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Abstract—A common way to model multiclass classification problems is to design a set of binary classifiers and to combine them.

Error-Correcting Output Codes (ECOC) represent a successful framework to deal with these type of problems. Recent works in the

ECOC framework showed significant performance improvements by means of new problem-dependent designs based on the ternary

ECOC framework. The ternary framework contains a larger set of binary problems because of the use of a “do not care” symbol that

allows us to ignore some classes by a given classifier. However, there are no proper studies that analyze the effect of the new symbol

at the decoding step. In this paper, we present a taxonomy that embeds all binary and ternary ECOC decoding strategies into four

groups. We show that the zero symbol introduces two kinds of biases that require redefinition of the decoding design. A new type of

decoding measure is proposed, and two novel decoding strategies are defined. We evaluate the state-of-the-art coding and decoding

strategies over a set of UCI Machine Learning Repository data sets and into a real traffic sign categorization problem. The

experimental results show that, following the new decoding strategies, the performance of the ECOC design is significantly improved.

Index Terms—Error-correcting output codes, decoding, multiclass classification, embedding of dichotomizers.

Ç

1 INTRODUCTION

ERROR-CORRECTING Output Codes are a general framework
to combine binary problems to address the multiclass

problem [6]. It has been successfully applied to a wide
range of applications, such as face recognition [13], face
verification [14], text recognition [15], or manuscript digit
classification [16].

The ECOC framework consists of two steps: a coding
step, where a codeword1 is assigned to each class, and a
decoding technique, where, given a test sample, it looks
for the most similar class codeword. The most well-
known coding strategy is the one-versus-all [1], where
each class is discriminated against the rest of classes. But,
it was not until Allwein et al. in [5] introduced a third
symbol (the zero symbol)2 in the coding process that this
step has received special attention. The zero symbol
increases the number of subgroups of classes to be
considered in the ternary ECOC framework by allowing
some classes to be ignored. Because of this, strategies such
as one-versus-one [8] and random sparse coding [5] can
be formulated in the same ECOC framework. However,

though different coding designs are possible, most of
them are predefined without taking into account the
knowledge of the problem domain. In this way, large
codes are required to give rich information of the data
(with its corresponding computational cost increment).
However, one cannot guarantee that the learned problems
are the most suitable ones for a given task. Concerned
with this problem, Utschick and Weichselberger [20] have
proposed the first problem-dependent ECOC design. In
their work, they optimize a maximum-likelihood objective
function by means of the expectation maximization
algorithm in order to improve the process of binary
coding. As mentioned by the authors: “the results of some
experiments make us believe that for many polychotomous
classification problems, the one-versus-all method is still the
optimal choice for the output coding.” Crammer and Singer
[9] also have reported improvement in the design of the
ECOC codes. In their work, they show that the exhaustive
computation of the coding matrix is NP -hard with the
number of classes. As an alternative, the authors propose
a method for a heuristical search of the optimal coding
matrix by relaxing the representation of the code matrix
from discrete to continuous values. Recently, new ap-
proaches involving heuristics for the design of problem-
dependent output codes have been proposed [10], [12],
[27] with successful results.

The decoding step was originally based on error-
correcting principles under the assumption that the learn-
ing task can be modeled as a communication problem, in
which class information is transmitted over a channel [6]. In
this sense, based on the rules used by the decoding
strategies, they can be grouped into three types: those
based on distance measurements between the output code
and the target codeword, those which are based on
estimating class membership probabilities, and those which
are based on transforming the pattern space [28]. The first
attempt for ECOC decoding is the Hamming Decoding
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1. The codeword is a sequence of bits of a code representing each class,
where each bit identifies the membership of the class for a given binary
classifier.

2. In the literature, the binary ECOC has been applied indistinctively for
f�1;þ1g (based on Machine Learning theory) or f0; 1g (based on
communication problems) symbols. For the ternary case, the third symbol
is set to zero, and the f�1;þ1g symbols identify the class membership.
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(HD) [1]. The euclidean Decoding (ED) [8] is another of the

most favored decoding strategies used in the literature. Still,

very few alternative decoding strategies have been pro-

posed. In [7], the use of Inverse Hamming Decoding (IHD)

and the Centroid Decoding for binary ECOC designs are

introduced. Other decoding strategies for nominal, discrete,

and heterogeneous attributes have been proposed in [19].

With the introduction of the zero symbol, Allwein et al. [5]

show the advantage of using a Loss-based function of the

margin. There have been several attempts to introduce

probabilities in the ECOC decoding process [17], [18]. In

[17], the authors use conditional probabilities to estimate

the class membership in a kernel machine approach. An

alternative probabilistic design of the coding and decoding

strategies is proposed in [18], where the probability of each

class feature is adjusted; in particular, this decoding

approach is bound to a specific base classifier.
Although the Loss-based decoding presented in [5]

provides a first tentative way to decode a ternary ECOC

matrix, there are no proper studies that show the behavior

of each particular decoding strategy when the ternary

coding is used. Note that the traditional decoding techni-

ques are formulated to deal with just two symbols. Thus,

the addition of the zero symbol requires the adjustment of

the decoding step. In this paper, we analyze the ternary

ECOC framework and show some inconsistencies produced

at the decoding step. We define two properties to deal with

a successful decoding which are analyzed for the state-of-

the-art strategies over a new decoding taxonomy. Based on

the presented properties, we introduce the Loss-Weighted

Decoding strategy (LW) for discrete and continuous outputs

of the classifiers, where the discrete output corresponds to

the class label and the magnitude of the continuous output

to the measure of confidence in the prediction. The method

is based on a combination of probabilities that adjusts the

weights of each position in the coding matrix M. When a

continuous value is not available, we propose as an

alternative the discrete Pessimistic Beta Density Distribu-

tion Decoding (�-DEN), based on estimating the probability

density functions between codewords using a model of the

accuracy and uncertainty of the measure. We evaluate the

state-of-the-art coding and decoding strategies on different

categorization scenarios: 16 UCI Machine Learning reposi-

tory data sets classification and real traffic sign recognition

in uncontrolled environments. The results show that when

one takes into account the new measurements, significant

performance improvement is obtained over any of the state-

of-the-art coding and decoding designs.
The paper is organized as follows: Section 2 gives a brief

introduction to the ECOC framework and overviews the

state-of-the-art on coding and decoding designs for the

binary and the ternary ECOC frameworks. Section 3

analyzes the ternary symbol-based ECOC definition, where

a taxonomy that embeds all ternary decoding schemes is

presented. The decoding strategies are analyzed in a

general decomposition framework, and two novel decoding

approaches are presented. Several experiments are per-

formed in Section 5. Finally, Section 6 concludes the paper.

2 ECOC OVERVIEW

Given a set of N classes to be learned in an ECOC
design, n different bipartitions (groups of classes) are
formed, and n binary problems (dichotomizers) over the
partitions are trained. As a result, a codeword of length n
is obtained for each class, where each position (bit) of the
code corresponds to a response of a given dichotomizer
(coded by þ1 or �1 according to their class set member-
ship). Arranging the codewords as rows of a matrix, we
define a coding matrix M, where M 2 f�1;þ1gN�n in the
binary case. In Fig. 1a, we show an example of a binary
coding matrix M. The matrix is coded using five
dichotomizers fh1; . . . ; h5g for a 4-class problem
fc1; . . . ; c4g with respective codewords fy1; . . . ; y4g. The
hypotheses are trained by considering the labeled training
data samples fð�1; lð�1ÞÞ; . . . ; ð�m; lð�mÞÞg for a set of
m data samples. The white regions of the coding
matrix M are coded by þ1 (considered as a class for its
respective dichotomizer hj), and the dark regions are
coded by �1 (considered as the other one). For example,
the first classifier is trained to discriminate c3 against
c1; c2, and c4; the second one classifies c2 and c3 against c1

and c4, etc., as follows:

h1ðxÞ ¼
þ1; if x 2 fc3g
�1; if x 2 fc1; c2; c4g

�
; . . . ;

h5ðxÞ ¼
þ1; if x 2 fc2; c4g
�1; if x 2 fc1; c3g:

� ð1Þ

During the decoding process, applying the n binary
classifiers, a code x is obtained for each data sample � in the
test set. This code is compared to the base codewords (yi,
i 2 ½1; ::; N �) of each class defined in the matrix M. And the
data sample is assigned to the class with the closest
codeword. In Fig. 1a, the new code x is compared to the
class codewords fy1; . . . ; y4g using the Hamming [1] and the
euclidean Decoding [8]. Note that if the distance between
two codewords is d in the binary case, d2� 1 bit errors can be
corrected—since, through d

2� 1 discrepancies between the
test sample and its class occurrence, the test sample will still
be assigned to its true class. In the examples, the test sample
is classified to class c2, correcting one bit error.

In the ternary symbol-based ECOC, the coding matrix
becomes M 2 f�1; 0;þ1gN�n. In this case, the symbol zero
means that a particular class is not considered by a given
classifier. A ternary coding design is shown in Fig. 1b. The
matrix is coded using seven dichotomizers fh1; . . . ; h7g for a
4-class problem fc1; . . . ; c4g with respective codewords

ESCALERA ET AL.: ON THE DECODING PROCESS IN TERNARY ERROR-CORRECTING OUTPUT CODES 121

Fig. 1. (a) Binary ECOC design for a 4-class problem. An input test
codeword x is classified to class c2 using the Hamming or the euclidean
Decoding. (b) Example of a ternary matrix M for a 4-class problem. A
new test codeword x is classified to class c1 using the Hamming and the
euclidean Decoding.
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fy1; . . . ; y4g. The white regions are coded by 1 (considered
as one class by the respective dichotomizer hj), the dark
regions by �1 (considered as the other class), and the gray
regions correspond to the zero symbol (classes that are not
considered by the respective dichotomizer hj). For example,
the first classifier is trained to discriminate c3 against c1 and
c2 without taking into account class c4, the second one
classifies c2 against c1, c3, and c4, etc. In this case, the
Hamming and euclidean decoding classify the test data
sample by class c1. Note that a test codeword cannot contain
the zero value since the output of each dichotomizer is
hj 2 f�1;þ1g.

2.1 Coding Designs

In this section, we review the state of the art on coding
designs. We divide the designs based on their membership
to the binary or the ternary ECOC frameworks.

2.1.1 Binary Coding

The standard binary coding designs are the one-versus-all
[1] strategy and the dense random strategy [10]. In one-
versus-all, each dichotomizer is trained to distinguish one
class from the rest of classes. Given N classes, this technique
has a codeword length of N bits. An example of a one-
versus-all ECOC design for a 4-class problem is shown in
Fig. 2a. The dense random strategy generates a high
number of random coding matrices M of length n, where
the values fþ1;�1g have a certain probability to appear
(usually P ð1Þ ¼ P ð�1Þ ¼ 0:5). Studies on the performance
of the dense random strategy have suggested a length of
n ¼ 10 logN [5]. For the set of generated dense random
matrices, the optimal one should maximize the Hamming
Decoding measure between rows and columns (also
considering their complementary), taking into account that
each column of the matrix M must contain the two different
symbols f�1;þ1g. An example of a dense random ECOC
design for a 4-class problem and five dichotomizers is
shown in Fig. 2b. The complete coding approach requires
the complete set of classifiers to be measured (2N�1 � 1),
which usually is computationally unfeasible in practice [5].

2.1.2 Ternary Coding

The standard ternary coding designs are the one-versus-one

strategy [8] and the sparse random strategy [5]. The one-

versus-one strategy considers all possible pairs of classes.

Thus, its codeword length is NðN�1Þ
2 (see Fig. 2c). The sparse

random strategy is similar to the dense random design, but it

includes the third symbol zero with another probability to

appear, given by P ð0Þ ¼ 1� P ð�1Þ � P ð1Þ. Studies have

suggested a sparse code length of 15 logN [5] (see Fig. 2d).
Due to the huge number of bits involved in the

traditional coding strategies, new problem-dependent de-
signs have been proposed [10], [12], [27]. The new
techniques are based on exploiting the problem domain
by selecting the representative binary problems that
increase the generalization performance while keeping the
code length small. The Discriminant ECOC (DECOC) of
[10] is based on the embedding of discriminant tree
structures derived from the problem domain. As a result,
the length of the codeword is only ðn� 1Þ (see Fig. 2e).
Finally, the recently proposed ECOC-ONE strategy [12] is
based on the extension of ECOC configurations. The
method uses a coding process that trains relevant binary
problems guided by a validation subset. A length of 2N bits
for the codeword has been suggested. The design of Fig. 2f
is obtained by extending the DECOC design of Fig. 2e with
just one extra dichotomizer.

2.2 Decoding Designs

In this section, we review the state of the art on decoding
designs.

2.2.1 Binary Decoding

The most frequently applied binary decoding designs are:
Hamming decoding [1], Inverse Hamming decoding [7],
and euclidean decoding [10].

. Hamming decoding: The initial proposal to decode is

the Hamming decoding measure. This measure is

defined as HDðx; yiÞ ¼
Pn

j¼1ð1� signðxj � yjiÞÞ=2.

This decoding strategy is based on the error-

correcting principles under the assumption that the

learning task can be modeled as a communication

problem, in which class information is transmitted
over a channel, and two possible symbols can be

found at each position of the sequence [6].3

. Inverse Hamming decoding: The Inverse Hamming

decoding [7] is defined as follows: Let � be the

matrix composed of the Hamming decoding mea-

sures between the codewords of M. Each position of

� is defined by �ði1; i2Þ ¼ HDðyi1 ; yi2Þ. � can be

inverted to find the vector containing the

N individual class-likelihood functions by means of

IHDðx; yiÞ ¼ maxð��1DT Þ; ð2Þ

where the values of ��1DT can be seen as the
proportionality of each class codeword in the test
codeword, and D is the vector of Hamming
decoding values of the test codeword x for each of
the base codewords yi. The practical behavior of the
IHD is shown to be very close to the behavior of the
HD strategy [5].
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Fig. 2. Coding designs for a 4-class problem: (a) one-versus-all,

(b) dense random, (c) one-versus-one, (d) sparse random, (e) DECOC,

and (f) ECOC-ONE.

3. Note that if y 2 f�1; 0;þ1g, the test codeword x 2 f�1;þ1g, and
signð0Þ ¼ 0, the HD formulation is equivalent to the L1 norm L1 ¼Pn

j¼1 jxj � yjj, but including the factor 1/2.
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. Euclidean decoding: Another well-known decoding
strategy is the euclidean decoding. This measure is
defined as

EDðx; yiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

ðxj � yjiÞ
2

vuut :

2.2.2 Ternary Decoding

Concerning the ternary decoding, the state-of-the-art stra-
tegies are: Attenuated euclidean decoding [12], loss-based
decoding [5], and the probabilistic-based decoding [17].

. Attenuated Euclidean decoding: This technique is an
adaptation of the euclidean decoding. The formula-
tion is redefined taking into account the factors
jyji jjxjj. It makes the measure to be unaffected by the
positions of the codeword yi that contain the zero
symbol (jyji j ¼ 0). Note that, in most of the cases,
jxjj ¼ 1.4 Then, the euclidean decoding measure is
redefined as follows:

AEDðx; yiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

jyji jjxjjðxj � y
j
iÞ

2

vuut : ð3Þ

. Loss-based decoding: The loss-based decoding strategy
[5] chooses the label ‘i that is most consistent with
the predictions f (where f is a real-valued
function f : �!R), in the sense that, if the data
sample � was labeled ‘i, the total loss on example
ð�; ‘iÞ would be minimized over choices of ‘i 2 ‘,
where ‘ is the complete set of labels. Formally, given
a Loss-function model, the decoding measure is the
total loss on a proposed data sample ð�; ‘iÞ:

LBð�; yiÞ ¼
Xn
j¼1

Lðyji � fjð�ÞÞ; ð4Þ

where yji � fjð�Þ corresponds to the margin and L is a
loss function that depends on the nature of the
binary classifier. The two most common loss func-
tions are Lð�Þ ¼ �� (linear loss-based decoding
(LLB)) and Lð�Þ ¼ e�� (exponential loss-based de-
coding (ELB)). The final decision is achieved by
assigning a label to example � according to the
class ci that obtains the minimum score.

. Probabilistic-based decoding: Recently, the authors of
[17] proposed a probabilistic-based decoding strat-
egy based on the continuous output of the classifier
to deal with the ternary decoding. The measure is
given by

PDðyi; xÞ

¼ �log
Y

j2½1;...;n�:Mði;jÞ6¼0

P ðxj ¼Mði; jÞjfjÞ þK

0
@

1
A;
ð5Þ

where K is a constant factor that collects the
probability mass dispersed on the invalid codes,
and the probability P ðxj ¼Mði; jÞjfjÞ is estimated
by means of

P ðxj ¼ yji jfjÞ ¼
1

1þ ey
j
i
ð�jfjþ!jÞ

;

where vectors � and ! are obtained by solving an
optimization problem [17].

3 A FRAMEWORK FOR A GENERAL

REPRESENTATION OF DECODING STRATEGIES

In this section, first we analyze the ternary ECOC frame-
work. We show examples where the use of the traditional
decoding strategies is inconsistent to deal with a successful
classification. Second, we give a general representation of
decoding strategies and we group them based on the
properties they fulfill. The properties are analyzed for the
state-of-the-art decoding strategies on the new representa-
tion. Finally, two novel decoding strategies are proposed to
deal with a successful decoding.

3.1 Ternary Decoding Analysis

In order to work with the large set of binary problems of the
ternary ECOC framework, we need to know how to decode
a ternary ECOC matrix M 2 f�1; 0;þ1g. Although standard
decoding strategies are currently applied over 3-symbol
matrices, it seems reasonable to analyze if the traditional
decoding rules are correctly used in the ternary case. To
show the behavior of the standard Hamming decoding
strategy in the ternary ECOC framework, we designed the
example of Fig. 3a. In this example, a ternary coding matrix
for a 7-class problem fc1; ::; c7g is codified by means of
seven dichotomizers fh1; ::; h7g.

Now, let us observe the test codeword x of Fig. 3a obtained
by applying the seven dichotomizers fh1; ::; h7g of the coding

ESCALERA ET AL.: ON THE DECODING PROCESS IN TERNARY ERROR-CORRECTING OUTPUT CODES 123

4. If xj corresponds to a position of the test codeword, it only takes the
values �1 or þ1.

Fig. 3. (a) Ternary coding matrices for a 7-class problem codified using seven dichotomizers fh1; ::; h7g. (b) A new test codeword x is classified using
the Hamming decoding. (c) Cube of codewords of length 3.
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matrix M to a new data sample �. The values of the test
codeword correspond to x ¼ f1;�1;�1;�1;�1;�1;�1g. As
commented before, the test codeword cannot contain the zero
symbol since each classifier should vote in either way. In the
example, the Hamming decoding takes as input the test
codeword x and each class codeword yi, i 2 f1; ::; 7g. The
decoding measure obtained for each class is shown on the
right of the matrix. The output of the HD strategy assigns a
higher decoding value to class c1 in comparison to the other
classes, and thus, any of the classes fc2; ::; c7g can be selected
as a first choice.

In order to analyze this example, let us have a look at the
subset of codewords represented in the coding space of Fig. 3c.
A zero symbol in a class code introduces one degree of freedom
that means that both þ1 and �1 are possible values during
the test classification since the class has not been taken into
account to train the corresponding dichotomizer. Any
codeword yi containing the zero symbol defines an extended
set of possible codewords that could be obtained by
examples of the class ci. In this sense, the codeword y1 ¼
f1; 0; 0g represented by the plane � : y1

1 ¼ 1 in the figure can
be disambiguated into its extended set of codewords Y e

1 ¼
ff1; 1; 1g; f1; 1;�1g; f1;�1; 1g; f1;�1;�1gg, where each of
the four codewords of Y e

1 is a possible representation5 of the
codeword y1. Now observe the codeword y2 ¼ f1; 1; 1g
shown in the figure. Note that y2 corresponds to one of the
four representations of y1 (y2 2 Y e

1 ). Then, in the figure, y2

corresponds to a point in the plane �. Taking into account this
decomposition, the test codeword x of Fig. 3a is a possible
representation of codeword y1 of class c1. Thus, it seems
reasonable to classify x as c1. However, in the example of
Fig. 3a, c1 is the last choice. One can see this effect occurs
because the decoding value increases with the number of
positions that contain the zero symbol when we use the HD
strategy. Let us introduce a term to denote this phenomenon.

Definition 1. Decoding bias is the value introduced by the
comparison of a position coded by f�1;þ1g with a position

containing the zero symbol.

Now observe the example of Fig. 3b. A new test
codeword x ¼ f�1; 1; 1; 1; 1; 1; 1g is evaluated in the same
ECOC design. In this case, the classification decision
obtained by the HD is class c1 with a minimum decoding
value of four, while the decoding value of the rest of classes
is five. Observe that the only trained classifier that takes
into account c1 is h1. However, if we use the HD, we are
deciding class c1 according to the information obtained
from the classifiers that have not considered class c1 in their
learning process. Therefore, all the information provided by
class c1 is contained in the first position of its codeword y1.

In the example of Fig. 3b, either considering or not the
zero positions to decode, when we use the HD, the decision
in both cases is class c1. This effect can be explained by the
fact that the quantity of codeword positions codified by
f�1;þ1g introduces a second bias that makes the measures
between codewords noncomparable. It is produced because
the decoding process for each codeword works in a different
range of values. This effect leads to another definition.

Definition 2. A dynamic range bias corresponds to the

difference among the ranges of values associated to the

decoding process of each codeword.

Observe that this range depends on the number of positions

codified by zero. In Fig. 3b, the codeword y1 works on a

different dynamic range than the rest of codewords fy2; ::; y7g.
In the example of Fig. 3b, the decoding process of codeword y1

takes a minimum value of three when the first bit matches,

and a maximum value of four when the first bit fails. It means

that the dynamic range for the codeword y1 applying the

Hamming decoding is ½3; 4�. On the other hand, codewords

fy2; ::; y7g can take a minimum value of zero at the decoding

process when all bits match, and a maximum value of seven

when all bits fail, obtaining a dynamic range of ½0; 7�. When we

consider the first position of y1 to decode, a failure in that

position should have the same influence as the failure at all

positions containing f�1;þ1g symbols on the rest of code-

words (independently of the number of zero bits). In the same

way, a match on that position also must represent the same

information than to match all the positions containing

f�1;þ1g symbols on the rest of codewords. Then, the

codewords take values from the same dynamic range, and

the results are comparable.

3.2 Decoding Decomposition

Based on the three possible symbols of the ternary ECOC

framework, we define the following terms: Let b be the

value produced when a bit of the test codeword with a

f�1;þ1g value is compared to a zero symbol, a the value

produced by a match in a position of a codeword

containing a f�1;þ1g value, and e the value introduced

by an error in a position of a codeword containing a

f�1;þ1g value. Then, we introduce the following defini-

tion to represent decoding strategies:

Definition 3. A basic decoding decomposition of a pair6 of

codewords is defined as follows:

d ¼
X
k2Ib

bk þ
X
i2Ia

ai þ
X
j2Ie

ej ð6Þ

where Ib, Ia, and Ie are the sets of indexes of a codeword

corresponding to the zero positions, matches on f�1;þ1g
values, and failures on f�1;þ1g values, respectively. Let

jIbj ¼ z; jIaj ¼ �, and jIej ¼ � be the number of zeros, number

of matches between two codewords, and number of failures

between two codewords, respectively. In this sense, the length

of a codeword is n ¼ zþ �þ �. Note that the value b

corresponds to the bias induced by a zero position applying a

particular decoding strategy.

As a zero symbol means that the corresponding classifier

is not trained over a class, considering the decision of this

classifier to estimate the similarity of the new test example

to that class does not make sense. Thus, we define the first

property as follows:
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5. Possible representation means that any test example of class c1 could
give a codeword from Y e

1 .
6. When we speak about a pair of codewords, we understand that one is

the test codeword and the other one corresponds to a class codeword.
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Property 1. The bias induced by a zero position applying a

particular decoding strategy is zero (b ¼ 0).

Moreover, we argue that to obtain comparable results
between class codewords, each codeword of the coding
matrix M should take values in the same range.

Definition 4. The dynamic range (DR) associated to each

codeword is determined as follows:

DR ¼ ½minðK1; K2Þ;maxðK1; K2Þ�; K1 ¼
X
i2Ia
jaij;

jIaj ¼ � ¼ n� z;K2 ¼
X
j2Ie
jejj; jIej ¼ � ¼ n� z:

If K1 and K2 are constant factors for all pairs of
codewords, the dynamic range is maintained for all classes,
and the decoding measures are comparable, then we define
the second property as follows:

Property 2. K1 and K2 are constant factors for all pairs of

codewords.

Based on the previous properties, we define the four types
of decoding strategies shown in Table 1.

3.3 Analysis of State-of-the-Art Decoding Strategies

Following the notation in (6), we split the state-of-the-art
decoding strategies according to the decomposition of (6)
and analyze the two previous properties in each case. The
analysis is performed over the decoding strategies
reviewed in the previous section: Hamming decoding,
Inverse Hamming decoding, euclidean decoding, attenu-
ated euclidean decoding, loss-based decoding, and the
probabilistic-based decoding approach of [17].

. Hamming decoding: We can easily find a correspon-
dence between the original formulation of the HD
and the representation of (6). HD always induces a
value of 1

2 for bk, k 2 Ib. A match does not influence
the measure (ai ¼ 0, i 2 Ia), and a failure on a
position increases the measure in ej ¼ 1, j 2 Ie. Then,
the new representation can be defined as follows:

HDðx; yÞ ¼
X
k2Ib

bk þ
X
j2Ie

ej ¼
z

2
þ �: ð7Þ

Analyzing the Hamming decoding in the ternary
case, one can observe that the zero positions
introduce a bias of z

2 . Moreover, the prediction is
influenced by the value of z, which makes code-
words to take values from different dynamic ranges
for different number of zero positions. In this sense,
HD corresponds to the strategies of Type 0.

. Inverse Hamming decoding: Looking at (2), the term ��1

of the IHD corresponds to a constant factor only

dependent on the trained class codes. Therefore, we

can focus on the term DT to find a correspondence

with (6). The term ��1
1 DT stands for the IHD for the

first codeword of the coding matrixM. Note that ��1
1

does not depend on the test codeword x. Then, if the

components of the first row of ��1 correspond to

fW1; ::;WNg, the result of the product ��1
1 DT can be

defined as

IHDðx; y1Þ ¼ ��1
1 DT ¼

XN
j¼1

Wj � HDðx; y1Þ

¼
XN
j¼1

Wj
zj
2
þ �j

� �
;

which implies

IHDðx; y1Þ ¼ z1
1

2
W1 þ

XN
i¼2

Wizi
z1

 !

þ �1 W1 þ
XN
i¼2

Wi�i
�1

 !
:

ð8Þ

This expression exactly corresponds to the

representation of (6) for a codeword y1, bk :¼
bIHD, where bIHD ¼ �1ðW1 þ

PN
i¼2

Wizi
z1
Þ, k 2 Ib, ej ¼

�1ðW1 þ
PN

i¼2
Wi�i
�1
Þ, j 2 Ie, and ai ¼ 0, i 2 Ia, being

the weights W dependent on the design of the

coding matrix M. Note that different biases are

induced by different number of zeros and different

dynamic ranges are also obtained for different

values of z and �. Thus, the IHD corresponds to

the Type 0 strategies.
. Euclidean decoding: The parameters in this case are:

bk ¼ 1, k 2 Ib, ai ¼ 0, i 2 Ia, and ej ¼ 4, j 2 Ie,
obtaining the following representation:

EDðx; yÞ ¼
X
k2Ib

bk þ
X
j2Ie

ej ¼
X
k2Ib

1þ
X
j2Ie

4 ¼ zþ 4�:

ð9Þ

Compared to the error induced by the zero

symbol in the HD strategy, one can observe that,

in this case, bk, k 2 Ib is less significative in

comparison with ej, j 2 Ie. In Fig. 4, one can see this

behavior for different number of zero positions.

When the number of zeros increases, the error

accumulated by the ED is less significative than
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TABLE 1
Types of Decoding Strategies

Fig. 4. Errors induced by the zero symbol for the HD and ED decoding
strategies.
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the HD error. This is one of the main reasons why
the ED usually improves the performance of the HD
when applied to ternary symbol-based ECOC [10].
This strategy also is of Type 0.

. Attenuated euclidean decoding: This technique is an

adaptation of the euclidean decoding that takes into

account Property 1 [12]. In this case, the difference

between theED and theAED is the value of bk, k 2 Ib,
fixed to zero by AED. The new representation is

AEDðx; yÞ ¼
P

j2Ie ej ¼
P

j2Ie 4 ¼ 4�. Note that the

weighting parameter of AED (3) avoids the bias

produced by the zero symbol. Nevertheless, different
dynamic ranges are obtained for different values of �.

Thus, this strategy corresponds to Type I.
. Loss-based decoding: We introduce the loss-based

decoding in the representation of (6) for the linear
and the exponential loss-based functions. Using a loss
function, the final measure is obtained by means of an
additive model where the matches introduce negative
weights. In particular, the continuous LLBC para-
meters considering the margin of the output of the
classifier are as follows: bk ¼ 0, k 2Ib, ai ¼ �jfið�Þj,
i 2 Ia, and ej ¼ jfjð�Þj, j 2 Ie, where jfjð�Þj stands for
the absolute value of the output of fjð�Þ, giving

LLBCð�; yÞ ¼
X
i2Ia

ai þ
X
j2Ie

ej

¼ �
X
i2Ia
jfið�Þj þ

X
j2Ie
jfjð�Þj;

ð10Þ

and the following parameters in the discrete case
LLBD: bk ¼ 0, k 2 Ib, ai ¼ �1, i 2 Ia, and ej ¼ 1,
j 2 Ie, giving

LLBDðx; yÞ ¼
X
i2Ia

ai þ
X
j2Ie

ej

¼
X
i2Ia
ð�1Þ þ

X
j2Ie

1 ¼ ��þ �:
ð11Þ

In the case of the exponential loss-based
function, in the continuous case ELBC , considering
the margin of the output of the classifier, we have:
bk ¼ 1, k 2 Ib, ai ¼ 1=ejf

ið�Þj, i 2 Ia, and ej ¼ ejf
jð�Þj,

j 2 Ie, obtaining

ELBCð�; yÞ ¼
X
k2Ib

bk þ
X
i2Ia

ai þ
X
j2Ie

ej

¼
X
k2Ib

1þ
X
i2Ia

1=ejf
ið�Þj þ

X
j2Ie

ejf
jð�Þj

ð12Þ

and the following parameters in the discrete case
ELBD: bk ¼ 1, k 2 Ib, ai ¼ 1=e, i 2 Ia, and ej ¼ e,
j 2 Ie, obtaining

ELBDðx; yÞ ¼
X
k2Ib

bk þ
X
i2Ia

ai þ
X
j2Ie

ej

¼
X
k2Ib

1þ
X
i2Ia

1=eþ
X
j2Ie

e ¼ zþ �
e
þ �e:

ð13Þ

InLLB cases, the matches and the failures have the
same influence for the same magnitude of the margin

of the output of the classifiers, while, in the ELW
cases, a failure is e2jfjð�Þj times more significant than a
match for a same magnitude of the margin of the
output of the classifiers. One can see that bk ¼ 0,k 2 Ib,
in the LLB cases, but in both the LLB andELB cases,
different dynamic ranges are obtained for different
values of � and � for LLB, and z, �, and � for ELB.
Thus, ELB is of Type 0 and LLB of Type I.

. Probabilistic-based decoding: From the initial definition
of this strategy (5), we can fix the parameters K ¼
! ¼ 0 and � ¼ �1 in order to simplify the study of
the technique. Applying minus to change the
decision rule from likelihood to the measure of (6),
we obtain the following representation:

PDð�; yÞ ¼ log
Y
i2Ia

1

1þ 1=ejfið�Þj

� �Y
j2Ie

1

1þ ejfjð�Þj

� � !
:

ð14Þ

We can easily change this representation into

the form of (6) by defining: bk ¼ 0, k 2 Ib,
ai ¼ logð 1

1þ1=ejfið�Þj
Þ, i 2 Ia, and ej ¼ logð 1

1þejf
jð�ÞjÞ, j 2

Ie in the continuous case PDC , which implies

PDCð�; yÞ ¼
X
i2Ia

ai þ
X
j2Ie

ej

¼
X
i2Ia

log
1

1þ 1=ejfið�Þj

� �

þ
X
j2Ie

log
1

1þ ejfjð�Þj

� �

and the following parameters for the discrete case:

PDD : bk ¼ 0; k 2 Ib; ai ¼ log
1

1þ 1=e

� �
;

i 2 Ia; ej ¼ log
1

1þ e

� �
; j 2 Ie;

which implies

PDDðx; yÞ ¼
X
i2Ia

ai þ
X
j2Ie

ej

¼
X
i2Ia

log
1

1þ 1=e

� �
þ
X
j2Ie

log
1

1þ e

� �

¼ � log
1

1þ 1=e

� �
þ � log

1

1þ e

� �
:

This strategy was proposed to deal with the ternary
decoding. In particular, it satisfies that bk ¼ 0,
k 2 Ib, since the induced bias by the zero symbol
is null (note that in (5), the positions in the coding
matrix M containing a zero symbol are not
considered at the decoding step). However, note
that there is no upper bound for the decoding
value obtained (½0;1Þ), and that this value is
influenced by the number of positions coded by
�1 and þ1 values, obtaining different dynamic
ranges for different values of � and �. Thus, the
Probabilistic-based decoding belongs to Type I
strategies.
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3.4 �-Density and Loss-Weighted Decoding

Based on the presented grouping of strategies, none of the

decoding techniques in the literature belongs to either

Type II or Type III. In this section, we introduce two novel

decoding strategies of Type III. First, we propose a

methodology based on the discrete output of the classifiers,

called Pessimistic �-Density Distribution decoding. After

that, we extend its behavior using a continuous extension.

3.4.1 Pessimistic �-Density Distribution Decoding

(� �DEN)

The simplest way to avoid the bias of the zero symbol is to

ignore the positions coded by zero. This yields a measure

that counts the number of coincidences between the input

codeword and the class codeword. In order to make all the

codewords to work in the same dynamic range, the measure

is normalized by the total number of positions coded by

f�1;þ1g, obtaining dðx; yiÞ ¼ �i
�iþ�i . The main drawback of

this definition is that it is not robust when there is a small

number of coded positions in the codeword. In order to

alleviate this problem, we introduce a prior bias, known as

the Laplace correction. With this correction, the new

decoding score, called Laplacian decoding (LAP ), is

defined as follows:

LAP ðx; yiÞ ¼
�i þ 1

�i þ �i þK
; ð15Þ

where K is an integer value that codifies the number of

classes considered by the classifier—two in this case.
Based on this formulation, we can define a suboptimal

method, called Pessimistic �-Density Distribution decoding.

The method is based on estimating the probability density

functions between two codewords. The main goal of this

strategy is to model at the same time the accuracy and

uncertainty based on a pessimistic score in order to obtain

more reliable predictions. We use an extension of the

continuous binomial distribution, the �-distribution, defined

as  ið�; �i; �iÞ ¼ 1
K �

�ið1� �Þ�i , where  i is the �-Density

Distribution between a codeword x and a class codeword yi
for class ci and � 2 ½0; 1�. Note that the maximum of the

function  i corresponds to the previous discrete approxima-

tion of (15) without the prior K

@ i
@�
¼ 1

K

�
��i�1ð1� �Þ�i�1Þ	 �ið1� �Þ � �i�ð Þ;

�ið1� �Þ � �i� ¼ 0; � ¼ �i
�i þ �i

:

Now, we can make use of the integral around the
maximum � ¼ �i

�iþ�i of  i to obtain a measure of the
confidence in the classification prediction. In this sense,
given a test codeword x and the set of functions
 ð�; �; �Þ ¼ ½ 1ð�; �1; �1Þ; . . . ;  Nð�; �N; �NÞ�, the class ci is
assigned to x if it achieves the highest score si, defined as
the pessimistic score satisfying the following equivalence:

si :

Z �i

�i�si
 ið�; �i; �iÞd� ¼ u; ð16Þ

where u is a threshold parameter. After a preliminary set of
experiments, we fixed u ¼ 1

3 . Note that u governs the
uncertainty influence in the final score. Fig. 5 shows the
estimated density functions ½ 1;  2;  3;  4� for the design
shown in Fig. 1b. Observe that, in the design of Fig. 1b, the
HD and the ED decoding strategies classify the test
codeword x by class c1, although, according to the present
discussion, the decision should be class c2. In Fig. 5, one can
see that the �-DEN decoding classifies the test data sample to
its correct class c2, obtained by Fig. 5b. It can be shown that,
when a function i is estimated by a combination of values�i
and �i, the sharpness is higher if it is generated by a majority
of one of both types. Moreover, this sharpness depends on
the number of code positions different to zero and the
balance between the number of matches and failures. In this
way, the pessimistic score reflects the confidence in the
expectation of the probability density function.

Now, let us analyze the �-Density to obtain the
representation in the form of (6). We can apply a negative
logarithmic function to the �-Density formulation to split it.
We obtain the parameters: bk ¼ 0, k 2 Ib, ai ¼ � logð�Þ,
i 2 Ia, and ej ¼ � logð1� �Þ, j 2 Ie, and the following
representation:

� �DENðx; yÞ ¼
X
i2Ia

ai þ
X
j2Ie

ej ¼
X
i2Ia
ð� logð�ÞÞ

þ
X
j2Ie
ð� logð1� �ÞÞ ¼ �� logð�Þ � � logð1� �Þ:

Note that, in the �-DEN decoding, the zero symbol has no
influence and the dynamic range for all the codewords takes
values in the same interval ½0; 1�, being a strategy of Type III.

3.4.2 Loss-Weighted Decoding (LW)

We define a novel Loss-Weighted decoding based on a
combination of normalized probabilities to adapt the ternary
ECOC decoding to the strategies of Type III. The properties
are encoded in a matrix that is used to weight the decoding
process. The weight matrix codifies Properties I and II, being
independent of the coding and decoding strategy applied.
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Fig. 5. Pessimistic Score decoding for the test codeword x and the matrix M for the four classes of Fig. 1b. (a) Class c1, (b) class c2, (c) class c3, and
(d) class c4. The probability for the second class allows a successful classification in this case.
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Moreover, as not all of the hypotheses have the same
performance on learning the data samples, the accuracy of
each binary problem is used to adjust the final decision.

We define the weight matrix MW by assigning to each
position of the codeword codified by f�1;þ1g a weight
value of 1

n�z . As �þ � ¼ n� z, by excluding the zero
positions, the previous process codifies the same dynamic
range for all codewords, fulfilling Property 2. Moreover, the
bias of the third symbol is avoided by assigning a weight of
zero to those positions of the weight matrix MW that
contain a zero in the coding matrix M. In this way,Pn

j¼1 MW ði; jÞ ¼ 1, 8i ¼ 1; . . . ; N , fulfilling Property 1 and
satisfying Type III properties.

We assign to each position ði; jÞ of a performance
matrix H a continuous value that corresponds to the
performance of the dichotomizer hj classifying the samples
of class ci as follows:

Hði; jÞ ¼ 1

mi

Xmi

k¼1

’ðhjð�ikÞ; i; jÞ;

’ðxj; i; jÞ ¼ 1; if xj ¼ yji ;
0; otherwise:

( ð17Þ

Note that (17) makes H to have zero probability at those
positions corresponding to unconsidered classes.

We normalize each row of the matrix H so that MW can
be considered as a discrete probability density function

MW ði; jÞ ¼
Hði; jÞPn
j¼1 Hði; jÞ

; 8i 2 ½1; . . . ; N�; 8j 2 ½1; . . . ; n�:

In Fig. 6, a weight matrix MW for a 3-multiclass problem
of four hypotheses is estimated. Fig. 6a shows the coding
matrix M. The matrix H of Fig. 6b represents the accuracy
of the hypotheses classifying the instances of the training
set. The normalization of H results in a weight matrix MW

shown in Fig. 6c.

Once we obtain the weight matrix MW , we introduce the

weight matrix in the Loss-based decoding. The decoding

estimation is obtained by means of an LB decoding model

Lð�Þ, where � corresponds to yji � fð�; jÞ (similar to the Loss-

based decoding), weighted using MW ,7

LWð�; iÞ ¼
Xn
j¼1

MW ði; jÞL
�
yji � fð�; jÞ

	
: ð18Þ

The summarized algorithm is shown in Table 2.
Note that the weight matrix MW encoding the ternary

decoding properties is independent of the coding and
decoding strategies applied. In this sense, it can be
potentially applied to any existing decoding strategy. For

the present formulation, we choose the loss-based decoding
as the base decoding strategy to apply the weight matrix
MW since LB was one of the firsts attempts toward ternary
decoding. In this sense, different weighted decodings can be
formulated.8 Moreover, note that depending on the problem
we are working on, not only the continuous output of the
base classifier could be useful to weight the matrix MW , but
also prior information about the classes distribution (or
class frequencies instead) as well as other useful informa-
tion can also be included.

In order to obtain the formulation of LW in the
representation of (6), we consider the use of the linear and
the exponential loss functions with discrete and continuous
possible outputs of the classifiers.

In the case of the linear loss-weighted, using the

continuous output of the classifier LLWC , we obtain the

values bk ¼ 0; k 2 Ib; ai ¼ �MW ð ; iÞjfið�Þj; i 2 Ia;MW ð ; iÞ 2
½0; 1�, where “ ” stands for the row whose corresponding

codeword is being compared and ej ¼MW ð ; jÞjfjð�Þj, j 2Ie,
MW ð ; jÞ 2 ½0; 1�. Then, the new representation is as follows:

LLWCð�; yÞ ¼
X
i2Ia

ai þ
X
j2Ie

ej

¼ �
X
i2Ia

MW ð ; iÞjfið�Þj þ
X
j2Ie

MW ð ; jÞjfjð�Þj

ð23Þ

and the following parameters considering a discrete output

of the classifier LLWD: bk ¼ 0, k 2 Ib, ai ¼ �MW ð ; iÞ, i 2 Ia,
MW ð ; iÞ 2 ½0; 1�, and ej ¼MW ð ; jÞ, j 2 Ie, MW ð ; jÞ 2 ½0; 1�,
giving

LLWDðx; yÞ ¼
X
i2Ia

ai þ
X
j2Ie

ej ¼ �
X
i2Ia

MW ð ; iÞ þ
X
j2Ie

MW ð ; jÞ:

ð24Þ
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TABLE 2
Loss-Weighted Algorithm

Fig. 6. (a) Coding matrix M of four hypotheses for a 3-class problem.
(b) Performance matrix H. (c) Weight matrix MW .

7. Note that different Loss functions as well as discrete and continuous
outputs of the classifiers can also be applied.

8. We have performed some experiments applying the weight matrix
over other decoding strategies, such as the Weight-euclidean decoding,
obtaining significant performance improvements.
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If we take as baseline the discrete representation of (24)

and consider the ideal case where each dichotomizer learns

the training data with zero error, we obtain: bk ¼ 0, k 2 Ib,
ai ¼ � 1

n�z , i 2 Ia, and ej ¼ 1
n�z , j 2 Ie, which implies

LLWDðx; yÞ ¼
X
i2Ia

ai þ
X
j2Ie

ej ¼ �
X
i2Ia

1

n� zþ
X
j2Ie

1

n� z

¼ � �

n� zþ
�

n� z :

ð25Þ

Then, we can observe that in the discrete LLWD, the zero

symbol is not considered. Moreover, independently of the

number of positions coded by f�1;þ1g, if all of these

positions match, then � ¼ n� z, and the parameter � �
n�z of

(25) is maintained constant to K1 ¼ �1 for all of the

codewords. In the case that all positions coded by

f�1;þ1g correspond to failures, � ¼ n� z, obtaining a

constant value K2 ¼ 1. Therefore, all of the codewords take

values in the interval ½�1; 1�. The same occurs with the

continuous LLWC since the previous behavior is only

affected by the factor introduced by the margin of the

output of the classifier.

Applying the same formalism in the case of the

continuous Exponential Loss-Weighted ELWC , we obtain

the following parameters: b
ð0Þ
k ¼ 0, k 2 Ib, ai ¼ MW ð ;iÞ

ejfið�Þj
,

i 2 Ia, MW ð ; iÞ 2 ½0; 1�, and ej ¼MW ð ; jÞejf
jð�Þj, j 2 Ie,

MW ð ; jÞ 2 ½0; 1�, obtaining

ELWCð�; yÞ ¼
X
i2Ia

ai þ
X
j2Ie

ej

¼
X
i2Ia

MW ð ; iÞ
ejfið�Þj

þ
X
j2Ie

MW ð ; jÞejf
jð�Þj

ð26Þ

and the following parameters considering a discrete output

of the classifier ELWD: b
ð0Þ
k ¼ 0, k 2 Ib, ai ¼ MW ð ;iÞ

e , i 2 Ia,
MW ð ; iÞ 2 ½0; 1�, and ej ¼MW ð ; jÞe, j 2 Ie, MW ð ; jÞ 2 ½0; 1�,
obtaining

ELWDðx; yÞ ¼
X
i2Ia

ai þ
X
j2Ie

ej

¼
X
i2Ia

MW ð ; iÞ
e

þ
X
j2Ie

MW ð ; jÞe: ð27Þ

If we take as baseline the discrete representation of (27),
and consider the ideal case where each dichotomizer learns
the training data with zero error, we obtain: bk ¼ 0, k 2 Ib,
ai ¼ 1

ðn�zÞe , i 2 Ia, and ej ¼ e
n�z , j 2 Ie, which implies

ELWDðx; yÞ ¼
X
i2Ia

ai þ
X
j2Ie

ej ¼
X
i2Ia

1

ðn� zÞeþ
X
j2Ie

e

n� z

¼ �

ðn� zÞeþ
�e

n� z :

ð28Þ

In the ELW cases, the zero symbol is not considered. If
all positions coded by f�1;þ1g correspond to matches,
� ¼ n� z, which makes all of the codewords to obtain the
constant value K1 ¼ 1

e . On the other hand, if all positions
coded by f�1;þ1g correspond to failures, then � ¼ n� z
implies a constant factor K2 ¼ e, which makes all code-
words to obtain values in the same dynamic range ½1e ; e�.
Thus, all the LW variants correspond to Type III strategies.

3.5 Taxonomy of Decoding Strategies

Table 3 summarizes the values of the parameters obtained
using the representation of (6) for all the decoding
strategies. The decoding strategies of Table 3 are sorted
from Type 0 to Type III designs. At the first column of the
table, the values of b different from zero point out the
methods that introduce a bias for the zero symbol. Note that
four of the traditional approaches do not avoid this bias. The
columns of values a and e stand for the values introduced
by a match and a failure at the decoding step, respectively.
Note that none of the traditional decoding strategies
presented in the literature belongs to Type II and Type III
strategies since the dynamic ranges differ for different
number of positions coded by zero. Only the � �DEN
and LW decoding variants normalize the dynamic ranges to
work in the same range of values for all codewords. Note
that, if we substitute in (6), the parameters b, a, and e of each
decoding strategy, we obtain an equivalent decoding
evaluation than using its original formulation.

Based on the previous types of decoding strategies and
with the use of discrete or continuous outputs of the
classifiers, six different groups of decodings are shown in
Table 4. The Laplacian decoding LAP has also been
included as the simplest choice of Type III strategy. Some
strategies, such as ED, AED, LB, and PD can also be used
in both discrete and continuous domains, though there are
no evidences of their use in the literature. Note that none of
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TABLE 3
Decoding Parameters in the Decomposition of (6)

TABLE 4
Decoding Strategies Grouped by Type

and Discrete/Continuous Domains
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the decoding strategies presented in the literature belongs
to Type II strategies since there is no method that maintains
the dynamic range for all codewords at the same time that
includes bias for the zero symbol.

In the next section, we perform several experiments to test
the proposed methodology. Based on the present formula-
tion, our working hypothesis is that when the decoding
strategies avoid the bias produced by the zero symbol and all
the codewords work in the same dynamic range, fulfilling
Properties 1 and 2, the performance of the ECOC designs is
improved. Therefore, we apply the decoding strategies on
the state-of-the-art coding designs and test their behavior
over different categorization problems.

4 RESULTS

Before the results are presented, we discuss our validation
methodology regarding the data, comparatives, measure-
ments, and experiments.

. Data: The data used for the experiments consists of
16 multiclass data sets from the UCI Machine
Learning Repository database [29] and video se-
quences from a Mobile Mapping system [22].

. Comparatives: For the comparatives, we used the
decoding strategies analyzed in the previous section:
Hamming decoding, euclidean decoding, inverse
Hamming decoding, attenuated euclidean decoding,
loss-based decoding with linear and exponential loss
functions, probabilistic-based decoding, Laplacian
decoding as the simplest choice of Type III strategy,
pessimistic �-density distribution decoding, and
four variants of the loss-weighted decoding strategy:
the linear loss-weighted, with discrete and contin-
uous outputs of the classifier, and the exponential
loss-weighted with discrete and continuous outputs
of the classifier. For all of the experiments, the state-
of-the-art decoding strategies are applied using the
default and optimized parameters given by the
authors.

Furthermore, all of the decoding strategies are
applied on the state-of-the-art ECOC coding designs:
one-versus-one [8], one-versus-all [1], dense random
[5], sparse random [5], DECOC [10], and ECOC-
ONE [12] designs. The parameters of the coding
strategies are the predefined or the default values
given by the authors. The dense and sparse matrices
are selected from a set of 20,000 generated random
matrices whose corresponding codewords have a
length of N , where N corresponds to the number of
classes, in order to provide a fair comparison with
the one-versus-all, DECOC, and ECOC-ONE strate-
gies using a similar number of dichotomizers.

. Measurements: To measure the performance of the
different strategies, we apply a stratified sampling
and tenfold cross-validation, and test for confidence
interval at 95 percent with a two-tailed t test. We also
use the Nemenyi test to look for significant statistical
differences between the methods’ performances at
95 percent [30]. The base classifiers used for the
experiments are Gentle Adaboost with 40 runs of

decision stumps [4], the Linear OSU9 implementa-
tion of Support Vector Machines (SVM), and a
tuned Support Vector Machine with Radial Basis
Function kernel [2], [3].

. Experiments: The experiments are divided as follows:
First, we evaluate the classification on 16 UCI data
sets, and second, we address a real 9-class speed
traffic sign categorization problem. We compare the
performance of the different decoding strategies
based on each coding design. Finally, we also
compare this behavior using a tuned base classifier.

4.1 UCI Classification

The first experiment consists of classifying 16 multiclass
UCI repository databases. The details of the data sets are
shown in Table 5. In this experiment, the 13 decoding
strategies are applied on the six coding designs, which
corresponds to a total of 2,496 tenfold experiments. Table 6
summarizes the performance results obtained over the
UCI data sets for the Gentle Adaboost base classifier. For
each data set and decoding strategy, the best performance
and its corresponding coding design are shown. The best
performance per data set is also highlighted in boldface.
Note that the best results are obtained by the Type III
strategies in most cases, and specially by the ELWC

decoding technique applied over the one-versus-one and
ECOC-ONE coding designs.10

In order to summarize these results, we estimated the

ranking of each particular decoding strategy for the two

different base classifiers. Thus, each decoding strategy has

been applied on six codings �16 data sets. Using these

96 experiments for each decoding, the rankings, consider-

ing the intersection of confidence intervals on one hand

and without considering the confidences on the other

hand, are shown in Fig. 7a for Gentle Adaboost and Linear

SVM, respectively.11 The rankings are obtained estimating

each particular ranking rji for each problem i and each

decoding j, and computing the mean ranking R for each
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9. The regularization parameter C is empirically tested and set to 1 for all
the experiments. We decided to keep the parameter fixed for the sake of
simplicity and easiness of replication of the experiments, though we are
aware that this parameter might not be optimal for all data sets.
Nevertheless, since the parameters are the same for all the compared
methods, any weakness in the results will also be shared.

10. Performance details of all the experiments of this paper can be found
at http://www.maia.ub.es/~sergio/.

11. When we consider the intersection of confidence intervals, two
methods obtain the same rank position if their corresponding ranges,
defined by their mean performance and confidence interval, intersect in a
common subinterval of values.

TABLE 5
UCI Repository Data Sets Characteristics

#T: number of training samples, #A: number of attributes, and
#C: number of classes.
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decoding as Rj ¼ 1
J

P
i r

j
i , where J is the total number of

problems (six codings �16 databases). Note that, either for

the Gentle Adaboost base classifiers or the Linear SVM

classifier, the ranking positions of each decoding strategy is

the same in most cases. When the confidence interval is

considered, the ranking differences are less significant.

This is produced by the fact that the performance of some

strategies falls into the range of performances defined by

the confidence interval of other methods. However, still in

those cases, the relative positions among techniques are

maintained too. The general behavior of this graphics

shows that Type III strategies, and, in particular, the four

variants of the Loss-Weighted decoding, attain the best

performance in the experiments, followed by Type I

strategies, and finally by Type 0 strategies. Note that, in

the variants of LW , for both Gentle Adaboost and Linear

SVM, the differences between LLW with discrete and

continuous outputs of the classifier are not significant, but

in the case of ELW , the performance is improved by

considering the continuous outputs of both base classifiers.
Now, we analyze if the results of the different strategies

are statistically significant. To check for the statistically
significant methods, we use the Nemenyi test—two
techniques are significantly different if the corresponding
average rankings differ by at least the critical difference
value (CD)

CD ¼ q�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 1Þ

6J
;

r
ð29Þ

where q� is based on the Studentized range statistic divided
by

ffiffiffi
2
p

, k is the number of methods in the comparative, and
J is the total number of performed experiments. In our case,
when comparing 13 methods with a confidence value
� ¼ 0:05, q0:05 ¼ 1:771. Substituting in (29), we obtain a
critical difference value of 0.995. Looking at the rankings of
each decoding strategy shown in the first and third column of
each group in Fig. 7a, one can observe that any variant of the
Loss-Weighted strategy has a difference superior to the
critical value of Type 0 and Type I strategies, only intersecting
with the Laplacian and � �DEN Type III strategies. Thus,
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TABLE 6
UCI Performance Results

Fig. 7. Ranking for the decoding strategies over coding designs and UCI
data sets: Gentle Adaboost without (in black) and considering (in light
gray) the intersection of the confidence intervals, and Linear SVM
without (in white) and considering (in dark gray) the intersection of the
confidence intervals, respectively. (a) All coding design ranks, (b) one-
versus-one design ranks, (c) one-versus-all design ranks, and (d) dense
random design ranks.
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we can argue that the LW variants are significantly better
than any Type 0 and Type I strategies at 95 percent of the
confidence interval in the present experiments. Remember
that all of the decoding strategies in the literature belong to
these two types. In the case of the Type 0 and Type I
strategies, although Type I strategies tend to have inferior
ranking (thus, better position) than the Type 0 methods, there
are combinations of methods for which the difference is
inferior to the critical value, and therefore, we cannot argue
that, in those cases, the Type I strategies are significantly
better than the methods of Type 0.

Finally, the mean ranking positions grouping the
techniques in their respective types are shown in Table 7.
One can observe that the ranking performance in all cases is
better when satisfying the decoding properties, as claimed
in the previous section. Besides, the novel Type III strategies
obtain results statistically significantly better than the rest of
the state-of-the-art strategies.

Now, we analyze the previous behavior of decoding
strategies for each particular coding design. Figs. 7b, 7c, 7d,
8a, 8b, and 8c show the ranking of the decoding strategies
using the same settings as the previous analysis for the one-
versus-one, one-versus-all, dense random, sparse random,
DECOC, and ECOC-ONE designs, respectively. In the case
of the sparse random, DECOC, and ECOC-ONE designs of
Fig. 8, the advantage of Type III strategies is clearer. Note

that these three coding designs usually have high sparseness
degree (high percentage of zero symbols in the coding
matrix M). The difference among the decoding perfor-
mances is produced because, when we increase the
percentage of zero symbols, both biases produced by the
third symbol also increase and the performance for the
traditional decoding strategies is more affected.

On the other hand, the rankings of the one-versus-one,
one-versus-all, and dense random designs of Fig. 7 do not
significantly differ. This is due to the null sparseness degree
for these three types of designs. Thus, the two biases
produced by the zero symbol do not appear. A particular
case occurs in the one-versus-one design, where though the
sparseness degree seems high, the amount of positions
containing the zero symbol and the f�1;þ1g values
coincide for all codewords, and thus, the biases produced
by all the codewords are the same. However, though the
ranking positions do not significantly differ, one can
observe that the new ternary decoding strategies are also
selected as the first choice in the binary coding designs.

4.2 Real Multiclass Traffic Sign Categorization

For this experiment, we use the video sequences obtained
from the Mobile Mapping System [22] to test the decoding
strategies on a real traffic sign categorization problem. In
this system, the position and orientation of the different
traffic signs are measured with video cameras fixed on a
moving vehicle. The system has a stereo pair of calibrated
cameras, which are synchronized with a GPS/INS system.
The result of the acquisition step is a set of stereo pairs of
images with their position and orientation information.
Fig. 9 shows examples of video sequences and samples of
the speed database used in the experiments. The database
contains a total of 2,500 samples divided in nine classes.
Each sample is composed of 1,200 pixel-based features after
smoothing the image and applying histogram equalization.
For this experiment, we apply tenfold cross validation on
the set of all the coding and decoding designs.

The rankings obtained from the experiments are shown
in Fig. 10. Note that the different variants of loss-weighted
strategy obtain the best positions in this real experiment. In
particular, the exponential loss-weighted decoding using
the continuous output of the base classifiers attains the best
positions either when we use Gentle Adaboost or the Linear
SVM. The rest of Type III strategies obtain good perfor-
mance too. This behavior is more significant if we observe
the rankings without considering the confidence interval of
Fig. 10, corresponding to the second and fourth column of
each group.
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Fig. 9. (a) Samples from the road video sequences. (b) Speed data set
samples.

Fig. 8. Ranking for the decoding strategies over coding designs and UCI
data sets: Gentle Adaboost without (in black) and considering (in light
gray) the intersection of the confidence intervals, and Linear SVM
without (in white) and considering (in dark gray) the intersection of the
confidence intervals, respectively. (a) Sparse random design ranks,
(b) DECOC design ranks, and (c) ECOC-ONE design ranks.

TABLE 7
Ranking Positions of the Decoding Strategies

on the UCI Experiments Grouped by Type
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4.3 Discussions

Finally, it is important to discuss the behavior of the decoding
strategies when a more complex base classifier is applied. In
the previous experiments, the parameters for the Linear
SVM classifier were fixed by default to compare the
performance of the decoding strategies. In those cases, the
performance results obtained by the one-versus-one and one-
versus-all strategies were different. The individual problems
considered by the one-versus-one strategy used to be
significantly smaller than the one-versus-all strategy, and
thus, they are easier to be learned using a simple base
classifier. However, complex classifiers and optimization can
make the results obtained by the two former strategies
comparable [11]. In this sense, we include a brief experiment
considering an SVM with Radial Basis Function kernel
optimized via cross validation applied over the one-versus-
one, one-versus-all, and sparse random strategies using the
set of decoding strategies and UCI data sets to look if the
behavior of the decoding strategies is maintained applying a
more complex base classifier. For this experiment, the 	 and
regularization parameters were tested from 0.1 increasing
per 0.05 up to 1 and from 1 increasing per 5 up to 150,
respectively. The UCI data sets used correspond to the eight
data sets described in the first column of Table 5: Dermathol-
ogy, Iris, Ecoli, Wine, Glass, Thyroid, Vowel, and Balance.
The rankings obtained by the decoding strategies on each of
the previous ECOC designs for the optimized RBF SVM
experiments are shown in Fig. 11. The results show that the
behavior of the decoding strategies is maintained with
respect to the previous results in Fig. 7. One can see that,
for the one-versus-one and one-versus-all ECOC designs, the
rankings among the decoding strategies are very similar in
most cases. It is produced due to the null sparseness degree of
both strategies. However, the Type III strategies are also
selected as the first choice in most cases. In the case of the
sparse random coding with tuned base classifier, the
advantage of Type III methods is clearer.

5 CONCLUSION

In this paper, we analyzed the decoding step of the ternary
symbol-based ECOC framework. We showed that the zero
symbol produces serious inconsistences when using the
traditional decoding strategies. We formulated a new
taxonomy in order to represent decoding strategies. As a
consequence, two novel strategies fulfilling the presented
properties were proposed. The validation of the methodology

was performed over a wide set of the UCI Machine

Learning Repository data sets using the state-of-the-art

coding and decoding strategies as well as Adaboost and

Support Vector Machines as the base classifiers. We also

validated the proposed strategies on a real traffic sign

categorization problem in uncontrolled environments. We

showed that, when the decoding strategies avoid the bias

produced by the zero symbol and all the codewords work

in the same dynamic range, significant performance im-

provement is obtained on the ECOC designs.
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