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Abstract

The error correcting output codes (ECOC) technique is a useful way to extend any binary classifier to the multiclass case. The design of
an ECOC matrix usually considers an a priori fixed number of dichotomizers. We argue that the selection and number of dichotomizers must
depend on the performance of the ensemble code in relation to the problem domain. In this paper, we present a novel approach that improves
the performance of any initial output coding by extending it in a sub-optimal way. The proposed strategy creates the new dichotomizers by
minimizing the confusion matrix among classes guided by a validation subset. A weighted methodology is proposed to take into account the
different relevance of each dichotomizer. As a result, overfitting is avoided and small codes with good generalization performance are obtained.
In the decoding step, we introduce a new strategy that follows the principle that positions coded with the symbol zero should have small
influence in the results. We compare our strategy to other well-known ECOC strategies on the UCI database, and the results show it represents
a significant improvement.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Multiclass classification is the term applied to those machine
learning problems that require assigning labels to instances
where the labels are drawn from a set with at least three classes.
Many examples of this problem can be found in real life appli-
cations: in the case of optical character recognition, the goal is
to find the digit value or the character letter. In object recog-
nition, a new instance is categorized according to the pool of
trained objects (cars, motorbikes, horses, flowers, etc.). In med-
ical imaging, for instance, a potential application would be the
automatic classification of different kind of plaque tissues (li-
pidic, fibrous, calcified, necrotic, etc.).

However, in designing machine learning techniques, it is
common to conceive algorithms for distinguishing between just
two classes. Some of the well-known binary classification learn-
ing algorithms can be extended to handle multiclass problems,
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but for most algorithms this extension is very difficult. In such
cases, the usual way to proceed is to reduce the complexity of
the original problem by dividing it into a set of multiple simpler
binary classification sub-problems. Pairwise (one-versus-one)
[1] or one-versus-all [2] grouping techniques are the schemes
most frequently used.

In the line of these techniques, Dietterich et al. [3] proposed a
framework inspired in the signal processing coding and decod-
ing techniques with error correction properties. This technique
divides the problem into n binary problems (dichotomizers)
that are combined forming a multiclass classifier ensemble. In
the error correcting output codes (ECOC), the multiclass to bi-
nary classification process is handled by a coding matrix. Each
column of the matrix shows a partition of the classes in two
sets {−1, +1}. Alternatively, each row of the coding matrix
represents a codeword assigned to each class. The decod-
ing technique defines the strategy for assigning the “closest”
codeword given a test sample. This binary strategy has been
extended in several researches showing promising results [4,5].
Allwein et al. [6] improved the representability of the ECOC
technique by adding a third symbol to the coding matrix.
With this new symbol each element of the coding matrix is
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chosen from {−1, 0, +1}, where classes with zero value are not
considered for that particular dichotomy. This improved tech-
nique allows to express the classic pairwise and one-versus-all
schemes in one common framework as well as to define new
coding strategies such as random dense or random sparse out-
put codes. Due to its simplicity and high accuracy performance,
the output coding scheme has been widely applied to very dif-
ferent problems with great success: anti-spam filtering [7], text
classification [8], face verification [9], object identification or
traffic sign recognition [10], to mention just a few.

All these coding strategies are fixed in the ECOC design
step, defined independently of the problem domain or the clas-
sification performance. In fact, very little attention has been
paid in literatures to the coding process of the ECOC matrix.
The first approach to ECOC coding design was proposed by
Utschick et al. [11]. In their work, they optimize a maximum-
likelihood objective function by means of the expectation
maximization algorithm in order to improve the process of
binary coding. As mentioned by the authors “the results of some
experiments make us believe that for many polychotomous
classification problems, the one-versus-all method is still the
optimal choice for the output coding”. Crammer et al. [12] also
reported improvement in the design of the ECOC codes. How-
ever, their results were rather pessimistic since they proved that
the problem of finding the optimal discrete codes is computa-
tionally unfeasible. As an alternative, they proposed a method
for heuristically search of the optimal coding matrix by re-
laxing the representation of the code matrix from discrete to
continuous values. Recently, new improvements in the problem
dependent coding techniques have been presented by Pujol et
al. [13]. In their work, the authors proposed the embedding of
discriminant tree structures derived from the problem domain
in the ECOC framework. As a result, they obtained a compact
discrete coding matrix with a small number of dichotomizers
and very high accuracy.

In the present article, we propose a method for extending
any discrete ECOC coding matrix driven by the performance of
the ensemble of dichotomizers. Our work is defined in the con-
text of discrete matrix coding adapted to the problem domain.
As a result, just adding a very few number of dichotomizers,
we obtain an ensemble with increased generalization perfor-
mance. We pay special attention to the extension of binary tree-
based ECOC because of its ability to build compact codes and
the high performance usually obtained by this technique [13].
ECOC-optimizing node embedding (ECOC-ONE) is based on
a robust strategy of selective optimization process focused on
the confusion matrices of two exclusive training data sets. The
first set is used for standard training purposes. The second one
is used for guiding the process and to avoid classification over-
fitting. In this way, the training process selects at each step the
optimal hypothesis based on its discrimination performance. As
a result, wrongly classified classes are given priority and are
used for creating the candidate dichotomizer. As a consequence
of the ECOC-ONE coding, the Hamming distance between
difficult1 classes is increased. In this way, the generalization

1 Those that are most overlapped.

performance is also increased [3]. This generalization is rein-
forced by a weighting strategy used to define the relevance of
each dichotomizer. These weights are used in a double weighted
Euclidean distance decoding step that takes into account the
importance of each dichotomizer and the error due to the offset
introduced by the zero symbol in the ECOC matrix.

The article layout is as follows: Section 2 introduces the
general procedure of ECOC techniques used in the literatures.
Section 3 describes the proposed extension using the ECOC-
ONE strategy. In Section 4, the technique is evaluated on a four-
class toy classification problem. Section 5 shows the experiment
results, and Section 6 concludes the paper.

2. Error correcting output codes

The idea behind the ECOC framework is to design a code-
word for each of the given Nc classes. Arranging these code-
words as rows of a matrix, we define the “coding matrix” M ,
where M ∈ {−1, 1}Nc×n, n being the code length. From the
point of view of learning, the matrix M can be seen as n in-
dependent binary learning problems, each corresponding to a
column of the matrix (see the six hypothesis {h1, . . . , h6} from
Fig. 1). Thus, classes are joined to form sub-partitions (sets of
classes). Each dichotomy is trained on a sub-partition where a
class is coded by +1 or −1 according to their partition mem-
bership. Applying the n trained binary classifiers to each data
point in the test set, the test code is obtained. This code is com-
pared with the base codeword of each class–rows of the cod-
ing matrix—and the data point is assigned to the class with the
“closest” codeword.

The coding matrix was extended by Allwein et al. [6] by
including a third symbol M ∈ {−1, 0, 1}Nc×n. With this new
codification, classes that are not considered by a given di-
chotomy have 0 value. This gives to the ECOC more versatility
allowing the representation of more codification strategies in
the ECOC framework.

In general, the ECOC system is fully defined when a coding
and decoding strategy is chosen. It has been shown that to ob-
tain maximal distance between partition of classes, ECOC code
matrices should be designed to have certain properties which
enable them to generalize well [3]. A good error-correcting out-
put code for a Nc-class problem should satisfy the condition that
rows, columns (and their complementaries) are well-separated
from the rest in terms of Hamming distance.

In Fig. 1 an example of ECOC coding and decoding for
a classification example is shown. In this case we have four

Fig. 1. ECOC example for four classes using Hamming distance as a decoding
technique.
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classes (c1, c2, c3, and c4). Six dichotomizers, h1, . . . , h6, are
generated randomly by selecting different sub-partitions of the
set of classes. The dichotomizers are embedded in the ECOC
matrix with 1 or −1 according to their sub-partition member-
ship. For example, h1 learns to discriminate between c3 vs c1, c2
and c4. The cells with zero value represent the classes that are
not considered by a given dichotomy—e.g. for the second di-
chotomizer (h2), class c2 is not considered. Let x ∈ {−1, 1}n

be the codeword that results from applying all the dichotomiz-
ers to a new input. This test codeword is compared with the
codeword of each class cj , {yj

1 , . . . , y
j
6 }using some kind of de-

coding distance.
The matrix construction step codifies the different partitions

of classes that are considered by each dichotomizer. Most of the
discrete coding strategies up to now are based on pre-designed
problem-independent codeword construction satisfying the re-
quirement of high separability between rows and columns.
These strategies include: one-versus-all, where each classifier
is trained to discriminate a given class from the rest of classes
using Nc dichotomizers; random techniques that can be divided
in the dense random strategy that consists of a two-symbol ma-
trix with high distance between rows with estimated length of
10 log2(Nc) bits per code; and the sparse random strategy that
includes the ternary symbol and the estimated optimal length is
about 15 log2(Nc). Finally, one-versus-one is one of the most
well-known coding strategies with Nc(Nc−1)/2 dichotomizers
including all the combinations of pairs of classes [1]. Note that
in a 40-class problem, one-versus-all, dense random strategy,
sparse random strategy, and one-versus-one strategy require 40,
53, 80, and 780 dichotomizers, respectively. One-versus-one
has obtained high popularity showing a better accuracy in com-
parison to the other commented strategies in spite of its large
code length.

The decoding step was originally based on error-correcting
principles under the assumption that the learning task could
be modelled as a communication problem, in which class in-
formation is transmitted over a channel [14]. The decoding
strategy corresponds to the problem of distance estimation be-
tween the codeword of the new example and the codewords
of the trained classes. Concerning the decoding strategies, two
of the most common techniques are the Euclidean distance

d
j
i =

√∑n
i=1(xi − y

j
i )2 and the Hamming decoding distance

d
j
i = ∑n

i=1(1 − sign(xi · y
j
i ))/2, where d

j
i is the distance to

the class j , n is the number of dichotomizers (and thus, the
components of the codeword), and x and y are the values of
the input vector codeword and the base class codeword, respec-
tively. If the minimum Hamming distance between any pair of
class codewords is d, then any [(d − 1)/2] errors in the indi-
vidual dichotomizers result can be corrected, since the nearest
codeword will still be the correct one.

3. Basis of the node embedding process in the ECOC
framework

Our work is motivated by the necessity of having fast al-
gorithms with high discriminative power able to generate as

much as necessary number of dichotomizers in order to ob-
tain the desired performance. In this sense, the work of Pujol
et al. [13] has shown that finding codewords with small length
and high performance is feasible if the codeword is adapted to
the problem domain. Moreover, in that work the authors show
that trading optimality in the codewords separation for discrim-
ination information may lead to a rise in the classifier perfor-
mance. This work has motivated the look for techniques with
small codeword length that provide high performance in gen-
eral conditions. In this section, we propose a general procedure
to increase the accuracy of any ECOC coding by adding very
few optimal dichotomizers. In this sense, if the original coding
has small length, the extension after the ECOC-ONE results in
a still compact codewords but with increased performance. In
particular, we apply this technique to optimize the initial em-
bedded tree proposed in Ref. [13].

3.1. ECOC-ONE definition

ECOC-ONE defines a general procedure capable of extend-
ing any coding matrix by adding dichotomizers based on a
discriminability criterion. In the case of a multiclass recogni-
tion problem, our procedure starts with a given ECOC cod-
ing matrix. We increase this ECOC matrix in an iterative way,
adding dichotomizers that correspond to different sub-partitions
of classes. These partitions are found using greedy optimization
based on the confusion matrices so that the ECOC accuracy
improves on both training and validation sets. The training set
guides the convergence process, and the validation set is used
to avoid overfitting and to select a configuration of the learn-
ing procedure that maximizes the generalization performance
[15]. Since not all problems require the same dichotomizers
structure—in the form of sub-partitions—our optimal node em-
bedding approach generates an optimal ECOC-ONE matrix de-
pendent on the hypothesis performance in a specific problem
domain.

3.2. Optimizing node embedding

In order to explain our procedure, we divide the ECOC-ONE
algorithm in six steps: optimal tree generation, weights estima-
tion, accuracy estimate based on confusion matrix, defining the
new optimal dichotomy, and ECOC matrix M construction.

Let us define the notation used in the following paragraphs:
given a data pair (s, l), where s is a multidimensional data
point and l is the label associated with that sample, we de-
fine S ={(s, l)}= {(st, lt)}∪ {(sv, lv)}, where St ={(st, lt)} and
Sv = {(sv, lv)} are the sets of data pairs associated with train-
ing and validation sets, respectively. In the same way, e(h(s), l)
represents the empirical error over the data set s given an hy-
pothesis h(·).

3.2.1. Optimal tree generation
We propose the use of a binary tree structure using accu-

racy as a sub-partition splitting criterion. This proposal differs
from the one in Ref. [13] that uses the mutual information to
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Fig. 2. (a) Optimal tree and first optimal node embedded, (b) ECOC-ONE
code matrix M for four dichotomizers.

form the nodes, without taking into account the particularities
of the current classification scheme. We initialize the root of
the tree with the set containing all the classes. Afterwards, for
the tree building, each node of the tree is generated by an ex-
haustive search2 of the sub-partition of classes associated with
the parent node, so that the classifier using that sub-partition
of classes attains maximal accuracy on the training and valida-
tion subsets. In Fig. 2, the sub-partition of classes required at
each node of the optimal tree is shown. For example, given the
root node containing all classes, the optimal partition achiev-
ing the least error is given by {{c1 ∪ c3}, {c2 ∪ c4}}. Once we
have generated the optimal tree, we embed each internal node
of the tree into the coding matrix M in the following way:
consider the partition of the set of classes associated with a
node C = {C1 ∪ C2|C1 ∩ C2 = �}. The element (i, r) of the
ECOC-ONE matrix corresponding to class i and dichotomy r is
given by:

M(i, r) =
{0 if ci /∈ C,

+1 if ci ∈ C1,

−1 if ci ∈ C2.

(1)

Although, this strategy is the one chosen in this article for our
initial coding, note that any coding could be used instead.3

3.2.2. Weight estimates
It is known that when a multiclass classification problem is

decomposed into binary problems, not all of these base classi-
fiers have the same importance. In this way, our approach in-
troduces a weight to adjust the importance of each dichotomy
in the ensemble ECOC matrix. In particular, the weight asso-
ciated with each column depends on the error when applying
the ECOC to both training sets (training and validation) in the
following way,

wi = 0.5 log

(
1 − e(hi(s), l)

e(hi(s), l)

)
, (2)

where wi is the weight for the ith dichotomy, and e(hi(s), l)

is the error produced by this dichotomy at the affected classes
on both sets of the partition. This equation is based on the
weighted scheme of the additive logistic regression [16]. In the

2 In the case that the number of classes makes the exhaustive computation
unfeasible we can use SFFS as explained in Ref. [13].

3 In the Discussions section, the reader can find the results of the
application of our extension technique using the one-versus-all strategy as
initial coding.

following section, we explain how we select the dichotomizers
and how their weights affect the convergence of the algorithm.

3.2.3. Test accuracy of the training and validation sets
Once constructed the binary tree and its corresponding cod-

ing matrix, we look for additional dichotomizers in order to
focus on the examples that are difficult to classify. To select
the next optimal node, we test the current M accuracy on St

and Sv resulting in at and av , respectively. We combine both
accuracies in the following way:4

atotal = 1
2 (at + av).

In order to find each accuracy value, we obtain the result-
ing codeword x ∈ {−1, 1}n using the strong hypothesis H =
{h1, . . . , hj } for each sample of these sets, and we label it as
follows:

l̃ = argmin
j

(d(x, yj )), (3)

where d(·) is a distance estimation between codeword x and
the codeword yj . H(M, h, s) is the strong hypothesis resulted
from the application of the set of learning algorithms h(·) on
the problems defined by each column of the ECOC matrix M

on a data point s. The result of H(M, h, s) is an estimated
codeword x. We propose to use a double weighted Euclidean
distance in the following way:

d(x, yj ) = 1

2

√√√√ n∑
i=1

wi |xi ||yi |(xi − y
j
i )2, (4)

where the modules of the codes |xi |,|yi | act as attenuation fac-
tors of the errors that can be accumulated due to the zero val-
ues in the ECOC-ONE matrix M . The weight wi estimated by
means of Eq. (2) introduces the relevance of each dichotomy
in the ensemble learning technique.

3.2.4. The training and validation confusion matrices
Once we test the accuracy of the strong hypothesis H on St

and Sv , we estimate their respective confusion matrices �t (St)

and �v(Sv). Both confusion matrices are of size Nc × Nc, and
have at position (i, j) the number of instances of class ci clas-
sified as class cj .

�k(i, j) = |{(s, l)k: l = ci, h(s) = cj }|, k = {t, v}, (5)

where l is the label estimation obtained using Eq. (4). Once the
matrices have been obtained, we select the pair {ci, cj } with
maximal value according to the following expression:

{ci, cj } = argmax
{ci ,cj ;i �=j}

(�t (i, j) + �T
t (i, j) + �v(i, j) + �T

v (i, j)),

(6)

4 Other combinations are possible, but we consider that the importance
of the validation set must be very significant when compared to the training
accuracy. Otherwise, the total accuracy will have a major influence of the
training set and the benefit from the validation set will be minimal. Moreover,
we have experimentally observed that this combination leads in general to
slightly better results than other split criteria.
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∀(i, j) ∈ [1, . . . , Nc], where �T is the transposed matrix of �.
The resulting pair is the set of classes that are most easily con-
founded, and therefore they have the maximum partial empiri-
cal error.

3.2.5. Find the new dichotomy
Once the set of classes {ci, cj } with maximal error has been

obtained, we create a new column of the ECOC matrix. Each
candidate column considers a possible sub-partition of classes
℘={{{ci}∪C1}, {{cj }∪C2}} ⊆ C so that C1∩C2∩ci∩cj=� and
Ci ⊆ C. In particular, we are looking for the subset division of
classes ℘ so that the dichotomy ht associated with that division
minimizes the empirical error defined by e(H(s), l):

℘̃ = argmin
℘

(e(H(s), l)). (7)

Once defined the new sets of classes, the column components
associated with the set {{ci}, C1} are set to +1, the components
of the set {{cj }, C2} are set to −1 and the positions of the rest
of classes are set to zero. In the case that multiple candidates
obtain the same performance, the one involving more classes
is preferred. Firstly, it reduces the number of uncertainty in
the ECOC matrix by reducing the number of zeros in the di-
chotomy. Secondly, one can see that when more classes are in-
volved, the generalization achieved is greater. Each dichotomy
finds a more complex rule on a greater number of classes. This
fact has also been observed in the work of Torralba et al. [17].
In their work, a multi-task scheme is presented that yields to
a classifier with an improved generalization by aids of class
grouping algorithms.

3.2.6. Update the matrix
The column mi is added to the matrix M and its weight wi

is calculated using Eq. (2).
Table 1 shows the summarized steps for the ECOC-ONE

approach. Note that, the process described is iterated while the
error on the training subsets is greater than ε or the number of
iterations i�T .5

3.3. Sub-optimal embedding

When the number of classes is high enough, exhaustive
search optimization is computationally unfeasible. In this case,
the problem should be addressed using a modification of the
sequential forward floating search.

Pudil et al. in Ref. [18] introduced a family of sub-optimal
search algorithms called floating search methods effective in

5 The stopping criterion of our method involves two cases: Firstly, the
case in which the combined error is reduced to zero. If both training and
validation errors go to zero the method should stop because we cannot obtain
meaningful information from now on. Therefore, � is usually set to zero unless
some a priori knowledge about the acceptable error is considered. Second,
since the sub-optimal node embedding tries to increase the accuracy of the
ECOC coding increasing the number of bits per word, a certain number of
bits should be decided to be the maximum allowable for our application. In
our experiments, T is usually set to values in the range [2, . . . , N], where
N is the number of classes. We selected this range of values in order to
increase the global performance with very few additional dichotomizers.

Table 1
ECOC-ONE general algorithm

Given Nc classes and a coding matrix M (see Fig. 1):
while error > � or errort < errort−1, t ∈ [1, T ]:

Compute the optimal node t:
1) Test accuracy on the training and validation sets St and Sv .
2) Select the pair of classes {ci , cj } with the highest error

analyzing the confusion matrices from St and Sv .
3) Find the partition ℘t = {C1, C2} that minimizes the error

rate in St and Sv .
4) Compute the weight for the dichotomy of partition ℘i

based on its classification score.
Update the matrix M .

high dimensional problems involving non-monotonic search
criteria. This method was proposed as a sub-optimal search
method for alleviating the prohibitive computation cost of ex-
haustive search strategies in feature selection. This family of
methods is directly related to the plus-l take away-r algorithm.
However, the first differs from plus-l take away-r algorithm in
the fact that the number of forward and backtracking steps is not
decided beforehand. Floating search methods can be described
as a dynamically changing number of forward and backward
steps as long as the resulting subsets are better than the pre-
viously evaluated ones at that level. In this sense, this method
avoids nesting effects typical of sequential forward and back-
ward selection while equally being step-optimal since the best
(worst) item is always added (discarded) to (from) the set. Since
backtracking is controlled dynamically, no parameter setting is
needed.

The algorithm used in this paper is a modified version of the
top-down approach called sequential forward floating search
(MSFFS, see Table 2). The most notable difference from the
SFFS is that we work with three sets of elements: a pool of
elements Y and the two searched sets X1, X2. In this case, both
sets start empty X1

0 = X2
0 = ∅ and they are filled from the pool

set while the search criterion J applied to both sets increases.
The most beneficial item from the pool of elements is added to
the corresponding set at each inclusion step. In the conditional
exclusion step, the worst item from both sets is removed if
the criterion keeps increasing. In our approach, the criterion
used for designing this partition is the empirical error. In the
context of our ECOC problem, the two sets {X1, X2} are the
sub-partition sets of classes ℘t = {C1, C2}.

3.4. ECOC-ONE example

An example of an ECOC-ONE strategy applied to a four-
class classification example can be found in Fig. 2. The initial
optimal tree corresponds to the dichotomizers of optimal sub-
partition of the classes. This tree has been generated using
accuracy as a sub-partition splitting criterion. After testing the
performance of the ensemble tree (composed by the columns
{h1, h2, h3} of the ECOC matrix M of Fig. 2(b)), let us
assume that classes {c2, c3} get maximal error in the confu-
sion matrices �t and �v . We search for the sub-partition of
classes using the training and validation subsets so that the
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Table 2
Modified sequential forward floating search algorithm

Input:

Y = {yj |j = 1..D}//Pool of available items//

Output:

X1
k = {xl |l = 1..|Y |(or D), xl ∈ Y }; X2

k = {xm|m = 1..|Y |, xm ∈ (Y/X1
k )}

Initialization:

X1
0 = X2

0 = {∅}; k = 0

Termination:
Stop when |J (X1

k , X
2
k ) − J (X1

k−1, X
2
k−1)|� �

Step 1 (inclusion)

x′+ = argmax
x∈Y/{X1

k∪X2
k }

J (X1
k ∪ x, X2

k ); x′′+ = argmax
x∈Y/{X1

k∪X2
k }

J (X1
k , X

2
k ∪ x)

(X1
k+1, X

2
k+1) =

{
(X1

k ∪ x′+, X2
k ) if J (X1

k ∪ x′+, X2
k ) > J (X1

k , X
2
k ∪ x′′+)

(X1
k , X

2
k ∪ x′′+) if J (X1

k ∪ x′+, X2
k ) < J (X1

k , X
2
k ∪ x′′+)

k = k + 1

Step 2 (conditional exclusion)

x′− = argmax
x∈Y/X1

k

J (X1
k/x, X2

k ); x′′− = argmax
x∈Y/X2

k

J (X1
k , X

2
k /x)

(X1
k+1, X

2
k+1) =

{
(X1

k/x
′−, X2

k ) if J (X1
k/x

′−, X2
k ) > J (X1

k , X
2
k )and J (X1

k/x
′−, X2

k ) > J (X1
k , X

2
k /x

′′−)

(X1
k , X

2
k /x

′′−) if J (X1
k , X

2
k /x

′′−) > J (X1
k , X

2
k )and J (X1

k/x
′−, X2

k ) < J (X1
k , X

2
k /x

′′−)

k = k + 1
if J (X1

k , X
2
k /x

′′−) > J (X1
k , X

2
k ) or J (X1

k/x
′−, X2

k ) > J (X1
k , X

2
k )

then go to Step 2
else go to Step 1

error between {c2, c3} and all previous misclassified samples
is minimized. Suppose now that this sub-partition is{c1, c3}
versus {c2}. As a result, a new node N4 corresponding to
dichotomy h4 is created. We can observe in Fig. 2 that N4
uses a class partition that is present in the tree. In this sense,
this new node connects two different nodes of the tree. Note
that using the previously included dichotomizers, the par-
tition {c1, c3} is solved by N2. In this way, the Hamming
distance between c2 and c3 is increased by adding the new di-
chotomy to the whole structure. At the same time, the distance
among the rest of the classes is usually maintained or slightly
modified.

As mentioned before, one of the desirable properties of the
ECOC matrix is to have maximal distance between rows. Our
procedure focuses on the relevant difficult partitions, increasing
the distance between “close” classes. This fact improves the
robustness of the method since difficult classes are likely to have
a greater number of dichotomizers centered on them. In this
sense, it creates different geometrical arrangements of decision
boundaries and leads the dichotomizers to make different bias
errors.

4. ECOC-ONE in a four-class toy problem

To analyze the properties of our proposed technique and
compare it to the state-of-art approaches, we have designed the
toy classification problem of Fig. 3(a). This multiclass problem
has 50 samples for each of the four classes. The ideal bound-
aries are shown in Fig. 3(b). In this particular case, two of the
classes are difficult to classify (triangles and dots). The num-
ber of dichotomizers used in this toy problem, for each ECOC
technique, is: six for one-versus-one, four for one-versus-all,
and five for dense random and ECOC-ONE. We select five
dichotomizers for the ECOC-ONE and the dense-random tech-
nique because we want to show the performance when the num-
ber of hypothesis is smaller than the one-versus-one method.
An illustration of the training evolution process for all the tech-
niques is shown in Fig. 4(a) where the error is given as a
function of the number of dichotomizers. One can observe a
greater error reduction for ECOC-ONE with few dichotomiz-
ers compared to the rest of methods. The test evolution for the
same problem is shown in Fig. 4(b), where the number of di-
chotomizers and the error rate are shown at x-axis and y-axis,
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Fig. 3. (a) Four classes for a toy problem, (b) classes boundaries for the toy problem.

Fig. 4. (a) Train evolution for the toy problem, (b) test evolution for the toy problem.

Table 3
ECOC matrices and weights for ECOC-ONE and dense random strategy

Wone = (2 2 2 0.9229 1.0271)

(a) (b)

Mone =
⎛
⎜⎝

−1 −1 0 1 −1
−1 1 0 −1 1
1 0 −1 0 1
1 0 1 1 0

⎞
⎟⎠ Mdense =

⎛
⎜⎝

1 −1 1 −1 1
1 1 −1 −1 −1

−1 −1 −1 −1 −1
1 1 −1 1 1

⎞
⎟⎠

respectively. Table 3 displays two ECOC matrices used in this
evaluation: ECOC-ONE (Mone) with column weights (Wone)

and dense random (Mdense).
Table 4 shows the 10-fold cross-validation results for all the

commented ECOC techniques. In this table, the accuracy, the
confidence interval at 95%, and the number of dichotomiz-
ers used are displayed. The results on this toy classification
problem show that our technique outperforms the others. An
example of the trained boundaries for all the techniques at one
iteration of cross-validation is shown in Fig. 5. The dark lines
correspond to the real boundaries and the grey regions to the
learning errors. We can observe that the regions of ECOC-
ONE (Fig. 5(a)) are better defined. Note that two different
dense random matrices with the same distance create different
decision boundaries that do not approximate well the expected
boundaries (Fig. 5(d) and (e)).

In order to analyze the fitting of the selected dichotomizers
of the ECOC-ONE matrix to the classes boundaries, the volume
of the errors for the one-versus-all and ECOC-ONE technique
are shown in Fig. 6. The height corresponds to the number of
times that one technique misclassifies a data sample for each
spatial location. Observe that the volume of the one-versus-all
technique (Fig. 6(b)) is in this case about 70% higher than the
one generated by the ECOC-ONE strategy (Fig. 6(a)).

5. Experimental results

In order to validate the proposed method, we use the well-
known UCI database [19]. The description of the selected
data sets is shown in Table 5. We compare our technique with
the following ECOC coding strategies: one-versus-all ECOC
(one-vs-all), one-versus-one ECOC (one-vs-one), and dense
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Table 4
ECOC strategy hits for a toy problem

One-versus-one ECOC One-versus-all ECOC Dense random ECOC ECOC-ONE

Hit #D Hit #D Hit #D Hit #D

70.83 ± 1.17 6 66.67 ± 1.07 4 67.67 ± 1.91 5 72.92 ± 0.82 5

#D means number of dichotomizers.

Fig. 5. Boundaries resulted after one iteration of training. (a) ECOC-ONE, (b) one-versus-one, (c) one-versus-all and, (d) and (e) two different matrices of
dense random with the same minimal distance, respectively. Dark line corresponds to the real boundary and grey regions correspond to learning errors.

Fig. 6. Error surface comparison between ECOC-ONE and one-versus-all technique for the toy problem of Fig. 3.

random ECOC.6 The decoding process for all mentioned
techniques is the standard Euclidean distance because it shows
the same behavior as the Hamming decoding, but it also tends
to reduce the confusion due to the use of the zero values
[13]. All these strategies are compared with our ECOC-ONE
method extending a tree for coding and our weighted Euclidean

6 We choose dense random coding because it is more robust than the
sparse technique when the number of columns is small [6].

distance for decoding. We also include the results obtained by
the ECOC-ONE computed with the MSFFS. We use a maxi-
mum of 10 iterations or dichotomizers including the first op-
timal tree. In order to have a fair comparison, we used the
same number of dichotomizers for the generation of the dense
random ECOC matrix columns. The dense random matrix is
selected from an exhaustive search of 10 000 iterations. We
have used discriminant analysis, Discrete Adaboost with 50
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Table 5
UCI repository databases characteristics

# Problem #Train #Test #Attributes #Classes

(a) Dermatology 366 — 34 6
(b) Ecoli 336 — 8 8
(c) Glass 214 — 9 7
(d) Segmentation 2310 — 19 7
(e) Vowel 990 — 10 11
(f) Satimage 4435 2000 36 6
(g) Yeast 1484 — 8 10
(h) Pendigits 7494 3498 16 10

decision stumps, and linear support vector machines7 as base
learners for all techniques.8 Nevertheless, note that our tech-
nique is generic in the sense that it only uses the classification
score—it is independent of the particular base classifier. All the
tests are calculated using stratified 10-fold cross-validation.

Tables 6–8 show the number of dichotomizers, accuracy rates
and confidence intervals at 95%—we have tested for statis-
tical significance using a two tailed t-test—for the FLDA,
Adaboost and SVM techniques, respectively. The results in
boldface are related to the first position in ranking of the meth-
ods which confidence interval overlaps with the one with the
best accuracy—and therefore not statistically significant from
the maximum mean accuracy. The rank shows the average po-
sition of each technique. For example, if a technique obtains
the best accuracy in 8 of 10 validation sets and it has been cho-
sen as a second option in the other two sets, its rank value is
1.20. Note that all strategies with results not statistically signif-
icant from the top one are considered also as the first choice.
Observing the results, we can see that our method is very com-
petitive when compared to the other standard ECOC coding
techniques. Furthermore, it attains a comparable accuracy to
the one-versus-one ECOC coding strategy, which is known to
usually obtain the best results. In some cases, one-versus-one
improves our results for a certain database. For example, at
Pendigits database using FLDA, it obtains a two percent of
improvement over our method. However, one must note that
one-versus-one requires 45 dichotomizers in that database, and
we use only 10. These results are easily explained by the fact
that our method chooses at each step the most discriminable
dichotomy compared to the one-versus-one strategies where all
pairs of classifiers are considered. Thus, our procedure allows to
classify classes depending on their difficulty. For example, two

7 The regularization parameter C has been set to 1 for all the experiments.
We have selected this parameter after a preliminary set of experiments. We
decided to keep the parameter fixed for sake of simplicity and easiness of
replication of the experiments, though we are aware that this parameter might
not be optimal for all data sets. Nevertheless, since the parameters are the
same for all the compared methods any weakness in the results will also be
shared.

8 The comparative with the multiclass adaboost has been omitted due to
the fact that the Adaboost. MH algorithm, that has dominated other proposals
in empirical studies [16], converts the Nc-class problem into that of estimating
a two-class classifier on a training set Nc times as large. Thus, it is essentially
the same that the one-versus-all scheme that we analize in the framework of
error correction.

difficult classes will have a high Hamming distance between
rows. But two easy classes, perhaps will not have a consider-
able Hamming or Euclidean distance between them, since it is
not necessary to correct so many errors.In this way, we can re-
duce the number of binary classifiers to be selected. This effect
can also be seen in the results of dense random ECOC and our
procedure. Both cases have the same number of dichotomizers
(or less in our case due to the fact that we analyze the training
convergence), and although random ECOC has a higher dis-
tance between rows in most cases, our procedure usually ob-
tains a higher hit ratio because the dichotomizers are selected
in an optimal way depending on the domain of the problem.
Note that the results obtained using MSFFS are usually very
close to the ones obtained with the exhaustive approach. As ex-
pected, its performance is poorer than using exhaustive search.
There is a trade-off between accuracy and computing time. If
ECOC-ONE with exhaustive search and one-versus-one are the
first choices, ECOC-ONE with MSFFS is a very close second
choice. Note that there is a further trade-off in the exactitude of
the MSFFS method between the optimality of the solution and
the time complexity. This trade-off is governed by the number
of iterations of the floating search procedure. A maximum of N
iterations (where N is the number of items in the search) should
suffice to obtain a good approximation [18].

5.1. Discussions

In order to provide more insight on the ECOC-ONE process,
we show different experiments that address the following is-
sues: Firstly, we discuss the use of the validation subset. Then,
we show the optimality of our extension technique when it is
compared with a random extension. We show an extension of
the one-versus-all technique using ECOC-ONE. We compare a
multiclass built-in SVM with the ECOC-ONE extension of a
tree. The computational complexity of the ECOC-ONE is com-
pared to the ECOC-ONE (MSFFS). And finally, We discuss the
effect of the weights in the ECOC matrix.

In order to show the effect of the validation set, we focus on
the results obtained on two data sets, the dermatology and the
glass sets. Figs. 7(a) and (b) display the error evolution using
our procedure. Observe that the training error is zero in both
cases at iteration 5. At that point further learning using the train-
ing subset is futile. However, using the validation set we still
have information for accuracy improvement. In fact, looking at
test evolution we can see how the test error further decreases.
In general, this behavior holds even if the training error does
not achieve the zero error, since the validation subset is used
as an external oracle. The oracle tries to capture the variability
not observed in the training set. In this way, it reinforces the
learning process, serving just as an observable test.

The second experiment is designed to show the optimal-
ity of our extension technique. We increase the initial one-
versus-all with the embedding of only two extra dichotomizers.
Discrete Adaboost is used as a base classifier for the compara-
tive. We compare our extension to the one-versus-all including
two dense random dichotomizers (one-versus-all-dense) that
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Table 6
ECOC strategy hits for UCI databases using FLDA as a base classifier

# One-versus-one One-versus-all Dense random ECOC-ONE MSFFS

Hit #D Hit #D Hit #D Hit #D Hit #D

(a) 96.65 ± 0.73 15 94.87 ± 0.74 6 96.57 ± 0.74 10 98.48 ± 0.49 7.8 96.03 ± 0.97 10
(b) 82.40 ± 1.46 28 71.85 ± 1.53 8 81.15 ± 1.55 10 83.90 ± 1.23 10 81.73 ± 2.14 10
(c) 76.76 ± 1.16 21 44.55 ± 2.15 7 44.83 ± 2.00 10 52.10 ± 2.28 10 51.65 ± 1.87 10
(d) 85.24 ± 0.57 21 71.32 ± 0.62 7 73.92 ± 0.56 10 85.44 ± 0.50 9.2 84.65 ± 1.05 10
(e) 71.20 ± 1.27 55 23.87 ± 0.42 11 41.32 ± 1.38 10 53.05 ± 0.80 10 51.04 ± 1.42 10
(f) 81.00 ± 0.67 15 65.35 ± 0.52 6 75.85 ± 0.83 10 82.85 ± 0.54 9.4 80.48 ± 0.85 10
(g) 52.21 ± 0.80 45 30.54 ± 0.90 10 47.32 ± 0.93 10 51.21 ± 0.70 10 50.67 ± 1.35 10
(h) 93.18 ± 0.43 45 33.10 ± 1.23 10 68.41 ± 1.44 10 91.21 ± 0.78 10 91.03 ± 1.23 10

Rank 1.25 3.87 2.75 1.25 2.12

Table 7
ECOC Strategy hits for UCI databases using Discrete Adaboost as a base classifier

# One-versus-one One-versus-all Dense random ECOC-ONE MSFFS

Hit #D Hit #D Hit #D Hit #D Hit #D

(a) 96.30 ± 0.61 15 92.65 ± 1.23 6 95.26 ± 0.82 10 95.17 ± 0.74 8.2 95.11 ± 0.71 10
(b) 78.05 ± 1.46 28 77.10 ± 1.19 8 77.65 ± 1.33 10 78.15 ± 1.84 10 77.14 ± 1.55 10
(c) 67.93 ± 1.66 21 60.83 ± 2.34 7 63.69 ± 2.51 10 67.03 ± 1.63 10 66.55 ± 1.76 10
(d) 97.01 ± 0.72 21 92.89 ± 1.16 7 94.51 ± 1.22 10 96.23 ± 1.52 9.6 94.38 ± 1.84 10
(e) 81.43 ± 1.12 55 73.33 ± 1.40 11 74.50 ± 1.96 10 81.50 ± 1.22 10 80.83 ± 2.53 10
(f) 86.23 ± 0.79 15 81.99 ± 0.86 6 84.39 ± 0.76 10 85.47 ± 1.00 9.8 84.67 ± 2.17 10
(g) 52.35 ± 1.05 45 51.48 ± 1.08 10 51.82 ± 1.47 10 52.87 ± 1.96 10 52.87 ± 1.96 10
(h) 98.01 ± 1.04 45 93.98 ± 2.56 10 95.54 ± 1.71 10 97.84 ± 1.13 10 97.09 ± 1.56 10

Rank 1.00 2.37 1.50 1.00 1.25

Table 8
ECOC Strategy hits for UCI databases using SVM as a base classifier

# One-versus-one One-versus-all Dense random ECOC-ONE MSFFS

Hit #D Hit #D Hit #D Hit #D Hit #D

(a) 96.02 ± 0.95 15 94.83 ± 1.84 6 95.94 ± 1.22 10 95.83 ± 0.94 8.7 95.72 ± 1.01 10
(b) 76.11 ± 1.26 28 63.97 ± 1.51 8 72.94 ± 1.37 10 75.68 ± 1.28 10 74.75 ± 1.48 10
(c) 58.52 ± 2.63 21 49.73 ± 2.45 7 54.13 ± 2.73 10 57.83 ± 1.93 10 56.79 ± 1.21 10
(d) 98.36 ± 1.47 21 94.36 ± 1.13 7 93.83 ± 1.43 10 97.84 ± 1.12 9.2 96.84 ± 1.52 10
(e) 73.18 ± 1.15 55 32.07 ± 1.62 11 46.00 ± 1.34 10 69.14 ± 3.01 10 67.65 ± 4.02 10
(f) 87.43 ± 0.80 15 85.85 ± 1.08 6 84.03 ± 1.49 10 89.04 ± 0.63 10 88.01 ± 0.97 10
(g) 55.31 ± 1.47 45 41.41 ± 1.79 10 51.07 ± 2.12 10 52.58 ± 1.73 10 52.49 ± 2.13 10
(h) 98.53 ± 1.03 45 95.04 ± 1.88 10 96.44 ± 1.12 10 98.43 ± 0.99 10 96.05 ± 1.76 10

Rank 1.13 2.62 2.25 1.00 1.13

maximally increase the distance between rows and columns
(and its complementaries). We can observe in Table 9 that with
the reduced set of optimal extra dichotomizers, our proposed
technique increases considerably the accuracy of the initial
coding technique. Besides, the extension of ECOC-ONE di-
chotomizers seems to perform better than the extra dense di-
chotomizers of the comparative.

One-versus-all is considered, in general, one of the poor-
est choices for learning with ECOC. However, it is still used
because of the small number of dichotomizers involved. The

third experiment showed in this section compares the exten-
sion of the one-versus-all adding just two dichotomizers using
our method with the one-versus-one approach—recall that one-
versus-one is the standard technique with highest accuracy. In
order to perform this comparison we have used Discrete Ad-
aboost on the UCI repository. Table 10 shows the results of
these experiments. Observe that both methods achieve the same
performance considering the confidence interval at 95%. Note
also that the number of dichotomizers involved in our extension
is smaller than the one-versus-one approach.
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Fig. 7. Error evolution of dermatology database using ECOC-ONE with FLDA: (a) error evolution for the glass data set, (b) error evolution for the dermatology
data set.

Table 9
UCI one-versus-all extension using Discrete Adaboost

Problem One-versus-all ECOC One-versus-all-dense ECOC One-versus-all ECOC-ONE

Dermatology 92.65 ± 1.23 93.85 ± 1.02 95.53 ± 0.89
Ecoli 77.10 ± 1.19 77.58 ± 1.54 78.43 ± 1.02
Glass 60.83 ± 2.34 65.59 ± 2.52 64.90 ± 2.39
Segmentation 92.89 ± 1.16 94.80 ± 1.21 95.90 ± 1.03
Vowel 73.33 ± 1.40 74.97 ± 1.40 79.34 ± 1.40
Satimage 81.99 ± 0.86 83.93 ± 1.11 84.83 ± 0.96
Yeast 51.48 ± 1.08 51.48 ± 1.08 53.52 ± 0.89
Pendigits 93.98 ± 2.56 95.64 ± 1.89 96.88 ± 2.01
Rank 2.50 1.38 1.00

Table 10
UCI one-versus-one and one-versus-all-ECOC-ONE comparison

Problem One-versus-
one ECOC

One-versus-all
ECOC-ONE

Hit #D Hit #D

Dermatology 96.30 ± 0.61 15 95.53 ± 0.89 8
Ecoli 78.05 ± 1.46 28 78.43 ± 1.02 10
Glass 67.93 ± 1.66 21 64.90 ± 2.39 9
Segmentation 97.01 ± 0.72 21 95.90 ± 1.03 9
Vowel 81.43 ± 1.12 55 79.34 ± 1.40 13
Satimage 86.23 ± 0.79 15 84.83 ± 0.96 8
Yeast 52.35 ± 1.05 45 53.52 ± 0.89 12
Pendigits 98.01 ± 1.04 45 96.88 ± 2.01 12

In order to further validate our approach, we provide a new
experiment comparing the ECOC-ONE technique using sup-
port vector machines with linear kernels with a built-in multi-
class SVM [20] with the same kernel. The results are shown in
Table 11. Observe that our technique slightly improves the ac-
curacy of the multiclass SVM using the same parametrization
for both techniques.

In order to reduce the computational complexity of the
exhaustive search when the number of classes is high, we pro-
pose the use of the modified sequential forward floating search
(MSFFS). We have designed an experiment that shows the
difference in complexity between the MSFFS and the

Table 11
UCI ECOC-ONE with SVM and built-in multiclass SVM with lineal kernel
comparative

Problem ECOC-ONE Multiclass SVM

Dermatology 95.83 ± 0.94 96.52 ± 0.61
Ecoli 75.68 ± 1.28 69.74 ± 0.76
Glass 57.83 ± 1.93 59.93 ± 1.99
Segmentation 97.84 ± 1.12 95.23 ± 0.59
Vowel 69.14 ± 3.01 77.55 ± 0.96
Satimage 89.04 ± 0.63 85.60 ± 0.40
Yeast 52.58 ± 1.73 52.57 ± 0.92
Pendigits 98.43 ± 0.99 98.72 ± 0.17
Rank 1.12 1.38

exhaustive search. Using the Pendigits data set, we compute
the time of finding a sub-optimal column of the ECOC matrix
as the number of classes increases.

Fig. 8 illustrates the results of the experiment. Observe the
exponential behavior of the exhaustive search and the quasi-
linear tendency of the MSFFS. As we have shown in the former
section, the results using this sub-optimal search technique are
very similar to those obtained using the exhaustive search.

As commented in former sections, the dichotomizers are
selected in an optimal way in order to ensure generalization
of the proposed approach. Each of the selected dichotomizers
corrects a certain partition of the subset of classes and has
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Fig. 8. Time consumed by the exhaustive search and MSFFS.

associated an error according to the training and validation sub-
set of misclassified samples. We use the classification score to
weight each dichotomy using the empiric error of classifica-
tion for that dichotomy using Eq. (2). Fig. 9 shows the average
and relative improvement of the weighted Euclidean distance
referred to the error obtained using just the Euclidean distance.
Besides, we present the figures that reflect the effect of the
weighted distance (Table 12).The results show that the weight-
ing scheme increases the accuracy in all cases, showing the
absolute and relative improving percentages. Besides, we can
observe that the variance is clearly reduced by the fact that in
all cases—except for the Ecoli dataset—the confidence rate is
smaller.

6. Conclusion

In most of the ECOC coding strategies, the ECOC matrix is
pre-designed, using a fixed number of dichotomizers indepen-
dent on the considered domain. We introduced a new coding

Fig. 9. Absolute and relative percentage improvement comparison between Euclidean distance and weighted Euclidean distance.

Table 12
Accuracy of the Euclidean and weighted Euclidean decoding at UCI databases
using Discrete Adaboost and N ×2 columns, N being the number of classes,
and dense random coding

Dermatology Ecoli Glass Segmentation

Euclidean 96.74 ± 0.79 78.39 ± 1.43 62.59 ± 2.74 95.38 ± 1.51
Weighted 96.85 ± 0.73 79.29 ± 1.53 64.48 ± 2.60 96.22 ± 1.20
% Absolute +0.11 +0.90 +1.89 +0.84
% Relative +0.11 +1.15 +3.02 +0.88

Vowel Satimage Yeast Pendigits

Euclidean 78.10 ± 2.38 85.80 ± 1.49 54.73 ± 1.66 96.95 ± 1.05
Weighted 78.53 ± 2.32 87.50 ± 1.03 55.00 ± 1.46 97.15 ± 0.95
% Absolute +0.43 +1.70 +0.27 +0.20
% Relative +0.55 +1.98 +0.49 +0.21

and decoding strategy called ECOC-ONE, based on the ex-
tension of an initial optimal tree upgraded with a set of opti-
mal dichotomizers. Furthermore, the ECOC-ONE can be seen
as a general extension strategy for any initial coding matrix.
The procedure shares classifiers among classes in the ECOC-
ONE matrix and selects the best partitions weighed by their
relevance. In this way, it reduces the overall error for a given
problem. Moreover, using the validation set, the generalization
performance is increased and overfitting is avoided. We show
that this technique improves in most cases the standard ECOC
technique results, though it has a smaller value of Hamming
distance among the coding matrix rows. This improvement is
due to the fact that the optimal dichotomizers selected at each
step of the method are locally focused on the difficult cases
of classification. We compete with the one-versus-one ECOC
strategy using far less number of dichotomizers. As a result,
a compact—small number of classifiers—multiclass recogni-
tion technique with improved accuracy is presented with very
promising results. We are currently extending the ECOC anal-
ysis focusing on the non-previously analyzed effect of the zero
symbol in the ECOC framework. We are studying the way in
which that symbol affects to the ternary decoding step, and
adapting decoding strategies to avoid the problem of the con-
fusion errors generated in these cases.
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