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Abstract Traffic sign classification represents a classical
application of multi-object recognition processing in uncon-
trolled adverse environments. Lack of visibility, illumination
changes, and partial occlusions are just a few problems. In
this paper, we introduce a novel system for multi-class classi-
fication of traffic signs based on error correcting output codes
(ECOC). ECOC is based on an ensemble of binary classi-
fiers that are trained on bi-partition of classes. We classify
a wide set of traffic signs types using robust error correc-
ting codings. Moreover, we introduce the novel β-correction
decoding strategy that outperforms the state-of-the-art deco-
ding techniques, classifying a high number of classes with
great success.

Keywords Multi-class classification · Error correcting
output codes · Embedding of dichotomizers · Object
recognition · Traffic sign classification · Adaboost

1 Introduction

Traffic sign classification in uncontrolled environments is
a hard task in computer vision due to the high variability
of symbol appearance caused by illumination changes, lack
of visibility, or occlusions. In the last few years, several
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approaches to deal with the problem have been proposed.
Usually, traffic sign recognition strategies are divided into
two main groups: color-based and gray scale-based. Gray
scale-based approaches focus on object geometry [1,2], whe-
reas the color-based techniques have the advantage of preven-
ting false positive detection [3,4]. Traffic sign recognition is
studied for several purposes, like autonomous driving under
certain simplified conditions or for assisted driving [5]. We
focus on the goal of mobile mapping [6], as a technique used
to compile cartographic information from a mobile system.
One of the main difficulties that makes this problem hard is
the great number of classes and the high resemblance among
signs in poor resolution images. In order to deal with these
hindrances, robust multi-class classifiers should be conside-
red.

Multi-class classification is based on assigning labels to
instances that belong to a finite set of classes Nc (Nc > 2).
Designing a machine learning multi-classification technique
is a difficult task. In this sense, it is common to conceive algo-
rithms for distinguishing between just two classes, and com-
bine them in some way to form a strong multi-class classifier.
Pairwise (one-versus-one) [7] or one-versus-all [8] grouping
techniques are the schemes most frequently used. Error cor-
recting output codes (ECOC) were born as an alternative for
handling multi-class problems using binary classifiers [9]. It
is well-known that ECOC, when applied to multi-class lear-
ning problems, can improve the general performance [7].
One of the reasons for this improvement is its property to
decompose the original problem into a set of complemen-
tary two-class problems—coded in the ECOC matrix—that
allows the sharing of classifiers across the original classes.

Recently, there has been a renewed interest in the design
of ECOC. The common predesigned coding strategies (one-
versus-one and one-versus-all) have been improved with
problem-dependent designs [10,11]. Problem-dependent
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designs exploit the knowledge of each particular domain
to focus on relevant classifiers for that problem. The selec-
tion of the most relevant classifiers allows to obtain a robust
strong classifier that requires less dichotomies to split classes.
However, a few studies related to the decoding step have been
proposed [7].

In this paper, we deal with the problem of traffic sign
classification by means of error correcting techniques. We
use the information obtained from a mobile mapping system
[6] to analyze road video sequences. We use Adaboost with
the Haar-like features estimated over the integral image [12]
to detect regions with high probability to contain a traffic
sign. After applying a spatial normalization and model fit-
ting, we classify the candidate signs in their respective cate-
gories. We compare the recently proposed coding strategies
in the framework of ECOC, showing the improvement of
these techniques when problem-dependent ECOC designs
are combined with proper decoding strategies. In this way,
two novel decoding strategies are presented to increase the
ECOC performance. The proposed ECOC designs robustly
classify several types of signs with high variability of appea-
rance, outperforming traditional ECOC designs.

The paper is organized as follows: Sect. 2 overviews the
ECOC coding strategies and presents the novel β-correction
decoding approaches. Section 3 explains the system for traffic
signs classification. Section 4 shows experimental results,
and finally, Sect. 5 concludes the paper.

2 Error correcting output codes

The basis of the ECOC framework is to create a codeword
for each of the Nc classes. Arranging the codewords as rows
of a matrix, we define a “coding matrix” M , where M ∈
{−1, 0, 1}Nc×n in the ternary case, n being the code length.
From the point of view of learning, M is constructed by consi-
dering n binary problems (dichotomies), each corresponding
to a matrix column. Joining classes in sets, each dichotomy
defines a partition of classes (coded by +1, −1, according to
their class set membership, or 0 if the class is not considered
by the dichotomy).

A ternary coding design is shown in Fig. 1. The matrix
is coded using seven dichotomies {h1, . . . , h7} for a 4-class
problem of codewords {y1, . . . , y4}. The white regions are
coded by +1 (considered as positive for its respective dicho-
tomy, hi ), the dark regions by −1 (considered as negative),
and the gray regions correspond to the zero symbol (not
considered classes for the current dichotomy). For example,
the first classifier is trained to discriminate class 3 versus 1
and 2 without considering class 4, the second one classifies
class 2 versus 1, 3, and 4, and so on. Applying the n trained
binary classifiers, a code is obtained for each data point in
the test set. This code is compared to the base codewords
of each class defined in the matrix M , and the data point

Fig. 1 Example of ternary matrix M for a 4-class problem. A new
test codeword x is classified by class one when using the traditional
Hamming and Euclidean decoding strategies

is assigned to the class with the “closest” codeword [7]. In
the case of the figure, a new test input x is evaluated by
all the classifiers and the system assigns the label (in this
case, class 1) with the minimum Euclidean decoding dis-

tance E D(x, yi ) =
√∑n

j=1(x j − yi
j )

2 and Hamming dis-

tance H D(x, yi ) = ∑n
j=1(1−sign(x j · yi

j ))/2, where y is a
class codeword, and n is the total number of binary classifiers.

2.1 Coding designs

The traditional coding strategies are: one-versus-all [8],
where each learner is trained to distinguish one class from
the rest of the classes. Given Nc classes, this technique has
a codeword length of Nc. One-versus-one [7] considers all
pairs of classes. The codeword length, in this case, is
Nc(Nc−1)

2 . Dense random strategy [7] generates a random
coding matrix M , where the values {+1,−1} have a cer-
tain probability to appear. The sparse random strategy [7]
is similar to the dense case, but includes the third symbol 0
with another appearance of probability value. The require-
ment of the random strategies is that the randomly generated
matrix rows and columns should be as different as possible
in terms of the Hamming distance. In this way, more clas-
sification errors can be corrected [10]. In the work of [7],
the authors experimentally proposed the length of each tech-
nique: 10log(Nc) for the dense case, and 15log(Nc) for the
sparse case.

Due to the high number of binary classifiers involved in
the traditional coding strategies and the low robustness of the
one-versus-all strategy in comparison with one-versus-one,
new coding approaches have been proposed [10,11]. The
new techniques are based on exploiting the problem domain
by selecting the representative binary classification problems
that increase the general performance while keeping the code
length small.

2.1.1 Discriminant ECOC

The method in [10] is based on the embedding of discriminant
tree structures derived from the problem domain. The binary
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Fig. 2 Number of classifiers required for the coding strategies when
the number of classes increases

trees are built by looking for the partition that maximizes
the mutual information between the data and their respective
class labels. Each node of the tree splits a subset of classes,
and each internal node is embedded in the ECOC matrix
as a column, coding by +1 the positions that correspond
to the classes on the right sub-partitions of the tree, and by
−1 the positions corresponding to the left tree sub-partitions
of the classes. The length of the codeword is only (Nc − 1).

2.1.2 ECOC-ONE

In our previous work [11], we proposed an extension of any
initial ECOC configuration. The method uses a coding pro-
cess that learns relevant binary problems guided by a vali-
dation subset. At each iteration of the algorithm (thus, each
new binary classifier), the whole system is evaluated in the
training and validation subsets, and the confusion matrix is
used to search for the pair of classes with the highest classi-
fication error. The next step is to generate an optimal subset
of classes containing the two conflictive classes in opposite
subsets and update the system by embedding the new clas-
sifier weighted by its importance. It has been estimated that
2Nc bits are enough for a good performance improvement,
since the first selected classifiers are the most discriminant.

Figure 2 shows the cost in terms of the number of binary
classifiers required for each of the commented coding stra-
tegies. Observe the quadratic behavior of the one-versus-one
strategy in contrast with the linear tendency of the rest of the
methods when the number of classes increases.

2.2 Decoding designs

The ECOC matrix M uses three possible symbols M ∈
{−1, 0,+1}. The zero symbol allows to increase the num-
ber of bi-partitions of classes (thus, the number of possible
binary classifiers), resulting in a higher number of binary

problems to be learnt. However, the effect of the ternary sym-
bol is still an open issue. Since a zero symbol means that the
corresponding classifier is not trained on a certain class, to
consider the “decision” of this classifier on those zero coded
positions does not make sense. Moreover, the response of the
classifier on a test sample will always be different from zero,
so obligatorily an error will be registered. Let us return to
Fig. 1, where an example about the effect of the zero symbol
is shown. The classification result using the Hamming dis-
tance as well as the Euclidean distance is class 1. Note that
class 2 has only the first two positions coded; thus, it is the
only information provided about class 2. The first two coded
locations of the codeword x correspond exactly to these posi-
tions. Thus, the correct classification should be class 2 instead
of class 1. The use of standard decoding techniques that do
not consider the effect of the third symbol (zero) frequently
fail. In the figure, the H D and E D strategies accumulate an
error value proportional to the number of zero symbols by
row, and finally misclassify the test sample x . To deal with
this problem, we propose two novel approaches that increase
the performance of the ternary ECOC designs.

2.2.1 Laplacian decoding

We present the simple Laplacian approach to deal with the
ternary ECOC decoding. This approach gives to each class a
score according to the number of coincidences between the
input codeword and the class codeword, normalized by the
errors without considering the zero symbol. In this way,
the coded positions of the codewords with more zero symbols
attain more importance. The decoding score is estimated by:

d(x, yi ) = αi + 1

αi + βi + K
(1)

where αi is the number of coincidences from the test code-
word and the codeword for class i , βi , is the number of fai-
lures from the test codeword and the codeword for class i ,
and K is an integer value that codifies the number of classes
considered by the classifier, in this case 2, due to the binary
partitions of the base classifiers. The offset 1/K is the default
value (bias) in case that the coincidences and failures tend to
zero.

2.2.2 β-correction

Based on the present discrete Laplacian technique to decode,
we define a method, called Pessimistic β-Density Distribu-
tion decoding. The method is based on estimating the proba-
bility density functions between two codewords. The main
goal of this strategy is to model at the same time the accu-
racy and uncertainty based on a pessimistic score in order to
obtain more reliable predictions. We use an extension of the
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Fig. 3 Pessimistic score
decoding for the test codeword
x and the matrix M of Fig. 1.
a Class 1, b class 2, c class 3,
and d class 4. The probability
for the second class allows a
successful classification in this
case

continuous binomial distribution, the β-distribution, defined
as follows:

ψi (ν, αi , βi ) = 1

K
ναi (1 − ν)βi (2)

where ψi is the β-Density Distribution between a codeword
x and a class codeword yi for class ci , and ν ∈ [0, 1]. The
expectation ofψi is αi/(αi +βi ). Note that it asymptotically
tends to the Laplace corrected estimator without the prior K
in Eq. (1).

Given a test codeword x and the set of functions ψ(ν,
α, β) = [ψ1(ν, α1, β1) ,…, ψN (ν, αN , βN )], the class ci is
assigned to x if it achieves the highest score si , defined as
the pessimistic score satisfying the following equivalency:

si :
νi∫

νi −si

ψi (ν, αi , βi )dν = u (3)

where u is a threshold parameter. After a preliminary set
of experiments, we fixed u = 1

3 . Note that u governs the
uncertainty influence in the final score. Figure 3 shows the
estimated density functions [ψ1, ψ2, ψ3, ψ4] for the design
shown in Fig. 1. Observe that on the design of Fig. 1, the H D
and the E D decoding strategies classify the test codeword
x by class 1, although according to the present discussion,

the decision should be class 2. In Fig. 3, one can see that
the β-DEN decoding classifies the test data sample to its
correct class 2, obtained by Fig. 3b. It can be shown that
when a function ψi is estimated by a combination of values
αi and βi , the sharpness is higher when it is generated by a
majority of one of the two types. Moreover, this sharpness
depends on the number of code positions different from zero
and the balance between the number of matches and failures.
In this way, the pessimistic score reflects the confidence in
the expectation of the probability density function.

3 Traffic sign classification system

We focus on the goal of mobile mapping to compile car-
tographic information from a mobile system. In particular,
we use the video sequences obtained from the mobile map-
ping system of [6]. In this system, the position and orienta-
tion of the different traffic signs are measured in movement
with the car video cameras. The system has a stereo pair of
calibrated cameras, which are synchronized with a GPS/INS
system (see Fig. 6a). Therefore, the result of the acquisition
step is a set of stereo-pairs of images with their position and
orientation information.
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Fig. 4 a Circular classes,
b speed classes, c triangular
classes

Fig. 5 a, b Road conditions
from the mobile mapping
process video camera. c Speed
sign samples under different
conditions

From ten analyzed DVD video sequences, we obtained
the classes of Fig. 4. The classes are divided into three main
groups: speed, circular, and triangular, with a total of 27 dif-
ferent classes to recognize. The speed signs are treated as a
special case due to their similarity and difficulty to discrimi-
nate in adverse conditions. Different road frames acquired
from the video system where the illumination dramatically
changes are shown in Fig. 5a,b.

The traffic sign recognition system used is divided into
four main steps: object detection, model fitting, normaliza-
tion, and classification. Each of these steps must be robust
enough to minimize the propagation of errors in the system.

3.1 Detection

The detection process is based on the face detector presented
by Viola and Jones in [12]. In particular, we use the Gentle
version of Adaboost with decision stumps [13]. The weak
classifiers are trained using the attentional cascade based on
the extended set of Haar-like features (i.e., including the rota-
ted ones) estimated on the integral image [12]. As a result
of the detection process, we obtain robust and fast detection
results, as shown in Fig. 6b [14].

The three attentional cascades (one for each group) were
trained using a total of 1,500 positive samples divided into
the three different groups.

Given an image where the Adaboost learning algorithm
detected a road sign, a region of interest (ROI) that contains
a sign is determined (circular or triangular). However, since
we have missing information about sign scale and position,
before the recognition process we apply a spatial normaliza-
tion to improve final recognition.

3.2 Model fitting

The Hough transform [15] and fast radial symmetry [16]
are applied in order to fit the model since they offer great
robustness against noise.

3.2.1 Fast radial symmetry

The fast radial symmetry is calculated over a set of one or
more ranges, depending on the scale of the features one is
trying to detect. The value of the transform at a range indi-
cates the contribution to radial symmetry of the gradients
at a distance d away from each point. At each range d, we
examine the gradient g at each point p, from which a corres-
ponding positively-affected pixel, p+ve(p), and negatively-
affected pixel, p−ve(p), are determined: P±ve(p) = p ±
round g(p)

||g(p)||d, and accumulated in the orientation projec-
tion image Od : Od(P±ve(p)) = Od(P±ve(p)) + 1. Now,
to locate the center of radial symmetry, we search for the
position (x, y) of maximal value in the accumulated orienta-
tions matrix OT = ∑d

i=1 Od . Locating that maximum, we
determine the radius length. This procedure allows to obtain
robust results fitting circular traffic signs.

3.2.2 Hough transform

The Hough transform has been shown to allow the detection
of straight lines in a robust way. We apply this procedure in
order to look for the three representative lines of the triangular
sign and calculate their intersections to transform the image.
However, we need to consider additional restrictions to obtain
the three representative border lines of a triangular traffic
sign. Each line has associated a position in relation to the
others. Once we have the three detected lines, we calculate
their intersection. Given the parameters a and b that define
the equation y = a · x + b for each of the three lines, the
intersection point (X,Y ) for each pair of lines is defined as
follows:

Xt = (bi
2 − bi

1)/(a
i
1 − ai

2),

Yt = ai
1 Xt + bi

1 | t, i ∈ [1, . . . , 3] (4)

To assure that the lines are the expected ones, we complement
the procedure searching for a corner at a circular region at
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Fig. 6 a Geovan, b detected
traffic signs

Fig. 7 a Fitting circular traffic signs, b fitting triangular traffic signs

each intersection neighborhood:

S ={(xi , yi ) |∃p<((x−xi )
2+(y−yi )

2−r2)} | i ∈[1,. . ., 3]
(5)

where S is the set of valid intersection points, and p corres-
ponds to a corner point to be located in a neighborhood of the
intersection point. In Fig. 7, an example of two detected sign
regions and a circular and triangular traffic signs are fitted
using the fast radial symmetry [16] and the Hough transform
[15], respectively.

3.2.3 Normalization

Once the sign model is fitted using the commented methods,
the next step is to normalize the fitted object before clas-
sification. The steps are: transform the image to make the
recognition invariant to small affine deformations re-scaling
to the signs database size (32×32 pixels), filter with the Wei-
ckert anisotropic filter [17], and mask the image to exclude
background at the classification step. To prevent the effects
of illumination changes, the histogram equalization improves
image contrast and obtains a uniform histogram. An example
of the normalization process applied to a detected circular
sign is shown in Fig. 8. The image of Fig. 8a corresponds
to a detected, fitted, and re-scaled circular sign. Note the
poor resolution of the detected object. Figure 8b shows the
histogram equalization from the previous image. In Fig. 8c,

Fig. 8 a Fitted sign, b histogram equalization, c Weickert anisotropic
filtering, and d masked region

anisotropic Weickert filtering allows to homogenize regions
affected by noise and slight illumination changes. Finally,
Fig. 8d is obtained after applying a circular mask in order to
reject background regions at the classification step. This pro-
cess is repeated for each detected sign, applying a circular or
triangular model mask depending on the group of the object.

3.3 Classification

Applying the three attentional cascades in the mobile map-
ping system video sequences, the detected and normalized
regions are classified, depending on the type of the detected
sign, using different classification strategies combining the
coding and decoding strategies of ECOC presented in the
previous chapter. A scheme of the whole system is shown in
Fig. 9.

4 Experimental results

Before the results are presented, we discuss the data, com-
paratives, measurements, and experiments.
• Data: The data consists of 15,000 road frames at different
conditions obtained by the mobile mapping system.
• Comparatives: The strategies used to validate the classifi-
cation are 50 runs of Gentle Adaboost with decision stumps
and Radial Basis Function SV M with the parameter gamma
set to 1. These two classifiers generate the set of binary
problems to embed in the set of ECOC configurations: one-
versus-one, one-versus-all, dense-random, and the recently
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Fig. 9 Traffic sign recognition scheme. From left to right Geovan system, captured frames, detected sign, normalized sign, ECOC categorization,
and final decision (recovered sign from the sign database)

proposed DECOC, and ECOC-ONE. Each of the ECOC stra-
tegies is evaluated using different decoding strategies: the
traditional Euclidean distance, and the novel Laplacian and
β-correction decoding. The number of classifiers used for
each methodology are: Nc(Nc − 1)/2 for one-versus-one,
Nc for one-versus-all, Nc for dense random [7], Nc − 1 for
DECOC, and 2Nc for ECOC-ONE. In the dense random case,
the coding matrix was selected from a set of 20,000 generated
random matrix of Nc binary classifiers, which provides a fair
comparison between one-versus-all and DECOC designs in
terms of a similar number of binary problems.
• Measurements: The classification tests are performed
using stratified tenfold cross-validation with a two-tailed t
test at 95% confidence interval.
• Experiments: First, we evaluate the detection rate of the
mobile mapping system. Then, based on the detected regions
of interest, we perform the classification of traffic sign
classes. Two feature sets are considered: first, we used the
normalized pixel-values, and second, we apply the SIFT des-
criptor [18] over the set of normalized signs. These results
are compared to the ones obtained by the multi-class built-in
SV M . Moreover, public multi-class data sets from the UCI
Machine Learning Repository [19] have been used to test the
classification methodology.

4.1 System detection results

For each of the three groups of classes shown in Fig. 4, an
attentional cascade using 500 positive samples and a random
set of background images was trained. Each cascade was
trained using 50 weak classifiers per level, rejecting 80% of
negative samples per level, and learning a total of 12 levels
per cascade [12,13].

Applying the attentional cascades over a test set of 15,000
road frames obtained from the mobile mapping system, we
detected 1,104 regions that contain traffic signs from a set
of 1,119 (thus, a mean detection accuracy of 98.66%). The
detection rate of each particular group is shown in Table 1.

From the previously detected regions, where the minimum
size of detected sign corresponds to 24×24 pixels resolution,
we applied the model fitting and the spatial normalization
explained in the previous sections. Then, two feature sets are

Table 1 Detection rate using an attentional cascade

Problem Detection rate (%)

Speed 98.20

Circular 97.98

Triangular 99.80

Mean performance 98.66

designed to perform the final classification: first, all pixels
are recovered as a 1,024 feature vector from the data set size
(32×32 pixels resolution), and second, as a 128 SIFT feature
vector.

4.2 Error correcting classification using normalized
pixel-based features

First, we generate three types of classification experiments
using the normalized pixel-based features, each one conside-
ring 500 samples from each of the three different traffic signs
groups. The experiment results for the circular and triangular
groups are shown in Fig. 10a, b, respectively. The results in
these cases are very similar due to the high discriminability of
the classes. However, one-versus-one, DECOC, and ECOC-
ONE coding strategies obtain the best performance. For the
one-versus-one, the results are premised because of the high
number of binary classifiers used. In the case of the speed
signs, the classes are very similar and sensible to classifi-
cation errors. This fact is magnified by the road conditions
and the video camera resolution (see Fig. 5). In this case,
the results of Fig. 10c show higher differences between the
classification strategies. The best performance for SV M is
obtained by one-versus-one and ECOC-ONE strategies using
the Laplacian and β-density decoding techniques. For Gentle
Adaboost, ECOC-ONE obtains the first position. This fact is
related to the error correction capability and the problem-
dependent designs of the ECOC-ONE and DECOC strate-
gies, which exploit the speed domain to focus on difficult
classes to split.

Concerning the decoding strategies, one can see that for
a same base classifier and coding strategy, the Laplacian
and β-density decodings improve the traditional Euclidean
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Fig. 10 Classification results
using pixel-based features for
circular a, triangular b, and
speed c classes using Gentle
Adaboost (dark bars) and R B F
SV M (light bars) in the coding
and decoding strategies,
respectively. From left to right
1 Euclidean one-versus-one,
2 Laplacian one-versus-one,
3 β-density one-versus-one,
4 Euclidean one-versus-all,
5 Laplacian one-versus-all,
6 β-density one-versus-all,
7 Euclidean dense random,
8 Laplacian dense random,
9 β-density dense random,
10 Euclidean DECOC,
11 Laplacian DECOC,
12 β-density DECOC,
13 Euclidean ECOC-ONE,
14 Laplacian ECOC-ONE, and
15 β-density ECOC-ONE

distance, and in general, they increase the classification per-
formance of any ECOC design. In particular, β-density
decoding attains the best positions, and the percentage of
improvement is more relevant when applied to third symbol-
based ECOC.

The mean rankings for each classification strategy using
the results of the three presented experiments are shown in
Fig. 11. The rankings are obtained by estimating each parti-
cular ranking r j

i for each problem i and each ECOC configu-
ration j , and computing the mean ranking R for each ECOC
design as R j = 1

J

∑
i r j

i , where J is the total number of
problems (three experiments). One can observe that the best
position is obtained by the ECOC-ONE strategy, followed by
one-versus-one, DECOC, one-versus-all, and finally dense
random strategy. Moreover, note that for each ECOC design,
the Laplacian, and β-density in particular, increase the clas-
sification accuracy of Euclidean decoding for all the cases,
as claimed.

4.3 Error correcting classification using SIFT-based
features

Due to the similarity of shape appearance of the signs from
the same class, we also used the SIFT descriptor [18] to com-
pute the feature space of traffic sign classes. The SIFT des-
criptor has shown to be very useful to describe image regions
in real applications. In our problem, we apply the SIFT des-
criptor on the normalized signs to project them into a feature
vector of 128 features based on the inner orientations of the
object. The same experiments as in the previous section have
been performed with the new feature set. The experimen-
tal results for the circular, triangular, and speed groups are
shown in Fig. 12a, b, c, respectively. The behavior of the
different classification strategies is similar to using the nor-
malized pixel-based features. The main difference is that the
ECOC configurations that use Adaboost as the base classi-
fier tend to slightly increase the classification performance,
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Fig. 11 Ranking position for each classification strategy using pixel-
based features. From left to right 1 Euclidean one-versus-one,
2 Laplacian one-versus-one, 3 β-density one-versus-one, 4 Euclidean
one-versus-all, 5 Laplacian one-versus-all, 6 β-density one-versus-all,

7 Euclidean dense random, 8 Laplacian dense random, 9 β-density
dense random, 10 Euclidean DECOC, 11 Laplacian DECOC,
12 β-density DECOC, 13 Euclidean ECOC-ONE, 14 Laplacian
ECOC-ONE, 15 β-density ECOC-ONE

Fig. 12 Classification results
using SIFT-based features for
circular a, triangular b, and
speed c classes using Gentle
Adaboost (dark bars) and R B F
SV M (light bars) in the coding
and decoding strategies,
respectively. From left to right
1 Euclidean one-versus-one,
2 Laplacian one-versus-one,
3 β-density one-versus-one,
4 Euclidean one-versus-all,
5 Laplacian one-versus-all,
6 β-density one-versus-all,
7 Euclidean dense random,
8 Laplacian dense random,
9 β-density dense random,
10 Euclidean DECOC,
11 Laplacian DECOC,
12 β-density DECOC,
13 Euclidean ECOC-ONE,
14 Laplacian ECOC-ONE, and
15 β-density ECOC-ONE

whereas when using RB F SV M as the base classifier, the
obtained performance remains very similar.

Concerning the decoding strategies, one can see that for
the same base classifier and coding strategy, the Laplacian

and β-density decodings also improve the traditional Eucli-
dean distance using SIFT-based features.

The mean rankings for each classification strategy using
the results of the three presented experiments are shown in
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Fig. 13 Ranking position for each classification strategy using SIFT-
based features. From left to right 1 Euclidean one-versus-one,
2 Laplacian one-versus-one, 3 β-density one-versus-one, 4 Euclidean
one-versus-all, 5 Laplacian one-versus-all, 6 β-density one-versus-all,

7 Euclidean dense random, 8 Laplacian dense random, 9 β-density
dense random, 10 Euclidean DECOC, 11 Laplacian DECOC,
12 β-density DECOC, 13 Euclidean ECOC-ONE, 14 Laplacian
ECOC-ONE, 15 β-density ECOC-ONE

Table 2 UCI Repository data
sets characteristics Problem #Train #Attributes #Classes Problem #Train #Attributes #Classes

Dermatology 366 34 6 Yeast 1,484 8 10

Vowel 990 10 11 Letter 20,000 16 26

Table 3 Dermatology
performance using Gentle
Adaboost

One-versus-one One-versus-all Dense DECOC ECOC-ONE

E D 92.04 (2.32) 89.37 (1.89) 91.04 (2.37) 92.04 (2.19) 92.04 (2.32)

L AP 92.04 (2.32) 89.37 (1.89) 91.04 (2.37) 92.04 (2.20) 92.04 (2.20)

β − DE N 92.04 (2.32) 89.37 (1.89) 91.04 (2.37) 92.04 (2.04) 92.04 (2.11)

Table 4 Vowel performance
using Gentle Adaboost One-versus-one One-versus-all Dense DECOC ECOC-ONE

E D 59.19 (2.83) 42.42 (2.28) 27.47 (2.07) 62.83 (2.62) 62.56 (2.87)

L AP 59.19 (2.83) 42.42 (2.28) 27.47 (2.07) 64.91 (2.68) 65.36 (2.17)

β − DE N 59.19 (2.83) 42.42 (2.28) 27.47 (2.07) 65.12 (2.62) 65.36 (2.17)

Fig. 13. One can observe that the rank positions are equiva-
lent to those obtained using normalized pixel-based features.
The best position is obtained by the ECOC-ONE strategy,
followed by one-versus-one, DECOC, one-versus-all, and
finally, dense random strategy. Moreover, note that for each
ECOC design, the Laplacian andβ-density, as in the previous
experiment, increase the classification accuracy of Euclidean
decoding.

4.4 Public UCI machine learning repository classification

In this experiment, we classify four multi-class data sets from
the UCI Machine Learning Repository [19]. The details of
the data sets are shown in Table 2. The results applying the
different ECOC configurations with Gentle Adaboost and
RBF SVM are shown in Tables 3, 4, 5, 6 and 7, 8, 9, 10, res-
pectively. The best performance of each ECOC configuration

is shown in bold. Note that the Laplacian and β-density in the
worst case obtain the same results as applying the traditional
Euclidean distance to decode.

4.5 Multi-class RBF comparison

To show the robustness of the presented classification fra-
mework, we compare the results obtained with the ECOC
methods with a built-in multi-class SV M with RB F . The
results are shown in Fig. 14a for pixel-based features and
Fig. 14b for SIFT-based features. One can observe that the
RB F multi-class SV M obtains inferior results to the ones
obtained by one-versus-one, ECOC-ONE, and DECOC desi-
gns, and similar to one-versus-all and dense random strate-
gies for the same types of features.
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Table 5 Yeast performance
using Gentle Adaboost One-versus-one One-versus-all Dense DECOC ECOC-ONE

E D 49.57 (1.38) 45.87 (1.12) 46.84 (1.34) 50.32 (1.44) 50.88 (2.16)

L AP 49.57 (1.38) 45.87 (1.12) 46.84 (1.34) 51.77 (1.35) 52.04 (1.38)

β − DE N 49.57 (1.38) 45.87 (1.12) 46.84 (1.34) 51.79 (1.37) 52.04 (1.55)

Table 6 Letter performance
using Gentle Adaboost One-versus-one One-versus-all Dense DECOC ECOC-ONE

E D 88.96 (1.56) 84.34 (1.65) 84.53 (1.67) 87.56 (1.67) 88.85 (1.58)

L AP 88.96 (1.64) 86.89 (1.63) 85.73 (1.76) 88.76 (1.59) 90.12 (1.81)

β − DE N 88.96 (1.64) 87.12 (1.60) 88.26 (1.50) 89.01 (1.54) 90.32 (1.58)

Table 7 Dermatology
performance using R B F SV M One-versus-one One-versus-all Dense DECOC ECOC-ONE

E D 95.59 (0.74) 94.54 (1.04) 80.86 (1.26) 95.07 (1.02) 95.52 (0.94)

L AP 95.59 (0.74) 94.54 (1.04) 80.86 (1.26) 96.10 (0.94) 95.59 (1.00)

β − DE N 95.59 (0.74) 94.54 (1.04) 80.86 (1.26) 96.10 (0.94) 96.10 (0.83)

Table 8 Vowel performance
using R B F SV M One-versus-one One-versus-all Dense DECOC ECOC-ONE

E D 64.95 (3.71) 26.67 (2.11) 28.18 (3.16) 66.78 (2.67) 66.90 (2.73)

L AP 64.95 (3.71) 26.67 (2.11) 28.18 (3.16) 68.36 (3.02) 68.40 (2.94)

β − DE N 64.95 (3.71) 26.67 (2.11) 28.18 (3.16) 68.36 (3.08) 68.53 (3.13)

Table 9 Yeast performance
using R B F SV M One-versus-one One-versus-all Dense DECOC ECOC-ONE

E D 50.79 (2.39) 35.52 (1.00) 27.82 (1.59) 50.79 (2.48) 51.04 (2.51)

L AP 50.79 (2.39) 35.52 (1.00) 27.82 (1.59) 50.79 (2.21) 52.20 (2.44)

β − DE N 50.79 (2.39) 35.52 (1.00) 27.82 (1.59) 50.79 (2.28) 52.34 (2.46)

Table 10 Letter performance
using R B F SV M One-versus-one One-versus-all Dense DECOC ECOC-ONE

E D 86.11 (0.99) 36.38 (0.76) 67.28 (0.81) 82.09 (0.81) 86.25 (0.86)

L AP 86.22 (1.00) 36.38 (0.76) 68.73 (1.01) 85.15 (0.96) 88.89 (1.05)

β − DE N 86.47 (0.92) 36.38 (0.76) 70.37 (0.97) 85.62 (0.89) 89.03 (0.94)

4.6 Discussion

The multi-class variant of Adaboost that has demonstrated to
be dominant to the other proposals in empirical studies is the
Adaboost.MH [20]. The Adaboost.MH algorithm converts
the Nc-class problem into that of estimating a two-class clas-
sifier on a training set Nc times as large, with an additional
feature defined by the set of class labels [21]. It is the same as
the one-versus-all scheme, representing a “Multi-label Ham-
ming” to measure the separate classifiers, being essentially
the one-versus-all ECOC with Hamming decoding, that, in
comparison to ours, offers low performance [13]. For this
reason, the comparison with multi-class Adaboost.MH has
been omitted from the set of experiments.

The presented multi-classification system is robust, dea-
ling with a high number of classes to distinguish. The com-
bination of the recently proposed problem-dependent coding
designs and the novel decoding strategies outperform the tra-
ditional schemes of error correction and also increase the
performance of the traditional multi-class approaches, as the
multi-class Adaboost and SV M .

We are currently performing the detection and object fit-
ting steps, since the classification performance of the present
application depends on the accuracy of these first steps of the
system.

The presented multi-classification approach represents a
powerful tool to be used on any application that requires
distinguishing between a set of categories.
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Fig. 14 Classification results using multi-class SV M for pixel-based
features a and SIFT-based features b. From left to right 1 Circular,
2 triangular, and 3 speed classification

5 Conclusions

In this paper, we presented a classification system that obtains
a very high performance for the problem of traffic sign clas-
sification using error correcting techniques. The system has
four main stages: traffic sign detection, model fitting, spatial
normalization, and sign categorization. The multi-class clas-
sification techniques are evaluated on real video sequences
obtained from a mobile mapping system. We compared the
state-of-the-art and recently proposed designs for ECOC.
Moreover, we presented two novel decoding techniques,
which showed high robustness and better performance than
traditional ECOC designs and the state-of-the-art multi-
classifiers. The traffic sign recognition system obtains robust
classification results in front, with a high number of classes
and high variability of the objects’ appearance.
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