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Abstract—A common way to model multiclass classification problems is by means of Error-Correcting Output Codes (ECOCs). Given

a multiclass problem, the ECOC technique designs a code word for each class, where each position of the code identifies the

membership of the class for a given binary problem. A classification decision is obtained by assigning the label of the class with the

closest code. One of the main requirements of the ECOC design is that the base classifier is capable of splitting each subgroup of

classes from each binary problem. However, we cannot guarantee that a linear classifier model convex regions. Furthermore,

nonlinear classifiers also fail to manage some type of surfaces. In this paper, we present a novel strategy to model multiclass

classification problems using subclass information in the ECOC framework. Complex problems are solved by splitting the original set of

classes into subclasses and embedding the binary problems in a problem-dependent ECOC design. Experimental results show that

the proposed splitting procedure yields a better performance when the class overlap or the distribution of the training objects conceal

the decision boundaries for the base classifier. The results are even more significant when one has a sufficiently large training size.

Index Terms—Multiclass classification, subclasses, Error-Correcting Output Codes, embedding of dichotomizers.

Ç

1 INTRODUCTION

IN the literature, one can find several powerful binary
classifiers. However, when one needs to deal with multi-

class classification problems, many learning techniques fail to
manage this information. Instead, it is common to construct
the classifiers to distinguish between just two classes and to
combine them in some way. In this sense, Error-Correcting
Output Codes (ECOCs) were born as a general framework to
combine binary problems to address the multiclass problem.
The strategy was introduced by Dietterich and Bakiri [7] in
1995. Based on the error correcting principles [7] and because
of its ability to correct the bias and variance errors of the base
classifiers [16], ECOC has been successfully applied to a wide
range of applications such as face recognition [25], face
verification [15], text recognition [12], and manuscript digit
classification [27].

The ECOC technique can be broken down into two
distinct stages: encoding and decoding. Given a set of
classes, the coding stage designs a code word1 for each class
based on different binary problems. The decoding stage
makes a classification decision for a given test sample based
on the value of the output code.

At the coding step, given a set ofN classes to be learned, n
different bipartitions (groups of classes) are formed, and
n binary problems (dichotomizers) are trained. As a result, a
code word of length n is obtained for each class, where each
bit of the code corresponds to the response of a given
dichotomizer (coded by þ1, �1, according to their class set
membership). Arranging the code words as rows of a matrix,
we define a coding matrix M, where M 2 f�1; 1gN�n in the
binary case. The most well-known binary coding strategies
are the one-versus-all strategy [17], where each class is
discriminated against the rest of classes, and the dense
random strategy [1], where a random matrixM is generated,
maximizing the rows and columns separability in terms of
the Hamming distance [7]. In Fig. 1a, the one-versus-all
ECOC design for a four-class problem is shown. The white
regions of the coding matrix M correspond to the positions
coded by 1 and the black regions to �1. Thus, the code word
for class C1 is f1;�1;�1;�1g. Each column i of the coding
matrix codifies a binary problem learned by its correspond-
ing dichotomizer hi. For instance, dichotomizer h1 learns C1

against classes C2, C3, and C4, dichotomizer h2 learns C2

against classes C1, C3, and C4, etc. An example of a dense
random matrix for a four-class problem is shown in Fig. 1c.

It was when Allwein et al. [1] introduced a third symbol
(the zero symbol) in the coding process when the coding step
received special attention. This symbol increases the number
of partitions of classes to be considered in a ternary ECOC
framework by allowing some classes to be ignored. Then, the
ternary coding matrix becomes M 2 f�1; 0; 1gN�n. In this
case, the symbol zero means that a particular class is not
considered by a certain binary classifier. Thanks to this,
strategies such as one-versus-one [13] and random sparse
coding [1] can be formulated in the framework. Fig. 1b shows
the one-versus-one ECOC configuration for a four-class
problem. In this case, the gray positions correspond to the
zero symbol. A possible sparse random matrix for a four-class
problem is shown in Fig. 1d. Note that the previous coding
designs are predefined. Thus, the training data is not
considered until the coding matrix M is constructed. Then,
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1. The code word is a sequence of bits of a code representing each class,
where each bit identifies the membership of the class for a given binary
classifier.

0162-8828/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society



each dichotomizer uses the coded positions of M to train the
different binary problems.

The decoding step was originally based on error-correct-
ing principles under the assumption that the learning task
can be modeled as a communication problem, in which class
information is transmitted over a channel [7]. During the
decoding process, applying the n binary classifiers, a code is
obtained for each data point in the test set. This code is
compared to the base code words of each class defined in the
matrixM, and the data point is assigned to the class with the
closest code word. The most frequently applied decoding
strategies are the Hamming ðHDÞ [17] and the euclidean
ðEDÞ decoding distances [13]. With the introduction of the
zero symbol, Allwein et al. [1] showed the advantage of using
a loss-based function of the margin of the output of the base
classifier. Recently, Asuncion and Newman [8] proposed a
Loss-Weighted strategy to decode, where a set of probabil-
ities based on the performances of the base classifiers are used
to weight the final classification decision. In Fig. 1, each
ECOC codification is used to classify an input object X. The
input data sample X is tested with each dichotomizer hi,
obtaining an outputXi. The final code fX1; . . . ; Xngof the test
input X is used by a given decoding strategy to obtain the
final classification decision. Note that in both, the binary and
the ternary ECOC framework, the value of each positionXj of
the test code word cannot take the value zero since the output
of each dichotomizer hj 2 f�1;þ1g.

Recently, new improvements in the ternary ECOC coding
demonstrate the suitability of the ECOC methodology to deal
with multiclass classification problems [21], [20], [9], [24], [4].
These recent designs use the knowledge of the problem-
domain to learn relevant binary problems from ternary codes.
The basic idea of these methods is to use the training data to
guide the training process and, thus, to construct the coding

matrixM, focusing on the binary problems that better fits the
decision boundaries of a given data set.

One of the main reasons why the recent problem-
dependent designs [21], [20], [9] attains a good performance
is because of the high number of possible subgroups of classes
that is possible in the ternary ECOC framework. On the other
hand, using the training data in the process of the ECOC
design allows us to obtain compact code words with high
classification performance. However, the final accuracy is
still based on the ability of the base classifier to learn each
individual problem. Difficult problems, those which the base
classifier is not able to find a solution for, require the use of
complex classifiers such as Support Vector Machines with
Radial Basis Function kernel [18] and expensive parameter
optimizations. Look at the example in Fig. 2a. A linear
classifier is used to split two classes. In this case, the base
classifier is not able to find a convex solution. On the other
hand, in Fig. 2b, one of the previous classes has been split into
two subsets, which we call subclasses. Then, the original
problem is solved using two linear classifiers, and the two
new subclasses have the same original class label. Some
studies in the literature tried to form subclasses using the
labels information, which is called Supervised Clustering
[26], [5]. In these types of systems, clusters are usually formed
without taking into account the behavior of the base classifier
that learns the data. In a recent work [28], the authors use the
class labels to form the subclasses that improve the
performance of particular Discriminant Analysis algorithms.

In this paper, we present a problem-dependent ECOC
design, where classes are partitioned into subclasses using a
clustering approach for the cases that the base classifier is
not capable to distinguish the classes. Sequential Forward
Floating Search based on maximizing the Mutual Informa-
tion is used to generate the subgroups of problems that are
split into more simple ones until the base classifier is able to
learn the original problem. In this way, multiclass problems
that cannot be modeled by using the original set of classes
are modeled without the need of using more complex
classifiers. The final ECOC design is obtained by combining
the subproblems. The novel subclass ECOC design is
compared with the state-of-the-art ECOC designs over a
set of UCI Machine Learning Repository data sets and on a
real multiclass traffic sign categorization problem using
different base classifiers. The results show that in most cases
the subclass strategy is able to obtain significant perfor-
mance improvements.

The paper is organized as follows: Section 2 presents the
subclass ECOC approach. Section 3 shows the experimental
results discussing several points about the subclass ECOC
performance. Finally, Section 4 concludes the paper.
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Fig. 1. (a) One-versus-all, (b) one-versus-one, (c) dense random, and

(d) sparse random ECOC designs.

Fig. 2. (a) Decision boundary of a linear classifier of a two-class problem.

(b) Decision boundaries of a linear classifier splitting the problem of (a)

into two more simple tasks.



2 PROBLEM-DEPENDENT ECOC SUBCLASS

From an initial set of classes C of a given multiclass
problem, the objective of the subclass ECOC strategy is to
define a new set of classes C0, where jC0j > jCj, so that the
new set of binary problems is easier to learn for a given base
classifier. For this purpose, we use a guided procedure that,
in a problem-dependent way, groups classes and splits
them into subsets if necessary.

Recently, Ghani [21] proposed a ternary problem-
dependent design of ECOC, called DECOC, where given
N classes, a high classification performance is achieved with
only N � 1 binary problems. The method is based on the
embedding of discriminant tree structures derived from the
problem domain. The binary trees are built by looking for
the partition that maximizes the MI between the data and
their respective class labels. Look at the three-class problem
shown on the top in Fig. 3a. The standard DECOC algorithm
considers the whole set of classes to split it into two subsets
of classes }þ and }�, maximizing the MI criterion on a

sequential forward floating search (SFFS) procedure. In the
example, the first subsets found correspond to }þ ¼
fC1; C2g and }� ¼ fC3g. Then, a base classifier is used to
train its corresponding dichotomizer h1. This classifier is
shown in the node h1 of the tree structure shown in Fig. 3d.
The procedure is repeated until all classes are split into
separate subsets }. In the example, the second classifier is
trained to split the subsets of classes }þ ¼ C1 from }� ¼ C2

because the classes C1 and C2 were still contained in a single
subset after the first step. This second classifier is codified by
the node h2 in Fig. 3d. When the tree is constructed, the
coding matrixM is obtained by codifying each internal node
of the tree as a column of the coding matrix (see Fig. 3c).

In our case, sequential forward floating search (SFFS)
procedure is also applied to look for the subsets }þ and }�

that maximizes the MI between the data and their respective
class labels [21]. The encoding algorithm is shown in Table 2.
The terms used in the paper are summarized in the Table 1.

Given an N-class problem, the whole set of classes is
used to initialize the set L, containing the sets of labels for
the classes to be learned. At the beginning of each iteration k
of the algorithm (Step 1), the first element of L is assigned
to Sk in the first step of the algorithm. Next, SFFS is used
to find the optimal binary partition BP of Sk that maximizes
the MI I between the data and their respective class labels
(Step 2). The SFFS algorithm used [19] is shown in
Appendix A, and the implementation details of the fast
quadratic MI can be found in Appendix B.

To illustrate our procedure, let us return to the example
of the top in Fig. 3a. On the first iteration of the subclass
ECOC algorithm, SFFS finds the subset }þ ¼ fC1; C2g
against }� ¼ fC3g. The encoding of this problem is shown
in the first matrix in Fig. 3c. The positions of the column
corresponding to the classes of the first partition are coded
by þ1 and the classes corresponding to the second partition
to �1, respectively. In our procedure, the base classifier is
used to test if the performance obtained by the trained
dichotomizers is sufficient. Observe the decision boundaries
of the picture next to the first column of the matrix in
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Fig. 3. (a) Top: original three-class problem. Bottom: four subclasses
found. (b) Subclass ECOC encoding using the four subclasses using
Discrete Adaboost with 40 runs of Decision Stumps. (c) Learning
evolution of the subclass matrix M. (d) Original tree structure without
applying subclass. (e) New tree-based configuration using subclasses.

TABLE 1
Table of Terms



Fig. 3b. One can see that the base classifier finds a good
solution for this first problem.

Then, the second classifier is trained to split }þ ¼ C1

against }� ¼ C2, and its performance is computed. To
separate the current subsets is not a trivial problem, and the
classification performance is poor. Therefore, our procedure
tries to split the data J}þ and J}� from the current subsets }þ

and }� into more simple subsets. At Step 3 of the algorithm,
the splitting criteria SC takes as input a data set J}þ or J}�
from a subset }þ or }� and splits it into two subsets Jþ}þ and
J�}þ or Jþ}� and J�}� . In Section 3, we discuss the selection of the
splitting criterion. The splitting algorithm is shown in Table 3.

When two data subsets fJþ}þ ; J�}þg and fJþ}� ; J�}�g are
obtained, only one of both split subsets is used. We select the
subsets that have the highest distance between the means of
each cluster. Suppose that the distance between Jþ}� andJ�}� is
larger than between Jþ}þ and J�}þ . Then, only J}þ , Jþ}� , and J�}�
are used. If the new subsets improve the classification
performance, new subclasses are formed, and the process is
repeated.

In the example in Fig. 3, applying the splitting criteria SC
over the two subsets, two clusters are found for }þ ¼ C1 and
for }� ¼ C2. Then, the original encoding of the problem C1

versusC2 (corresponding to the second column of the matrix
in the center in Fig. 3c) is split into two columns marked with
the dashed lines in the matrix on the right. In this way, the
original C1 versus C2 problem is transformed to two more
simple problems fC11g against fC2g and fC12g against fC2g.
Here, the first subindex of the class corresponds to the
original class, and the second subindex to the number of
subclass. It implies that the classC1 is split into two subclasses
(look at the bottom of Fig. 3a), and the original three-class
problem C ¼ fC1; C2; C3g becomes the four-subclass pro-
blem C0 ¼ fC11; C12; C2; C3g. As the class C1 has been
decomposed by the splitting of the second problem, we need

to save the information of the current subsets and the
previous subsets affected by the new splitting. The steps to
update this information are summarized in the Step 4 of the
splitting algorithm. We use the object labels to define the set of
subclasses of the current partition }c. If new subclasses are
created, the set of subclassesC0 and the data for subclasses J 0

have to be updated. Note that when a class or a subclass
previously considered for a given binary problem is split in a
future iteration of the procedure, the labels from the previous
subsets f}þ; }�g need to be updated with the new informa-
tion. Finally, the set of labels for the binary problems }0 is
updated with the labels of the current subset }0 ¼ }0 [ }c. In
the example in Fig. 3, the dichotomizer h1 considers the
subsets }þ1 ¼ fC1; C2g and }�1 ¼ fC3g. Then, those positions
containing classC1 are replaced withC11 andC12. The process
is repeated until the desired performance is achieved, or the
stopping conditions are fulfilled.

The conditions that guide the learning and splitting
process are defined by the set of parameters � ¼ f�size; �perf ;
�imprg, where �size corresponds to the minimum size of a
subset to be clustered, �perf contains the minimum error
desired for each binary problem, and �impr looks for the
improvement of the split subsets regarding the previous ones.
The function TEST PARAMETERS in Table 3 is respon-
sible for testing the constraints based on the parameters
f�size; �perf ; �imprg. If the constraints are satisfied, the new
subsets are selected and used to recursively call the splitting
function (Step 3 of the algorithm in Table 3). The constraints
of the function TEST PARAMETERS are fixed by default
as follows:

. The number of objects in J}þ has to be larger than
�size.

. The number of objects in J}� has to be larger than
�size.
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TABLE 2
Problem-Dependent Subclass ECOC Algorithm

TABLE 3
Subclass SPLIT Algorithm



. The error �ðhðJ}� ; J}þÞÞ obtained from the dichot-
omizer h using a particular base classifier applied on
the sets f}þ; }�g has to be larger than �perf .

. The sum of the well-classified objects from the two
new problems (based on the confusion matrices)
divided by the total number of objects has to be
greater than 1� �impr.

�size avoids the learning of very unbalanced problems. �perf
determines when the performance of a partition of classes is
insufficient, and subclasses are required. Moreover, finally,
when a partition does not obtain the desired performance
�perf , the splitting of the data stops, preventing overtraining.

In the example in Fig. 3, the three dichotomizersh1,h2, and
h3 find a solution for the problem (look the trained boundaries
shown in Fig. 3b), obtaining a classification error under �perf ,
so, the process stops. Now, the original tree encoding of the
DECOC design shown in Fig. 3d can be represented by the
tree structure in Fig. 3e, where the original class associated to
each subclass is shown in the leaves.

Summarizing, when a set of objects belonging to different
classes is split, object labels are not taken into account. It can
be seen as a clustering in the sense that the subsets are split
into more simple ones while the splitting constraints are
satisfied. It is important to note that when one uses different
base classifiers, the subclass splitting is probably applied to
different classes or subclasses and, therefore, the final
number of subclasses and binary problems differs.

When the final set of binary problems is obtained, its
respective set of labels}0 is used to create the coding matrixM
(1). The outputs C0 and J 0 contain the final set of subclasses,
and the new data for each subclass, respectively.

Finally, to decode the new subclass problem-dependent
design of ECOC, we take advantage of the recently proposed
Loss-Weighted decoding design [8]. The decoding strategy
uses a set of normalized probabilities based on the perfor-
mance of the base classifier and the ternary ECOC constraints
[8]. The decoding algorithm is described in Appendix C.

2.1 Illustration over Toy Problems

To show the effect of the subclass ECOC strategy for different
base classifiers, we used the previous toy problem of the top
in Fig. 3a. Five different base classifiers are applied: Fisher
Linear Discriminant Analysis (FLDA), Discrete Adaboost,
Nearest Mean Classifier, Linear SVM, and SVM with Radial
Basis Function kernel.2 Using these base classifiers on the toy
problem, the original DECOC strategy with the Loss-

Weighted algorithm obtains the decision boundaries shown
on the top row in Fig. 4. The new learned boundaries are
shown on the bottom row in Fig. 4 for fixed parameters �.
Depending on the flexibility of the base classifier more
subclasses are required, and thus, more binary problems.
Observe that all base classifiers are able to find a solution for
the problem, although with different types of decision
boundaries.

The selection of the set of parameters � has a decisive
influence on the final results. We can decrease the value of
�perf and increase the value of �impr to obtain a better solution
for a problem, but we need to optimize the parameters to
avoid overtraining by stopping the procedure if no more
improvement can be achieved. In the same way, sometimes to
obtain the best solution for a problem implies to learn more
simple problems. These points should be considered to obtain
the desired trade-off between performance and computa-
tional cost. A simple example to show the evolution of
learning for different parameters �over the previous problem
is shown in Fig. 5. The base classifier applied is FLDA. One
can observe that when �perf decreases, more dichotomizers
are required to obtain a higher performance. Thus, to achieve
the desired accuracy, more subclasses and binary problems
are needed.

3 EXPERIMENTAL RESULTS

In this section, we compare the subclass approach with
different state-of-the-art coding designs and base classifiers
on real and synthetic data sets. In order to evaluate the
methodology, first, we discuss the data, compared methods,
experiments, and performance evaluation.

. Data. The data used for the experiments consists of
eight arbitrary multiclass data sets from the UCI
Machine Learning Repository [2] and one real nine-
class traffic sign classification problem from the
Geomobil project of [3]. The characteristics of the
UCI data sets are shown in Table 4. It shows a wide
range of attributes sizes and class sizes. All data sets
have been normalized with respect to the mean and
variance.
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2. The parameters of the base classifiers are explained in the
experimental results section.

Fig. 4. Subclass ECOC without subclasses (top) and including subclasses

(bottom). (a) FLDA. (b) Discrete Adaboost. (c) NMC. (d) Linear SVM.

(e) RBF SVM.

Fig. 5. Learned boundaries using FLDA with �size ¼ jJj50 , �impr ¼ 0:95,

and (a) �perf ¼ 0:2, (b) �perf ¼ 0:15, (c) �perf ¼ 0:1, (d) �perf ¼ 0:05, and

(e) �perf ¼ 0, respectively.

TABLE 4
UCI Machine Learning Repository Data Sets Characteristics



. Compared methods. We compare our method with the
state-of-the-art ECOC coding designs: one-versus-
one [13], one-versus-all [17], dense random [1],
sparse random [1], and DECOC [21].

The random matrices were selected from a set of
20,000 randomly generated matrices, with P ð1Þ ¼
P ð�1Þ ¼ 0:5 for the dense random matrix and P ð1Þ ¼
P ð�1Þ ¼ P ð0Þ ¼ 1=3 for the sparse random matrix.
The number of binary problems was fixed to the
number of classes. Therefore, a direct comparison to
the one-versus-all and DECOC designs is possible.
Each strategy uses the previously mentioned Linear
Loss-weighted decoding to evaluate their perfor-
mances at identical conditions. Five different base
classifiers are applied over each ECOC configuration:
Nearest Mean Classifier (NMC) with the classification
decision using the euclidean distance between the
mean of the classes, Discrete Adaboost with 40 itera-
tions of Decision Stumps [11], Linear Discriminant
Analysis implementation of the PR Tools using the
default values [10], OSU implementation of Linear
Support Vector Machines with the regularization
parameter C set to 1 [18], and OSU implementation
of Support Vector Machines with Radial Basis Func-
tionkernelwiththedefaultvaluesof theregularization
parameterC and the gamma parameter set to 1 [18].3

. Experiments. First, we classify the set of UCI Machine
Learning Repository data sets with the ECOC designs
and the different base classifiers. Second, focusing on
particular data sets, we analyze the performance of
our methodology over the training and test sets by
changing the values of the set of parameters �.
Furthermore, we also perform an experiment to show
the behavior of our procedure when working with
different training sizes. Third, a real multiclass traffic
sign recognition problem is evaluated using the
different strategies.

. Performance evaluation. To evaluate the performance of
the different experiments, we apply stratified 10-fold
cross validation and test for the confidence interval at
95 percent with a two-tailed t-test. Besides, we use the
statistical Nemenyi test to look for significant differ-
ences between the method performances [6].

3.1 UCI Machine Learning Repository

Using the UCI Machine Learning Repository data sets, we
perform different experiments. First, we classify the eight
data sets. Second, we look for the statistical significance of
the results and, finally, we discuss the effect of the subclass
parameters and the training size.

3.1.1 UCI Machine Learning Repository Classification

Using the UCI data sets in Table 4, the five base classifiers, and
the six ECOC designs, we have performed a total of 240 10-
fold tests. The set of parameters of the subclass approach
� ¼ f�size; �perf ; �imprg has been fixed to �size ¼ jJ j50 minimum
number of objects to apply subclass (thus, 2 percent of the

samples of each particular problem), �perf ¼ 0 to split classes if
the binary problem does not learn properly the training
objects, and �impr ¼ 0:95, which means that the split problems
must improve at least a 5 percent of the performance of the
problem without splitting. The last measure is simply
estimated by dividing the sum of the well-classified objects
from the two subproblems the total number of objects by
looking at the confusion matrices. For simplicity and fast
computation, the used splitting criterion is K-Means with
k ¼ 2. K-Means is a fast way to split a set of objects into
k clusters satisfying intracluster compactness and high
intercluster separability by minimizing an objective function

� ¼
X2

i¼1

Xm
j¼1

xji � �j
�� ��2

; ð2Þ

for m object instances, �j is the centroid for the cluster
i 2 f1; 2g, and � is the objective function to be minimized.4

The results for each base classifier are shown in the tables
of Appendix D. In Figs. 6 and 7, the results are graphically
illustrated for the Discrete Adaboost and NMC classifiers,
respectively.

These two base classifiers obtain the least and most
performance improvements, respectively. Although the
results for Adaboost show that the subclass approach is
comparable with the other ECOC approaches, it cannot be
considered statistically significantly better. It is caused by the
fact that Adaboost is a relatively strong classifier, and it is able
to fit better the problem boundaries. On the other hand,
looking at the results in Fig. 7, one can see that the results of
the subclass approach are significantly better for most of the
cases because of the failure of NMC to model the problems by
only using the original set of classes.

3.1.2 Statistical Significance

To check for statistically significant differences between the
methods, we use the Nemenyi test—two techniques are
significantly different when the corresponding average ranks
differ by at least the critical difference value. The ranks are
obtained estimating each particular rank rji for each problem i

and each ECOC design j, and then, computing the mean
rankR for each design asRj ¼ 1

P

P
i r

j
i , beingP the number of

experiments. The mean rank of each ECOC design for each
base classifier and for the whole set of problems are
numerically shown in Table 5.5 The critical value ðCDÞ [6] is
defined as follows:

CD ¼ q�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 1Þ

6P

r
; ð3Þ

where q� is based on the Studentized range statistic divided
by

ffiffiffi
2
p

, k ¼ 6 is the number of methods in the comparison, and
P ¼ 40 is the total number of experiments performed (8 data
sets � 5 base classifiers). In our case, when comparing six
methods with a confidence value � ¼ 0:05, q0:05 ¼ 2:20.
Substituting this in (3), we obtain a critical difference value
of 0.81.
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3. The regularization parameter C and the gamma parameter are set to 1
for all the experiments. We selected this parameter after a preliminary set of
experiments. We decided to keep the parameter fixed for the sake of
simplicity and easiness of replication of the experiments, though we are
aware that this parameter might not be optimal for all data sets.
Nevertheless, since the parameters are the same for all the compared
methods, any weakness in the results will also be shared.

4. It is important to save the history of splits to reuse the subgroups if they
are required again. It speeds up the method and also reduces the variation in
the results induced by different random initializations of K-Means.

5. We realize that averaging over data sets has a very limited meaning as
it entirely depends on the selected set of problems.



Observing the ranks of each ECOC design in the global
rank row in Table 5, one can observe that there are no
combinations of methods for which the difference is smaller
than the critical value of 0.81, and therefore, we can argue that
the subclass approach is significantly better at 95 percent of
the confidence interval in the present experiments.

3.1.3 Parameters and Training Size

To show the effect of changing the parameters �, we
performed an experiment using the UCI Glass data set. In
this experiment, the parameter �size is fixed to jJ j50 , and the
values for �perf are varied between 0.45 and 0 decreasing by
0.025 per step. For each value of �perf , the values for �impr are {0,
0.1, 0.2, 0.4, 0.6, 0.8, 1}.

The results of these experiments using NMC as the base

classifier are shown graphically in Fig. 8. In this particular

problem, one can observe that until the value of �perf ¼ 0:35,

the subclass is not required since all the binary problems

achieve a performance greater than this value. When this

value is decreased, binary problems require the subclass

splitting approach. When �impr is increased, both the training

and test performance increase. One can also observe that in

the case of values near 0 for �size and near 1 for �perf , the system

can specialize into very small problems, which results in

overtraining. This phenomenon is just visible for �perf ¼ 0:025

and high values for �impr on the test set.
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Furthermore, we analyzed the behavior of the present
methodology when the training size is changed. In particular,
we selected the 11-class Vowel UCI data set and performed
10-fold classification using the different ECOC designs for
different training sizes: 5, 10, 20, 35, 50, 70, and 100 percent of
the training size. The base classifier in this case is alsoNMC.
The results are shown in Fig. 9a. The mean number of
subclasses and binary problems is shown in the table in
Fig. 9b. One can observe that for small training sizes, the
subclass ECOC does not split classes. At these first stages, the
subclass ECOC becomes the DECOC strategy, and the
performance is also similar, even inferior, to the one obtained
by the one-versus-one strategy. When the training size is
increased, though the general behavior for all the strategies is
to increase their performance, the subclass ECOC is the one,
which the improvement is the most significant. Note that the
performance improvement of the subclass strategy also
increases the number of subclasses and binary problems.
Still, the mean number of binary problems of 24.7 is
significantly less than the 55 required for the one-versus-
one strategy.

3.2 Traffic Sign Categorization

For this experiment, we use the video sequences obtained

from the Mobile Mapping System [3] to test a real traffic sign

categorization problem. We choose the speed data set since

the low resolution of the image, the noncontrolled conditions,

and the high similarity among classes make the categorization

a difficult task. In this system, the position and orientation of

the different traffic signs are measured with fixed video

cameras in a moving vehicle. The system has a stereo pair of

calibrated cameras, which are synchronized with a GPS/INS

system. The result of the acquisition step is a set of stereo-pairs

of images with their position and orientation information.

Fig. 10 shows several samples of the speed data set used for

the experiments. The data set contains a total of 2,500 samples

divided into nine classes. Each sample is composed of

1,200 pixel-based features after smoothing the image and

applying a histogram equalization. From this original feature

space, about 150 features are derived using a PCA that

retained 90 percent of the total variance.

The performance and the estimated ranks using the

different ECOC strategies for the different base classifiers

are shown in Table 6. These results are also illustrated in the
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TABLE 5
Rank Positions of the Classification Strategies for

the UCI Experiments

Fig. 8. Comparison of the subclass ECOC performances using NMC on

the UCI Glass data set for different parameters �perf and �impr.

(a) Training set. (b) Test set.

Fig. 9. (a) Test performances for the Vowel UCI data set for different
percentages of the training size. (b) Mean number of subclasses and
binary problems estimated by the subclass ECOC for each training size.
The confidence intervals of the results are between 1 percent and 2
percent.

Fig. 10. Speed data set samples.

TABLE 6
Rank Positions of the Classification Strategies for

the Speed Data Set



graphics in Fig. 11. One can see that in this particular problem,

the subclass is only required for Discrete Adaboost and

NMC, while the rest of base classifiers are able to find a

solution for the training set without the need for subclasses. In

this case, RBF SVM obtains low performances, and parameter

optimization should be applied to improve these results.

Nevertheless, it is out of the scope of this paper. Finally,

though the results do not significantly differ between the

strategies, the subclass ECOC approach attains a better

position in the global rank in Table 6.

3.3 Discussions

The subclass ECOC presents an alternative to the use of
complex base classifiers. Still, some issues need to be
discussed.

As a consequence of applying the subclass strategy, in the
worst case, it remains the same than without using sub-
classes. One of the important points is that both, base
classifier and subclass, can be optimized. If the base classifier
is well tuned, less binary problems and subclasses would be
required by the subclass strategy. On the other hand, the
subclass approach could be seen as an incremental tool
independent of the base classifier to improve the weakness of
the base classifiers. For example, none of the variants of

Adaboost with decision stumps is able to model the XOR

problem shown in Fig. 12a. Fig. 12b shows the first splitting of
classes found by the subclass strategy. In this case, Adaboost
is able to model a solution considering partitions of problems
using the three new subclasses. Thus, we can take advantage
from both, optimizing a base classifier and optimizing the
subclass approach.

Regarding the space of parameters �, in the present
experiments the subclass ECOC obtains significantly better
performance with fixed parameters. The fixed parameters
have been chosen after a preliminary set of experiments. If it
is required, one can also look for the optimum set �, which
attains the best performance by using, for example, cross
validation over the training or validation sets.

Similarly, the K-Means splitting criterion (that was used as

a simple clustering strategy for the sake of simplicity and fast

computation) can be replaced by another criterion. Suppose

that we decide to keep the base classifier to be linear. In that

case, it is more desirable to adapt the clustering strategy so

that it guarantees the linear separability of the new clusters.

In Fig. 13, we performed the classification of UCI data sets

for the subclass strategy and the different base classifiers

changing the splitting criterion. We compared the K-Means

splitting with a hierarchical clustering and the Graph Cut

clustering [22]. The two clusters of the hierarchical tree are

estimated using euclidean distance to centroid for linkage.

The results show that the behavior of three strategies are very

similar, and there are no significant differences on the final

performances.
Obviously, when we have the new split of classes, an

important consideration is to decide if they contribute to
improve the accuracy of the whole system. At this point, �impr
looks for the improvement of the new subclasses respect to
the previous group without splitting. We commented that the
value of �impr has been selected to obtain reasonably good
results after a previous set of experiments. A good selection
of this parameter is crucial for a good generalization of
the strategy. Note that if we fix �impr to require a high-
performance improvement, in some cases, the system could
not gain from subclasses. On the other hand, a small
improvement could make the system to focus on very small
problems, which really do not contribute to the whole
performance and that can produce overtraining.

To look for the minimum �impr, the implemented heuristic
is based on the errors of the confusion matrix for the split
groups. It provides a fast computation. Of course, the
heuristic may be not optimal, and different strategies can be
used instead. A natural way to deal with this problem is to
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Fig. 11. Speed data set performances.

Fig. 12. (a) Original distribution of data for two classes. (b) First subclass

splitting.



look for the improvement of the whole system when
including the new split problems (thus, evaluating the whole
subclass ECOC system each time that a new problem is tested
to be included). Testing this heuristic, we found that the
obtained performance was very similar to the one obtained by
the former approach, still maintaining a similar final number
of subclasses and binary problems but considerably increas-
ing the computational cost.

Finally, it is important to make clear that the subclass
scheme not only can be used in the present methodology. The
final subclasses can be potentially useful to improve other
multiclass strategies or standard hierarchical clustering
strategy. Note that the final set of N subclasses can be used,
for example, over the one-versus-one ECOC configuration.

Obviously, it will require a high number of dichotomizers to

codify the problem, but in cases where the computational cost

is not a problem, it could result a promising choice.

All the comparisons of this paper are performed inside

the ECOC framework. We did not compare with other

combining strategies or advanced classifiers such as Neural

Networks or multiclass Support Vector Machines. This will

require a much more extensively study.

4 CONCLUSIONS

The subclass ECOC strategy presents a novel way to model

complex multiclass classification problems. The method is
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based on embedding dichotomizers in a problem-dependent

ECOC design by considering subsets of the original set of

classes. In particular, difficult problems where the given base

classifier is not flexible enough to distinguish the classes

benefit from the subclass strategy. SFFS based on maximizing

the MI is used to generate subgroups of problems that are split

until the desired performance is achieved. The final set of

binary problems is embedded in a problem-dependent ECOC

configuration and updated with the new set of subclasses.

The experimental results over a set of UCI data sets and on

real multiclass traffic sign categorization problems show the

utility of the present methodology. It improves the perfor-

mance of different base classifiers over the state-of-the-art

ECOC configurations. This shows that the proposed splitting

procedure yields a better performance when the class overlap

or the distribution of the training objects conceal the decision

boundaries for the base classifier. The results are even more

significant when one has a sufficiently large training size.

APPENDIX A

SEQUENTIAL FORWARD FLOATING SEARCH (SFFS)

The SFFS process in Table 7 begins with an empty set X0

and is filled, while the search criterion applied to the new

set increases. The most significant item with respect to Xk is

added at each inclusion step. In the conditional exclusion

step, the worst item is removed if the criterion keeps

increasing. Y is our set of classes to be partitioned. Our

discriminability criterion is the MI. Our goal is to maximize

the MI between the data in the sets and the class labels

created for each subset [21].

APPENDIX B

FAST QUADRATIC MUTUAL INFORMATION (MI)

Let x and y represent two random variables and let pðxÞ
and pðyÞ be their respective probability density functions.

The MI measures the dependence between both variables

and is defined as follows:

Iðx;yÞ ¼
Z Z

pðx;yÞ log
pðx;yÞ
pðxÞpðyÞ dxdy: ð4Þ

Observe that MI is zero if pðx;yÞ ¼ pðxÞpðyÞ. It is

important to note that (4) can be seen as a Kullback-Leiber

divergence, defined in the following way:

Kðf; gÞ ¼
Z
fðyÞ log

fðyÞ
gðyÞ dy; ð5Þ

where fðyÞ is replaced with pðx;yÞ and gðyÞ with pðxÞpðyÞ.
Alternatively, Kapur and Kesavan [14] argued that if our

goal is to find a distribution that maximizes or minimizes the

divergence, several axioms can be relaxed, and the resulting

divergence measure is related toDðf; gÞ ¼
R
ðfðyÞ � gðyÞÞ2dy.

As a result, it was proved that maximizing Kðf; gÞ is

equivalent to maximizing Dðf; gÞ. Therefore, we can define

the quadratic MI as follows:

IQðx;yÞ ¼
Z Z

ðpðx;yÞ � pðxÞpðyÞÞ2dxdy: ð6Þ

The estimation of the density functions of IQ can be done

using the Parzen window estimator. In that case, when

combined with Gaussian kernels, we can use the following

property: LetNðy;�Þ be a d-dimensional Gaussian function; it

can be shown that

Z
Nðy� a1;�1ÞNðy� a2;�2Þdy ¼ Nða1 � a2;�1 þ �2Þ: ð7Þ

Observe that the use of this property avoids the

computation of one integral function.

In particular, we compute the MI between the random

variable of the features x and the discrete random variable

associated to the class labels created for a given partition

ðdÞ. The notation for the practical implementation of IQ is

given as follows: Assume that we have N samples in the

whole data set; Jp are the samples of the class p; N stands

for the number of classes; xl stands for the lth feature vector

of the data set, and xpk is the kth feature vector of the set in

class p. Then, pðdÞ and pðxjdÞ can be written as

pðd ¼ pÞ ¼ Jp
N
;

pðxjd ¼ pÞ ¼ 1

Jp

XJp
j¼1

Nðx� xpj; �2IÞ;

pðxÞ ¼ 1

N

XN
j¼1

Nðx� xj; �2IÞ:

Expanding (6) and using a Parzen estimate with a

symmetrical kernel with width �, we obtain the following

equation:

IQðx;dÞ ¼ VIN þ VALL � 2VBTW ; ð8Þ
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where

VIN ¼
XZ

pðx;dÞ2dx ¼ 1

N2

XN
p¼1

XJp
l¼1

XJp
k¼1

Nðxpl � xpk; 2�2IÞ;

VALL ¼
XZ

pðxÞ2pðdÞ2dx;

VALL ¼
1

N2

XN

p¼1

Jp
N

� �2XN
l¼1

XN
k¼1

Nðxl � xk; 2�2IÞ;

VBTW ¼
XZ

pðx;dÞpðxÞpðdÞdx;

VBTW ¼
1

N2

XN
p¼1

Jp
N

XN
l¼1

XJp
k¼1

Nðxl � xpk; 2�2IÞ:

In practical applications, � is usually set to the half of the
maximum distance between samples, as proposed by
Torkkola [23].

APPENDIX C

SUBCLASS ECOC DECODING ALGORITHM

Table 8 summarizes the decoding strategy applied for the
subclass ECOC. The main objective is to find a weighting
matrix MW that weights a given decoding measure to adjust
the decisions of the classifiers. To obtain the weighting matrix

MW , we assign to each position ði; jÞ of the matrix of
hypothesis H a continuous value that corresponds to the
accuracy of the dichotomyhj, classifying the samples of class i
(9). We make H to have zero probability at those positions
corresponding to unconsidered classes (10) since these
positions do not have representative information. The next
step is to normalize each row of the matrixH so thatMW can
be considered as a discrete probability density function (11).
This step assumes that the probability of considering each
class for the final classification is the same (independent of
number of zero symbols) in the case of not having a priori
information ðP ðc1Þ ¼ . . . ¼ P ðcNÞÞ [8]. The final classification
decision is obtained by assigning the original class Ci� of the
subclassCði�j�Þ that attains the minimum decoding measure d.

APPENDIX D

TABLES OF PERFORMANCES OF THE UCI
EXPERIMENTS

Tables 9, 10, 11, 12, and 13 show the performance of the UCI
experiments for the different base classifiers. Each position of
the table contains the performance obtained applying 10-fold
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TABLE 8
Label Loss-Weighted Subclass Decoding Algorithm

TABLE 9
UCI Repository Experiments for Discrete Adaboost

TABLE 10
UCI Repository Experiments for NMC

TABLE 11
UCI Repository Experiments for FLDA

TABLE 12
UCI Repository Experiments for Linear SVM



cross validation and the confidence interval at 95 percent. The
mean number of classes (or subclasses) and the mean number
of binary problems are shown below each performance.
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