of classes), M the number of columns (dichotomizers
to be learnt, where M = N(N — 1)/2 in the case of the one-versus-one design),
{—1,41} symbols codify the class membership, and the zero symbol ignores a
particular class for a given dichotomizer. Each column of the matrix M corre-
sponds to the ith binary problem h;, which splits a pair of classes using a given
base classifier. Figure 1(b) codifies a coding matrix M for a 4-class problem. The
white positions correspond to the symbol +1, the black positions to the symbol
-1, and the grey positions to the zero symbol. Note that this design is indepen-
dent from the problem-domain. Once the set of binary problems h = {hy, .., hps}
is learnt, a new test sample p that arrives to the system is tested applying the set
h, and a test codeword x'*M™ € {—1,+1} is obtained. Afterwards, a decoding
function d(zx,y;) is used to compare the test codeword z with each codeword
y; (jth row from M) codifying class ¢;. Finally, the classification prediction
corresponds to the class ¢; which corresponding codeword y; minimizes d.

In the one-versus-one ECOC design, only 2M from the NM possible posi-
tions are coded to {—1,+1} symbols, which corresponds to a (1 —2/N) - 100
percentage of positions coded to zero. Note that the zero symbol does not give
class membership information for its corresponding dichotomizer. Then, it could
happen that if some of these positions coded to zero are re-coded to +1 or -1
without the need of re-training the dichotomizers, the final performance could
be improved almost without increasing the training cost.

2.1 RECOC coding

Given the training data C' = {Cy,..,Cn}, where C; is the data belonging to
class ¢;, and M the one-versus-one coding matrix, the set of dichotomizers
h = {h1,..,hp} is learnt applying a base classifier over the corresponding sub-
sets of C', obtaining the classical one-versus-one ECOC design. In order to update
the coding matrix in a problem-dependent way, for each position M (7, j) = 0, the
corresponding data C;, i € {1,..,N}, i ¢ (k,1), where ¢, and ¢; are the classes
considered by the jth dichotomizer, are tested using h; under the hypothesis
that their membership should be +1. Then, a classification accuracy 3 is ob-
tained. If the magnitude of 5 or (1 — f3) is greater than a performance threshold
a € (0.5,1], then that position of the coding matrix M is set (recoded) to +1
(or -1), respectively. Otherwise, the value of M (3, j) is kept to zero.

Since we use the training data to modify the positions of M, the one-versus-
one design mutates in a problem-dependent way. Moreover, since the modifica-
tion of the positions of M does not require to retrain the set h, the computational



cost of the coding process is not significantly increased. Table 1 shows the algo-
rithm for training the Recoding ECOC (RECOC) design. The algorithm codifies
the classical one-versus-one design at the same time that modifies the positions
of M based on the input value of a. Note that in the algorithm, a matrix of
weights W saving the accuracy values (8 is defined. This matrix will be used at
the decoding process in order to weight the final classification.

Input: a, C = {C1,..,Cn} // Accuracy value and multi-class data
Output: M, W, and set of dichotomizers h = {h1,..,har}
WNXM . — 0, MNXM . — 0, cont :=1
forie {1,..,N —1}
for je{i+1,..,N}
Given a base classifier, learn dichotomizer hcont to split (C;, Cy)
// Update membership and accuracy
M (3, cont) := +1, W (i, cont) := heont(Ci, +1)
// Update membership and accuracy

M(j, cont) = —1, W (j, cont) i= heont(Cy, —1)
for k € {i,..,N}
if k ¢ {i,5}

// Accuracy for class ¢j considered as class ¢; (label +1)
B := hcont(Ck, +1)
// Consider the coding matrix position k as +1
if 8 > «a then
// Update membership and accuracy
M (k, cont) := +1, W(k, cont) := 3
// Consider coding matrix position k as -1
elseif 1 — 3 > a then
// Update membership and accuracy
M(k,cont) := —1, W(k,cont) :=1—
endif
endif
endfor
cont := cont + 1
endfor
endfor

Table 1. RECOC learning algorithm.

In order to obtain more precise classification results, we need to know which
values of « are useful to increase the generalization capability of the system, since
some values of « may result in wrong classification predictions. In order to look
for the values of «, cross-validation is applied. For this task, the training data C
is split into a training C7 and a validation C'V subsets, so that C = CT U CV.
The use of a validation subset helps the system to increase generalization. Thus,
for a set of values o = {ay, .., ax}, algorithm 1 is called. However, the set h is
only learnt once over C' at the beginning. At each round, the set C” is used
to mutate the positions of M, and the validation set CV will be used to test
the performance of each M for a particular «. For this last task, a decoding
procedure using the weighting matrix W is proposed next. This step is required
to obtain a successful classification. Finally, the matrix M for which value of «
maximizes the classification performance over CV is selected.

Figure 1 shows an example of a training process for a 4-class problem. Fig-
ure 1(a) shows the non-linear decision boundaries that splits all possible pairs of
classes. Figure 1(b) shows the classical one-versus-one design. Figure 1(c) shows
the problem-dependent coding matrix M for a = 0.9. Note that several positions
previously coded to zero are now set to +1 or -1 values since they achieve an
accuracy upon 90% over the training data. Finally, Fig. 1(d) shows the same



process for @ = 1.0. Now, less positions satisfy the performance restrictions.
Note that if the testing of the validation data C'V" does not take benefits from
the values of «, then, the classical one-versus-one design is selected, and thus,
in the worst case, the recoded problem-dependent approach attains the same
performance than the classical approach.
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Fig. 1. ECOC codification for a 4-class problem: (a) Non-linear decision boundaries
for the 4-class problem, (b) initial one-versus-one ECOC codification, (¢) RECOC
codification with o = 0.9, and (d) RECOC codification with oo = 1.0.

2.2 RECOC decoding

In [7], the authors show that to properly decode a ternary ECOC matrix two
biases must be avoided at the decoding step. First, classical decoding strategies
introduce a bias when comparing positions that contain the zero symbol, which
do not give information about meta-class membership. On the other hand, the
addition of the bias produced by the comparison with the zero symbol makes
the codewords to take values from different ranges, which makes the measures
among codewords non-comparable. In this sense, the authors present how to
robustly decode sparse coding matrices where codewords may contain different
number of positions coded to {—1,+1} symbols. This is done by weighting the
final decision so that it avoids the influence of the zero symbol at the same time
that all classes codewords have the same probability of being predicted.

Due to the previous properties, we use a Loss-based decoding [4] weighted
by the weighting matrix W computed at the RECOC coding step to decode the
RECOC matrix M. The approach uses a Loss-function to penalize the miss-
classifications produced by the set of dichotomizers h.

First, we normalize each row of the weighting matrix W obtained at the
coding step so that My can be considered as a discrete probability density

function Mw (3,j) = %7 Vi € [1,..,N], Vj € [1,...,M]. Once we
g=1

obtain the normalized weighting matrix My, we introduce it in a Loss-based
decoding [4]. In this approach, the decoding estimation is obtained by means of a
Loss-based model with a Loss-function L(6) weighted by My, where L(0) = —0



and @ corresponds to y? - hi(p): LW (p,i) = > My (i, j)L(y? - hj(p)). The
final classification decision is done by the class ¢; which corresponding codeword
y; that minimizes the LW function.

3 Results

In order to present the results, first, we discuss the data, methods, measurements,
and experimental settings of the experiments.

e Data: The data used for the experiments consist of eleven multi-class data
sets from the UCI Machine Learning Repository database [10]. We also catego-
rize two real Computer Vision classification problems. First, we use the video
sequences obtained from a Mobile Mapping System [11] to test the methods in a
real traffic sign categorization problem consisting of 36 traffic sign classes. Sec-
ond, 30 classes from the ARFaces [12] data set are classified using the present
methodology.

o Methods: We compare the classical one-versus-one ECOC design with the
RECOC strategy for three base classifiers: Gentle Adaboost [1], Linear Support
Vector Machines [13], and Support Vector Machines with Radial Basis Function
kernel (RBF SV M) [13]. In order to compare the methods at same conditions,
we use a linear Loss-Weighted decoding in both one-versus-one and RECOC
strategies.

e Measurements: To measure the performance of the different strategies, we
apply stratified ten-fold cross-validation and test for confidence interval with a
two-tailed t-test.

o FExperimental settings: 50 decision stumps are considered for the Gentle
Adaboost algorithm. The RBF SV M classifier is tuned via cross-validation,
where the ¢ and regularization parameters are tested from 0.05 increasing per
0.05 up to 1 and from one increasing per 5 up to 150, respectively. For the
RECOC strategy cross-validation is applied, where « is tested from 0.7 increasing
per 0.05 up to 1, and 10% of the training data are used as a validation subset.

3.1 UCI classification

Table 2 shows the performance results of the one-versus-one ECOC and RECOC
algorithms for the different ECOC base classifiers. For each UCI data set, the
performance obtained by each method is shown. In the cases where RECOC
improves the one-versus-one ECOC results, the selected values of « are shown.
The number of wins, losses, and draws considering the ten experiments of the
ten-fold cross-validation for each data set are also shown in the table. Note that
in several data sets, RECOC obtains performance improvement for the three base
classifiers. The table shows that the more classes there are, the more significant
the results are. The highest performances are achieved for high values of « (about
0.90-0.95 in most cases). Note that in the worst case, RECOC becomes the
one-versus-one ECOC designs, and it achieves the same performance. Moreover,
looking at the wins and losses of each experiment, one can see that though
in some case the performance improvements of RECOC are no significant, the
number of wins of the ten-fold experiments are statistically significant.



[Gentle Adaboost|[one-versus-one|[ RECOC| o |Wins|Losses|Draws)

Balance 87.46 87.46 | - 0 0 10
Wine 94.38 94.38 | - 0 0 10
Thyroid 95.37 95.37 | - 0 0 10
Iris 95.33 95.33 | - 0 0 10
Glass 63.10 68.65 [0.95] 10 0 0
Ecoli 81.29 83.36 |0.75] 8 2 0
Dermatology 91.76 92.52 [0.85] 5 0 5
Vowel 57.88 62.73 [0.95] 9 1 0
Vehicle 57.81 63.57 |0.95] 9 1 0
Yeast 55.46 56.67 [0.95] 5 2 3
Segmentation 97.45 97.45 | - 0 0 10
[ Linear SVM [[one-versus-one[RECOC| o [Wins[Losses[Draws]|
Balance 91.64 91.64 | - 0 0 10
Wine 95.55 95.55 | - 0 0 10
Thyroid 96.71 96.71 | - 0 0 10
Tris 98.67 98.67 | - 0 0 10
Glass 28.74 37.58 [1.00] 5 1 4
Ecoli 74.63 74.63 0 0 10
Dermatology 94.79 95.07 [0.95] 1 0 9
Vowel 63.33 64.44 |0.95] 8 2 0
Vehicle 80.24 80.24 | - 0 0 10
Yeast 26.11 37.81 |0.95] 9 1 0
Segmentation 96.02 96.32 [1.00] 6 2 2
[ RBF SVM ___ [[one-versus-one| RECOC]| « |Wins|Losses|Draws]

Balance 97.25 97.41 [0.95] 1 0 9
Wine 61.31 61.84 [1.00] 1 0 9
Thyroid 95.35 95.35 | - 0 0 10
Iris 96.67 96.67 | - 0 0 10
Glass 46.41 46.41 | - 0 0 10
Ecoli 86.74 86.74 | - 0 0 10
Dermatology 88.80 89.05 [0.85 3 0 7
Vowel 54.95 55.76 [0.90[ 4 1 5
Vehicle 72.00 72.12 |0.90] 1 0 9
Yeast 56.68 56.68 | - 0 0 10
Segmentation 95.14 95.25 |0.90] 2 0 8

Table 2. UCI performances for the different ECOC base classifiers.

Now, we compare the results obtained by the RECOC approach on the UCI
data sets with the results obtained with the same strategy retraining classifiers.
In Fig. 3 one can see the performance obtained by both classification strategies
for the three different base classifiers. Note that there are no significant differ-
ences among the obtained performances. Moreover, the RECOC strategy obtains
better performance in more cases than using the same coding matrix retraining
classifiers, with far less computational complexity.

3.2 'Traffic sign categorization

For this experiment, we use the video sequences obtained from the Mobile Map-
ping System [11] to test the classification methodology on a real traffic sign
categorization problem. In this system, the position and orientation of the dif-
ferent traffic signs are measured with video cameras fixed on a moving vehicle.
From this system, a set of 36 circular and triangular traffic sign classes are ob-
tained. Some categories from this data set are shown in Fig. 2(a). The data
set contains a total of 3481 samples of size 32x32, filtered using the Weickert
anisotropic filter, masked to exclude the background pixels, and equalized to
prevent the effects of illumination changes. These feature vectors are then pro-
jected into a 100 feature vector by means of PCA. The classification results of
the one-versus-one ECOC and RECOC strategies for the three base classifiers
are shown in Table 3. In this experiment, for all base classifiers, the RECOC
design obtains performance improvements for high values of a.
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Fig. 2. (a) Traffic sign classes. (b) ARFaces data set classes. Examples from a category
with neutral, smile, anger, scream expressions, wearing sun glasses, wearing sunglasses
and left light on, wearing sun glasses and right light on, wearing scarf, wearing scarf
and left light on, and wearing scarf and right light on.
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Fig. 3. UCI data sets performance using the recoded matrix with and without retrain-
ing.

Problem one-versus-one[ RECOC| a |Wins|Losses|Draws
Gentle Adaboost 88.70 88.95 [0.95] 3 1 6
Linear SV M 88.02 91.23 [1.00] 4 0 6
RBF SVM 97.44 97.85 [0.95] 1 0 9

Table 3. Traffic data set performances.



3.3 ARPFaces classification

The AR Face database [12] is composed of 26 face images from 126 different
subjects (70 men and 56 women). The images have uniform white background.
The database has two sets of images from each person, acquired in two different
sessions, with the following structure: one sample of neutral frontal images, three
samples with strong changes in the illumination, two samples with occlusions
(scarf and glasses), four images combining occlusions and illumination changes,
and three samples with gesture effects. One example of each type is plotted
in Fig. 2(b). For this experiment, we selected all the samples from 30 different
categories (persons).

The classification results of the one-versus-one ECOC and RECOC strategies
for the three base classifiers are shown in Table 4. As in the previous experiments,
all base classifiers obtain performance improvements using the RECOC strategy
for high values of o (o = 0.95).

Problem one-versus-one[ RECOC| a |Wins|Losses|Draws
Gentle Adaboost 65.50 70.06 [0.95| 6 1 3
Linear SVM 39.41 43.92 [0.95] 9 1 0
RBFSV M 88.33 88.75 [0.95] 2 0 8

Table 4. ARFaces data set performances.

3.4 Discussion

As a final conclusion of the results, we can state that performance improvements
are obtained using the RECOC approach instead of the one-versus-one ECOC.
Note that none of the RECOC experiments for any base classifier obtains inferior
results to the one-versus-one performances.

Concerning the computational complexity of the strategy, the classifiers learnt
at the coding step are not retrained during the RECOC recodification. Thus,
though cross-validation of « should be applied to assure the better performance,
the training cost is not significantly increased. On the other hand, the testing
time remains the same than in the classical one-versus-one approach since all
classifiers should be applied on the test sample. Moreover, we show that we ob-
tain similar (even superior) results with the recoded RECOC matrix M than
using the same procedure but retraining classifiers (that is, using the re-coded
positions to re-train again the dichotomizers).

Finally, it is important to bring up that though the recoding strategy has
been performed on the one-versus-one coding matrix, this strategy is directly
applicable to any kind of ternary ECOC design where the symbol zero may
appear.

4 Conclusion

In this paper, we presented a problem-dependent design of Error-Correcting Out-
put Codes to deal with multi-class categorization problems. The method is based
on redefining the classical one-versus-one ECOC design so that the generaliza-
tion of the system is increased. For this task, the training data are analyzed using



the previously learnt binary problems, and the coding matrix is recoded without
the need of retraining classifiers. A weighting matrix is also included in order to
weight the final classification and obtain more precise results. The experimental
evaluation over several UCI Machine Learning repository data sets and two real
multi-class problems: traffic sign and face categorization, show that significant
performance improvements can be obtained. Moreover, our new methodology is
guaranteed by design to achieve at least the one-versus-one performance.
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