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Abstract. Error Correcting Output Codes (ECOC) have demonstrate
to be a powerful tool for treating multi-class problems. Nevertheless, pre-
defined ECOC designs may not benefit from Error-correcting principles
for particular multi-class data. In this paper, we introduce the Separabil-
ity matrix as a tool to study and enhance designs for ECOC coding. In
addition, a novel problem-dependent coding design based on the Separa-
bility matrix is tested over a wide set of challenging multi-class problems,
obtaining very satisfactory results.
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1 Introduction

Multi-class classification tasks are problems in which a set ofN classes, categories
or namely brands are categorized. Most of state-of-the-art multi-class method-
ologies need to deal with the categorization of each class either by modelling its
probability density function, or by learning a classification boundary and using
some kind of aggregation/selection function to obtain a final decision. Another
way to deal with multi-class problems is to use a divide-and-conquer approach.
Instead of extending a method to cope with the multi-class case, one can divide
the multi-class problem into smaller binary problems and then combine their
responses using some kind of strategy, such as voting.

In the ensemble learning field, Error Correcting Output Codes (ECOC)
have demonstrated to be a powerful tool to solve multi-class classification prob-
lems [CS02,DB95]. This methodology divides the original problem of N classes
in n binary problems (2-class problems). Commonly, the step of defining n bi-
nary partitions of the N classes is known as coding. At this step, a coding matrix
MN×n ∈ {−1,+1} is generated. The columns of M denote the n bi-partitions
of the original problem, and the rows of M , known as codewords, identify each
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one of the N classes of the problem uniquely. Once M is defined, a set of n base
classifiers {h1, . . . , hn} learn the n binary problems coded in M .
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Fig. 1. (a) Feature space and trained boundaries of base classifiers. (b) Coding matrix
M , where black and white cells correspond to {+1,−1}, denoting the two partitions to
be learnt by each base classifier (white cells vs. black cells). (c) Decoding step, where
the predictions of classifiers, {h1, . . . , h5} for sample s are compared to the codewords
{y1, . . . , yN} and s is labelled as the class codeword at minimum distance.

At the decoding step, a new sample s is tested by each base classifier
{h1, . . . , hn}, obtaining a set of label predictions. The set of predictions xs is
compared to each codeword of M using a decoding measure δ and sample s is
labelled as the class ci with codeword yi at minimum distance (i-th row of M).
In Figure 1, an example for coding and decoding steps is shown for a 5−class
toy problem. Note that though classifier h4 fails its prediction, s is correctly
classified.

The coding step has been widely studied in literature [TR98,RK04,ASS02],
proposing either predefined [TR98,RK04] or random [ASS02] coding designs al-
ways following the trend of reducing the number of used dichotomizers. Never-
theless, predefined strategies may not be suitable for a given problem because
they do not take into account the underlying distribution of the classes. In this
scope, one can roughly find works on problem-dependent strategies for coding
designs [EOR08,PRV06].

In this paper we introduce the Separability matrix as a way to analyse and
study the properties of a certain ECOC coding matrix. Although the concept of
separability has always been in the heart of all ECOC studies, up to this moment
there has not been the need of defining explicitly a matrix of this kind. This is
mainly due to the fact that predefined strategies assume that the coding matrix
must have equidistant codewords. However, with the introduction of problem-
dependent and sub-lineal coding designs this general assumption does not hold
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and more concise tools are needed for their analysis. The Separability matrix ex-
plicitly shows the pairwise separation between all pairs of classes. With this tool
in mind, we also propose a new compact problem-dependent coding design that
shows the benefits of applying the separability criteria in a problem-dependent
manner.

This paper is organized as follows: Section 2 introduces the Separability ma-
trix, in Section 3 the novel problem-dependent coding design is proposed and,
Section 4 shows the experimental results. Finally, Section 5 concludes the paper.

2 The Separability matrix

One of the main concerns of the ECOC framework is to correct as many base
classifiers errors as possible. In literature, the correction capability ρ of a coding
matrix M is defined as ρ = min(δ(yi,yj))−1

2
, ∀i, j ∈ {1, . . . , N}, i �= j. Therefore,

distance between codewords and correction capability are directly related. Given
this close relationship between distance and correction capability, we define the
Separability matrix S, as follows:

Given an ECOC coding matrix MN×n, the Separability matrix SN×N con-
tains the distances between all pairs of codes inM . Let {yi, yj} be two codewords,
the Separability matrix S at position (i, j), defined as Si,j , contains the distance
between the codewords {yi, yj}, defined as δ(yi, yj). An example of Separability
matrix estimation for two coding designs is shown in Figure 2.

Usually, the increment in the correcting capability problem has been tackled
by enlarging the codeword length, and thus, the distance between codewords
[TR98]. However, Rifkin et al. show in [RK04] that if a classifier with high
capacity is well optimized, small codes such as One vs. All are also suitable
for solving the problem. Recently, following the same principle as Rifkin et al.,
in [BEB10] the authors propose to use a Compact ECOC matrix, with a code
length of �log2(N)�, where �.� round to the upper integer, which is optimized
by a Genetic Algorithm in a problem-dependent manner.

If we analyse the Separability matrix S of predefined ECOC coding designs
[TR98,RK04], we find that Si,j = ς ∀i, j ∈ {1, . . . , N}, i �= j, where ς is a constant
separation value. This means that codewords are equidistant, as shown in Figure
2(d). In fact, when dealing with predefined codings, the Separability matrix
makes little sense and has been overlooked since all non-diagonal values are
constant. Nevertheless, in problem-dependent coding strategies the Separability
matrix acquires a great value, since it shows which codewords are prone to have
more errors due to the lack of error correction capability. For example, if we
analyse the Compact ECOC coding matrix M we find that codewords are not
equidistant and the distribution of separability is not constant. An example of
Compact ECOC coding and its Separability is shown in Figure 2(a) and 2(b),
respectively.
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Fig. 2. (a) Compact ECOC coding matrix. (b) Separability Matrix of a Compact
ECOC. (c) One vs. All coding matrix. (d) Separability matrix of One vs. All cod-
ing.

3 Application of Separability matrix for Extension coding

Problem-dependent coding strategies have not been thoroughly studied in liter-
ature [EOR08,PRV06]. In contrast to classical approaches [RK04,TR98,ASS02],
problem-dependent coding designs combine the error correcting principles with
a guided coding procedure which takes into account the distribution of the data.
In this work we define a problem-dependent coding design based on the Separa-
bility matrix to enhance the error correcting capabilities of the design. Moreover,
we also take profit of the Confusion matrix to define the partitions of classes of
each binary classifier.

In [BEB10] the authors propose a problem-dependent Compact ECOC cod-
ing matrix of length �log2 N�. However, the computational cost of optimizing
this coding matrix is very expensive and in every case the resultant matrix
M has null correction capability since ρ = 0. On the other hand, one would
like to have at least min(S) ≥ 3, to correct one error. This could be done by
extending the codewords {y1, . . . , yN} of the coding matrix M until Si,j = 3
∀i, j ∈ {1, . . . , N}, i �= j. However, we have to take into account that confusion
is not equally distributed among all the classes, and thus separability might not
have to be also equally distributed. Let {ci, cj , ck, cl} be four classes of our N -
class problem, then, if (Ci,j +Cj,k) > (Ck,l +Cl,k) (where Ci,j is the number of
samples of class ci classified as class cj), it will be more probable to misclassify
a sample between classes ci and cj than between classes ck and cl. Thus, it will
be more efficient to increase δ(yi, yj) than δ(yk, yl).

Therefore, following the idea of Compact ECOC coding, we propose to ex-
tend the codewords of a non-optimized Compact ECOC coding (Binary ECOC),
which is the binary representation of the N classes of our problem. This means
that the codeword yi of class ci is the binary representation of a decimal value
i ∀i ∈ {1, . . . , N}. This extension is calculated in order to increase the distance
δ between the most confused codes, computing a problem-dependent extension
still with a reduced code length. The proposed algorithm uses both Separability
SN×N and Confusion CN×N matrices of a Binary ECOC to compute an exten-
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sion of its coding matrix M , defined as EN×k where k is the number of columns
(base classifiers) of the extension.

The Confusion-Separability-Extension (CSE) coding algorithm is an iterative
algorithm that looks for the most confused classes in C, i.e {ci, cj} and codes
an Extension matrix E that increases its separability Si,j until a certain user-
defined separability value � is achieved. In addition, the Extension matrix E
also increments the separability for all the classes confused with ci or cj . This
extension is performed in order to increase the separability with all the classes
that are prone to confuse with classes ci or cj . When no classes are confused
with {ci, cj} the coding is performed taking into account the overall confusion
with all classes {c1, . . . , cN}. Once E is completely coded, the algorithm checks
if any column in E was previously on M . In that case, the algorithm changes
specific codewords. Let t be an iteration of the algorithm, which codes Et, then
at iteration t+ 1, Mt+1 = Mt ∪ Et, the algorithm will stop when in M , n ≥ N ,
this stop condition is defined to upper bound the code length of the design
to N , though smaller codes may be suitable. In addition, we consider that if
δ(yi, yj) ≥ �, then Ci,j = 0. Therefore, another stop condition for the algorithm
is that ∀i, jCi,j = 0, because that means that no confusion is left to treat. Note
that CSE coding algorithm only requires the C and S matrices generated by a
Binary ECOC. In addition, no retraining or testing of classifiers is needed trough
the extension process. Algorithm 1 shows the CSE coding algorithm, which is
illustrated in the toy example of Figure 3.

Data: MN×n, CN×N , SN×N , �
Result: EN×k

k // separability increment needed

Y E
N×k ∈ {−1,+1}// set of unused generated codewords

Sm
1×1 ∈ {0, . . . ,∞}// minimum separability value

Sc
p×q ∈ {0, 1},p ≤ N ,q = 2// classes at minimum separability with {ci, cj}

while k + n < N and ∃ i, j Ci,j ≥ 0 do
(i, j) := argmaxi,j(C) // look for the pair of classes {ci, cj} with maximum

confusion in C
k := � − Si,j ;

Y E
:=generateCodes(k,N) // generate 2

k codes κ times until N codes are generated

yE
i := Y E

1 // assign random code to one of the classes with maximum confusion

(E, Y E
) :=findCode(yE

i , k, Y E
) // find a code at δ = k with the code Y E

i
while Sm < � do

(Sc, Sm
) :=findMinSepClasses(E, S,C);

(E, Y E
) :=codifyMinSep(Sc, E, Y E

) // look for a suitable code for Sc

Sm
= Sm

+ 1;

end
if ∃{i, j} : Ei,j = 0 then

E :=codifyZero(E, S,C, Y E
) // codify the undefined codes in E taking into

account confusion with {c1, ..., cN}
end
E :=checkExtension(M,E) // check if some column in E was previously in M
(C, S,M) :=updateMatrices(M,E, S,C) // update confusion, separability and coding

matrices

end

Algorithm 1: CSE coding algorithm.
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Fig. 3. CSE example in a 5−class toy problem.

The CSE coding algorithm codifies an Extension matrix E based on the
Separability and Confusion matrices of a certain coding matrix M . Note that
though in this paper this Extension matrix is applied over a Binary ECOC, the
CSE coding algorithm is independent of the initial coding matrix M , and thus
it could be applied to extend any coding design.

The confusion matrix C of Figure 3 has it maximum confusion value at C4,5

(circle and square classes). Therefore, in the first iteration, an extension to split
those classes and increment its separability will be coded. For this example, let
the user-defined value of � be 3. Thus, the length k of the Extension matrix at
the current iteration E is k = �− S4,5. To increment the distance δ(y4, y5) to �,
we have to find two codes {yE4 , yE5 } so that δ(yE4 , y

E
5 ) = k. In fact, the algorithm

generates the 2k codes κ times until N codewords are generated, and then,
searches for two codes at δ = k. Once this codes are defined in E, the algorithm
looks for all the classes with minSi,j , i ∈ {4, 5}, j ∈ {1, . . . , N} and maxCi,j ,
i ∈ {4, 5}, j ∈ {1, . . . , N} in order to increment its distance δ. If no confusion
positions are found and the codes in E are left empty, then the algorithm applies
min(Si,j), ∀i, j ∈ {1, . . . , N} and max(Ci,j), ∀i, j ∈ {1, . . . , N}.

Once the Extension matrix E is coded the algorithm checks if E ∩ M = ∅
column-wise, if not, then the codeword corresponding to the class with minCi,j ,
i ∈ {4, 5}, j ∈ {1, . . . , N} and an opposite with minSi,j , i ∈ {4, 5}, j ∈
{1, . . . , N} are interchanged, and E is checked again. When E is completely
coded and checked, M , S, and C are updated. That means that for the next
iteration M = M ∪ E. In addition, S is re-estimated with the new M .
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3.1 Training the base classifiers

In [RK04] the author concludes that if the base classifier is properly tuned, the
One vs. All may be used without loss of generalization capability. Following this
idea, our coding design is upper bounded by N classifiers and thus, we need to
use powerful dichotomizers in order to reduce possible misclassifications.

In literature, Support Vector Machines with a RBF-Gaussian kernel have
demonstrated to be powerful dichotomizers. Nevertheless, they need some pa-
rameters to be optimized. In this case, parameters ζ, which is the regularizer,
and γ, which has a relationship with the smoothness of the boundary, have to
be optimized. A common way to optimize this parameters is to perform a grid
search with cross-validation. Recently, in [BEB10] the authors have shown that
Genetic Algorithms (GA) can be introduced in this optimization problem with
good results.

For each binary problem, defined by a column of M , we use Genetic Algo-
rithms in order to estimate values for ζ and γ. For this task, we use the same
settings than in [LdC08], where individuals correspond to a pairs of genes, and
each gene corresponds to the binary codification of a floating point value. This
parameter estimation is performed under a 2-fold cross-validation measurement
in order to avoid over-fitting bias and improve generalization.

4 Experimental results

In order to present the results, first, we discuss the data, methods, and evaluation
measurements of the experiments.

– Data: The first bench of experiments consists of seven multi-class problems
extracted from the UCI Machine Learning Repository [AN07], showed in Ta-
ble 1. In addition, we test our methodology over 3 challenging Computer Vi-
sion multi-class problems. First, we classify 70 visual object categories from
the MPEG dataset [MP]. Then, 50 classes of the ARFace database [MB98]
are classified. Finally, we test our method in a real traffic sign categorization
problem consisting of 36 traffic sign classes [CMP+04].

Table 1. UCI repository data sets characteristics.

Problem #Training samples #Features #Classes

Dermathology 366 34 6

Ecoli 336 8 8

Vehicle 846 18 4

Segmentation 2310 19 7

Glass 214 9 7

Vowel 990 10 11

Yeast 1484 8 10
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– Methods: We compare the One vs. All [RK04] ECOC approach with the
CSE coding design with separability value � = {3, 5}. In addition, we also
compare our results with the Dense Random coding scheme [ASS02] using N
classifiers. The ECOC base classifier is the libsvm implementation of a SVM
with Radial Basis Function kernel [CC01a]. The SVM ζ and γ parameters
are tuned via Genetic Algorithms for all the methods, minimizing the classi-
fication error of a two-fold evaluation over the training sub-set. Furthermore,
the same experiments were run with Real AdaBoost as base classifier [FS95].

– Evaluation Measurements: The classification performance is obtained by
means of a stratified ten-fold cross-validation. The classification results ob-
tained for all the data sets considering the different ECOC configurations
are shown in Table 2 and Table 3, with SVM an Adaboost as base classifier,
respectively. In order to compare the performances provided for each strat-
egy, the table also shows the mean rank of each ECOC design considering
the twelve different experiments. The rankings are obtained estimating each
particular ranking rji for each problem i and each ECOC configuration j, and
computing the mean ranking R for each design as Rj =

1

N

�
i r

j
i , where N is

the total number of data sets. We also show the mean number of classifiers
(#) required for each strategy.

Results show that the proposed method outperforms the One vs. All stan-
dard coding design in most cases, using far less number of dichotomizers. This is
caused by the fact that the proposed algorithm focuses the correcting capability
in those classes more prone to be confused, and thus, less redundancy is needed.
However, one has to notice that if designing a coding matrix with n = N classi-
fiers, Dense Random coding seems to be a suitable choice that also outperforms
the standard One vs. All coding.

Nevertheless, when comparing Dense Random coding with our method in
terms of performance, no statistical significant difference is found since both
methods have a comparable rank. However, Dense Random coding seems to
perform better than our proposal in the Computer Vision problems, where the
number of classes is large. This situation is expected since Dense Random coding
uses N dichotomies, and thus, it has a higher correction capability. In fact,
we can approximate its correction capability by dividing the number of classes
between the minimum number of classifiers needed to increase, at least, one
unit the distance between codes (ρest =

N
�log2(N)� ). For example, in the MPEG7

experiment, the estimation of the correction capability of Dense Random coding
tends to beρest = 70

�log2(70)�
= 10. While for the CSE algorithm proposed with

� = 5 the estimated correcting capability is ρ = 2. Note however, that the
number of classifiers used is approximately 1/4 of the number of classifiers used
by One vs. All or Dense Random coding.

5 Conclusions

In this paper, we introduce the Separability matrix as a tool to enhance and
analyse ECOC coding designs. Although separability issues have been always in
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the core of all ECOC coding proposals, until now there was no explicit need to
define such a matrix. Nevertheless, in problem-dependent strategies and in sub-
linear coding designs, it acquires great value since it shows which codes are prone
to be confused due to the lack of correction capability. As a result, more precise
and compact codes can be defined. Moreover, a novel ECOC coding design based
on the Separability matrix is proposed

Results show that the proposed coding design obtains comparable or even
better results than predefined compact coding designs using far less number of
dichotomizers.

Future lines of work include, between others, to formalize a framework to
analyse ECOC coding designs. In addition, comparatives with other compact
problem-dependent coding designs might be performed.

Acknowledgments This work has been supported by projects TIN2009-14404-
C02 and CONSOLIDER-INGENIO CSD 2007-00018.

Table 2. UCI classification results with SVM as base classifier.

One vs. All ECOC CSE ECOC � = 3 CSE ECOC � = 5 Dense Random ECOC

Data set Perf. Classif. Perf. Classif. Perf. Classif. Perf. Classif.

Vowel 55.0±10.5 11 66.9±7.8 9.2 69.8±6.3 10.6 67.9±8.3 11

Yeast 41.0±7.3 10 54.7±11.8 5.7 53.0±9.3 9.5 54.9±6.4 10

Ecoli 78.9±3.5 8 76.4±4.4 7 78.6±3.9 7.4 72.1±2.7 8

Glass 51.6±10.2 7 55.5±7.6 6 52.7±8.4 3 42.8±11.02 7

Segment 97.3±0.7 7 96.9±0.8 6.6 96.6±1.0 6.2 96.6±1.3 7

Derma 97.1±1.2 6 97.1±0.9 5.2 95.9±1.2 3 95.7±0.8 6

Vehicle 80.1±4.0 4 81.1±3.5 3 70.6±3.4 3 81.1±3.6 4

MPEG7 83.2±5.1 70 88.5±4.5 15 89.6±4.9 20.4 90.0±6.4 70

ARFaces 76.0±7.22 50 80.7±5.2 13.8 84.6±5.3 20.2 85.0±6.3 50

Traffic 91.3±1.1 36 95.7±0.92 12.2 96.6±0.8 19 93.3±1.0 36

Rank & # 3.0 20.8 2.2 8.8 2.3 10.3 2.5 20.8

Table 3. UCI classification results with Real AdaBoost as base classifier

One vs. All ECOC CSE ECOC � = 3 CSE ECOC � = 5 Dense Random ECOC

Data set Perf. Classif. Perf. Classif. Perf. Classif. Perf. Classif.

Vowel 40.6±1.3 11 44.7±0.8 10 46.5±1.2 10.6 47.0±1.2 11

Yeast 36.8±1.1 10 45.6±0.4 9.6 42.9±1.0 9.5 40.8±1.3 10

Ecoli 71.5±10.9 8 68.1±8.3 7.4 63.3±9.2 7.4 75.0±7.8 8

Glass 53.8±12.1 7 52.8±13.5 6 44.5±10.8 6 49.5±10.9 7

Segment 96.4±0.7 7 95.0±0.3 6.8 94.8±0.9 6.2 95.3±1.0 7

Derma 89.3±4.9 6 77.6±6.3 5.4 76.0±5.3 3 76.7±5.3 6

Vehicle 73.6±1.3 4 72.7±1.9 4 62.9±1.4 3 72.7±1.5 4

MPEG7 54.4±7.2 70 65.5±9.5 15 73.7±8.3 24.3 86.5±6.4 70

ARFaces 36.3±7.2 50 53.8±5.2 13.8 62.8±8.3 20.4 81.5±6.3 50

Traffic 80.6±6.2 36 81.3±8.1 12.2 87.4±7.9 20.6 91.2±5.3 36

Rank & # 2.6 20.8 2.4 9.16 3.0 10.89 1.9 20.8

References

[AN07] A. Asuncion and D.J. Newman. UCI machine learning repository.
http://www.ics.uci.edu/∼mlearn/MLRepository.html, 2007. University of Califor-



10 Miguel Angel Bautista, Sergio Escalera, Xavier Baro, Oriol Pujol

nia, Irvine, School of Information and Computer Sciences.
[ASS02] E. Allwein, R. Schapire, and Y. Singer. Reducing multiclass to binary: A

unifying approach for margin classifiers. In JMLR, volume 1, pages 113–141, 2002.
[CMP+04] J. Casacuberta, J. Miranda, M. Pla, S. Sanchez, A.Serra, and J.Talaya. On

the accuracy and performance of the GeoMobil system. In International Society for

Photogrammetry and Remote Sensing, 2004.
[CS02] K. Crammer and Y. Singer. On the learnability and design of output codes for

multi-class problems. In Machine Learning, volume 47, pages 201–233, 2002.
[DB95] T. Dietterich and G. Bakiri. Solving multiclass learning problems via error-

correcting output codes. In JAIR, volume 2, pages 263–286, 1995.
[Dem06] J. Demsar. Statistical comparisons of classifiers over multiple data sets.

JMLR, 7:1–30, 2006.
[DK95] T. Dietterich and E. Kong. Error-correcting output codes corrects bias and

variance. In ICML, editor, S. Prieditis and S. Russell, pages 313–321, 1995.
[Hol75] J.H. Holland. Adaptation in natural and artificial systems: An analysis with

applications to biology, control, and artificial intelligence. University of Michigan
Press, 1975.

[BEB10] M.A. Bautista, S. Escalera, and X. Baro. Compact Evolutive Design of Error-
Correcting Output Codes. Supervised and Unsupervised Ensemble methods and

applications - European Conference on Machine Learning, 119–128, 2010.
[LdC08] Ana Carolina Lorena and Andr C.P.L.F. de Carvalho. Evolutionary tuning

of svm parameter values in multiclass problems. Neurocomputing, 71(16-18):3326 –
3334, 2008.

[MB98] A. Martinez and R. Benavente. The AR face database. In Computer Vision

Center Technical Report #24, 1998.
[MP] http://www.cis.temple.edu/latecki/research.html.
[PRV06] O. Pujol, P. Radeva, and J. Vitrià. Discriminant ECOC: A heuristic method
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