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a b s t r a c t

This article proposes a general extension of the error correcting output codes framework to the online
learning scenario. As a result, the final classifier handles the addition of new classes independently of
the base classifier used. In particular, this extension supports the use of both online example incremental
and batch classifiers as base learners. The extension of the traditional problem independent codings one-
versus-all and one-versus-one is introduced. Furthermore, two new codings are proposed, unbalanced
online ECOC and a problem dependent online ECOC. This last online coding technique takes advantage
of the problem data for minimizing the number of dichotomizers used in the ECOC framework while pre-
serving a high accuracy. These techniques are validated on an online setting of 11 data sets from UCI data-
base and applied to two real machine vision applications: traffic sign recognition and face recognition. As
a result, the online ECOC techniques proposed provide a feasible and robust way for handling new classes
using any base classifier.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Traditional visual machine learning problems are solved train-
ing robust statistical classifiers (Vapnik, 1997), using as input a
predefined set of training examples. This learning process is usu-
ally computationally demanding, and it needs the availability of
the whole training set. However, machine vision applications are
constantly evolving. The entities from which training samples are
extracted change their appearance, or even the structure of the
classification problem must change due to the inclusion of new
classes. This fact required the development of strong online classi-
fiers that can deal with the variability of the data. Given a classifi-
cation task, the goal of online learning is to model the classifiers
parameters using an initial training set, being able to incrementally
evolve this model parameters as new data or classes become
available.

The online learning objectives are clearly differentiable in com-
parison to classic batch learning. However, the ‘‘online’’ term in-
volves different levels of behavior associated to the classifier.
One can clearly distinguish two behaviors at different level of
abstraction: the first one, from the point of view of data examples
– one expects the classifier to adapt to new data from previously
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seen classes. The second abstraction layer, from the point of view
of classes – one expects the classifier to adapt to new classes with-
out retraining the complete classifier. Fig. 1 shows the relationship
between these two layers. The bottom layer deals only with exam-
ples; in this layer, we can distinguish between data incremental/
decremental classifiers and batch classifiers, depending on the
un/capability of the method to adapt to new data examples. On a
higher level, we find the class incremental/decremental behavior.
This layer deals with the addition/removal of classes. Observe that
this level is independent of the previous one. Consider the follow-
ing examples: in our society, it is usual to change employees priv-
ileges to resources or access to the company building or to certain
restricted areas; consider a biometric verification application in
which at a certain point we want to grant access to those resources
to a new subject. Or, an object recognition problem where some
object categories were not foreseen and want to be added to the
full system. In those applications, we barely desire to retrain the
complete problem due to scalability or complexity issues. How-
ever, an adjustment must be made to accommodate this new data.
In these examples, layer 2 behavior is only needed, disregarding on
which the actual base learning strategy is.

Up to now, literature has considered the first and second layers
as one. However, few are the methods that allow both behaviors at
the same time, and most of literature is focussed on the first layer.
This second level of abstraction is where our proposal, online ECOC,
is defined. As a meta-learning strategy it can accommodate either
example incremental online classifiers of the first layer or batch
classifiers.
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Fig. 1. Abstraction layers of the online behavior.
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In this paper, we study the suitability of the error correcting
output codes (ECOC) (Kong and Dietterich, 1995) framework to
adapt to the online learning scenario. In particular, we focus on
layer-2 using ECOC coding schemes, which incrementally allow
new classes to be added to the original problem independently of
the base classifier used. The addition of new unseen samples in
the online ECOC algorithm becomes straightforward using an on-
line (layer-1) base binary classification algorithm. However, the
addition of new classes involves the addition of new codewords.
Moreover, new dichotomizers (columns in the encoding matrix)
could be needed to maintain the classification performances and
isolate the new classes. Depending on how these new code words
and dichotomizers are generated, different online ECOC strategies
are defined. We study and compare four encoding matrix genera-
tion algorithms: (i) the online extension of the classic one-
versus-all strategy, (ii) the inclusion of ternary encoding to
improve the performance obtaining unbalanced online ECOCs,
(iii) the online extension of the one-versus-one technique, and
(iv) finally a more efficient problem dependent online ECOC
encoding. This last algorithm solves class incremental problems
minimizing the length of the encoding table (i.e. the computational
needs) while maintaining significant classification rates. Notice
that the online ECOC scheme does not necessarily involve the use
of online layer-1 base classifiers. Some applications could require
the use of specific binary base classifiers that can not be extended
to the online case. In this sense, this article also provides a solution
to this problem.

The paper is organized as follows: in the next section an over-
view of the state-of-the-art online learning is shown. Section 3 de-
scribes the basic ECOC technique and, in particular, it explains the
weighing decoding step. Section 4 proposes the extension of the
ECOC framework to the layer-2 online case. Section 5 shows the
validation performed on the UCI database and the experiments in
two independent machine vision problems: a traffic sign recogni-
tion and face recognition. Finally, Section 6 concludes this work.
2. Online learning

Online learning is the area of machine learning concerned with
learning from examples on the fly. In this framework, each exam-
ple is trained once and it is never examined again. Online learning
is necessary when data continuously arrives and it is not possible
to perform an efficient storing for batch learning, or when retrain-
ing the whole framework becomes computationally unfeasible.
This causes that the training phase can be done in different epi-
sodes or rounds. Hence, the main flow of an online algorithm uses
to following scheme:

(a) Train the model using an initial data set.
(b) Add the additional data set and adjust the model

parameters.
(c) Repeat (b) while new data arrives.
Recent online learning approaches are based on extending clas-
sical classifiers to the online case, typical examples are decision
trees (Utgoff et al., 1997), online Support Vector Machines (SVM)
(Katagiri and Abe, 2006, 2000,,) or online ensemble of classifiers
(Oza, 2000). Nevertheless, all these previous works have focused
on two class problems. The general approach for dealing with the
multiclass case is based on reducing a multiclass problem to multi-
ple binary problems. Katagiri and Abe (2006) in their own online
SVM implementation use the one-versus-all scheme when using
it in multiclass data. An n-class problem is converted into n two-
class problems and for the ith two-class problem, class i is
separated from the remaining classes. Another strategy for online
multiclass classification is the one proposed by Crammer and
Singer (2001) in their called ‘‘ultraconservative’’ algorithms. In
their approach, one prototype vector is maintained for each class.
Given a new instance, each prototype is compared to the instance
by computing the similarity-score between the instance and each
of the prototypes for the different classes. The class predicted is
the one which achieves the highest similarity score. After the
algorithm makes a prediction, it receives the correct label of the in-
stance and updates the set of prototypes. In this context, online
feature extraction has also been studied in the prototype based
classification. Incremental Principal Component Analysis (iPCA)
was the first online extension of the well known PCA unsupervised
feature extraction technique (Artac et al., 2002; Hall et al., 1998).
More recently Pang et al. (2005) proposed an extension of its
supervised counterpart based on Fisher Linear Discriminant Analy-
sis criterion. In addition, Polikar et al. designed the Learn++ algo-
rithm (Polikar et al., 2001; Muhlbaier et al., 2009) where an
ensemble of weak NN classifiers is generated to incrementally
accommodate new samples to a previously learnt classifier.
3. Error correcting output codes

Error correcting output codes (ECOC) is a metalearning strategy
that allows to extend any binary classifier to the multiclass case.
The classic ECOC meta learning algorithm (Dietterich and Bakiri,
1995) has two phases: in the learning step, an ECOC encoding ma-
trix is constructed in order to define the combination of the M bin-
ary classifiers that allow full multi-class classification. In the
testing phase (decoding step), the new sample x is classified
according to the M binary classifiers set. The decoding algorithm
finds the most suitable class label for the test sample using the out-
put of this binary set of classifiers.

Briefly, given a set of N training samples X = {x1, . . .,xN}, where
each xi belongs to the class Ci 2 {C1, . . .,CK}, an ECOC encoding con-
sists on constructing M binary problems (called dichotomizers hj)
from the original K classes. At each dichotomizer, the class set is
split into the binary classes {+1, �1}, forming a K �M encoding
ECOC matrix T. When a new sample must be classified, the outputs
of the dichotomizers (columns of the matrix T) are used to con-
struct the codeword that is compared with each row of the matrix
T. The class with the minimum distance is selected as the classifier
output. In this binary grouping setting, the total number of possible
splits is 2K�1 � 1, being the efficient construction of the ECOC ma-
trix T the key issue in the training step. The encoding step was ex-
tended by Allwein et al. (2002) to include a new symbol – symbol 0
– so that, a class can be omitted in the training of a particular
dichotomizer. Classical multi-class classification strategies, such
as the one-vs-all or one-vs-one (when ternary representations
are used) can be easily represented as an ECOC matrix. Neverthe-
less, more sophisticated problem dependent encodings have been
shown to outperform classical approaches (Pujol et al., 2006;
Escalera et al., 2008), without a significant increment of the code-
word length.



Fig. 2. 1vsAll encoding strategy.
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The most simple strategy for decoding is to use the Hamming
distance between the output of the dichotomizers on the new test
sample and each codeword (row) of the encoding matrix. However,
other strategies, such as Euclidean decoding, Probabilistic decoding
or Loss-based decoding can be used in this step.

3.1. Weighted decoding

In this section we detail the decoding strategy that is used
throughout this article. This strategy has been shown (Escalera
et al., 2008) to be generally better than most of the state of the
art decoding measures. The weighted decoding strategy decom-
poses the decoding step of the ECOC technique in two parts: a
weighting factor for each code position and any decoding strategy.
The weighting methodology is designed to fulfill two properties
that allow a better behavior of the binary and ternary decoding.
In (Escalera et al., 2006), the authors show that for a decoding
strategy in a ternary ECOC to be successful, the bias induced by
the zero symbol should be zero. Additionally, the dynamic range
of the decoding strategy must be constant for all the codewords.
Then, the goal of the weighting matrix is twofold: first, it isolates
the decoding strategy from the commented properties. Second, it
allows to encode the confidence on the prediction of each class.

Definition. We define the metaclass relative accuracy (r-value) of
class k on the set S given the definition of the metaclasses q as,

rkðS;q; iÞ

¼ #elements of class k classified as metaclass i in the set S
#elements belonging to class k in the set S

;

ð1Þ

where q defines which classes belong to which metaclass. Using the
ECOC notation, this is defined by a column of the matrix T (e.g. for
column j, q = T(�, j)). Observe that for obtaining this value for all clas-
ses, we just have to test once the classifier trained for dichotomy j
on the set S.

In order to encode the prediction of each class, one can use the
r-values associated to each dichotomizer in the following way,

wði; jÞ ¼
riðS; Tð�; jÞ; Tði; jÞÞ Tði; jÞ – 0;
0 otherwise:

�
The zero value ensures that the bias due to the zero symbol is nul-
lified at the decoding step. Moreover, to fulfill the second require-
ment (same dynamic range), each row of the matrix is normalized,XM

j¼1

wði; jÞ ¼ 1; 8i 2 1 . . . Kf g:

The second part of the weighting decoding depends on the base
decoding strategy. In this article, we chose to use Linear Loss-based
decoding as base strategy decoding. Linear Loss-based decoding
was introduced by Allwein et al. (2002) and is defined in the follow-
ing way: given the input sample x and the binary code y result of
applying all the dichotomizers (h1, h2, . . .,hM) to the input test sam-
ple, the decoding value is defined as follows:

dðy; Tði; �ÞÞ ¼
XM

j¼1

LðTði; jÞ � hjðxÞÞ;

where T(i,�) denotes the codeword for class i, hj(x) is the prediction
value for dichotomizer j, and L is a loss function that represents the
penalty due to the misclassification. In the case of Linear Loss-based
decoding LðqÞ ¼ �q.

The complete decoding strategy weights the contribution of the
decoding at each position of the codeword by the elements of W.
As such, the final decoding strategy is defined as,
dðy; Tði; �ÞÞ ¼
XM

j¼1

Wði; jÞ � LðTði; jÞ � hjðxÞÞ:

From the point of view of online processes, this decoding strategy is
directly applicable to new classes. Observe that the weighting ma-
trix for a class depends only on the elements of that class, disregard-
ing the rest of the data. Given that, each time a new class is
introduced in the framework only the information concerning this
new class needs to be computed.

4. Online ECOC coding

In general, the addition of a new class in the ECOC matrix re-
shapes it in two ways: first, a new code must be defined for the
new class. Second, new dichotomies could be needed to discrimi-
nate the new class. Additionally, we have a restriction, any knowl-
edge in the ECOC matrix should be preserved, this means that it is
undesirable to retrain previously learnt dichotomizers.

In this section, we introduce the extension of classic ECOC strat-
egies – one-versus-all, one-versus-one strategies – to the layer-2
online case and propose a novel problem dependent layer-2 online
ECOC coding that takes advantage of the particularities of the data-
set for defining a more efficient ECOC coding in terms of number of
classifiers and performance. With the exception of the first pro-
posal, the rest of the techniques are independent of the base clas-
sifier and can accommodate both layer-1 online and batch learners.

4.1. Problem independent online ECOC designs

4.1.1. One-versus-all online ECOC (1vsAllo)
The simplest approach for extending the ECOC framework to

the online case is to take advantage of layer-1 base online learners.
Recall that layer-1 base online learners are incremental learners
that adapt to new samples without the need of retraining the full
classifier on the whole data set. Thus, it is straight forward to think
that if the new data belongs to a new class, one only needs to train
this data for each dichotomizer according to the metaclass mem-
bership defined by the ECOC matrix.

The first possible extension of ECOC to online ECOC is the online
one-versus-all ECOC. The algorithm takes as input the K �M
encoding ECOC matrix T, where each T(i,j) 2 {+1,�1} represents
the binary metaclass membership of the class i in the dichotomizer
j. In the online 1vsAll encoding strategy, the addition of samples of
a new class CK+1 generates a new dichotomizer hM+1 and a new
codeword CK+1, where,

Tði;M þ 1Þ ¼
�1 i – K þ 1;
þ1 otherwise:

�
ð2Þ

Additionally, all positions of the new codeword will be assigned to
the metaclass �1, except for the position M + 1,

TðK þ 1; iÞ ¼
�1 i – M þ 1;
þ1 otherwise:

�
ð3Þ



Algorithm 1. General algorithm for the creation of the
problem dependent layer-2 online ECOC matrix.

Input: Set of data points S = {(xi, Ci)jxi 2 X ^ Ci 2 C} divided in
a training set St � S and a validation set Sv � S so that,
St
S

Sv = S and St
T

Sv = £

Input: ECOC matrix T of size K �M, K = jCj
Input: Set of new training instances So = {x N+1 , . . .,xN+U} from

a new class CK+1

Input: Parameters � and a
Output: Expanded ECOC matrix eT
begin step 1: Vertical expansion

for each column/dichotomy j 2 {1, . . . ,M} do
/* Find the weight associated to that class for dichotomy j

as the maximum metaclass relative accuracy for all possible
codes */

W(K + 1,j) = max(arK+1(St, T(�,j),l) + (1 � a) rK+1(Sv,
T(�,j),l)) " l 2 {1, �1}

if W(K + 1,j) < � then

W(K + 1, j) = 0; eT ðK þ 1; jÞ ¼ 0
else

/* Fill the ECOC matrix with the code value that
maximized the weight */eT ðK þ 1; jÞ ¼ argmaxlðarKþ1ðSt; Tð�; jÞ; lÞþ
ð1� aÞrKþ1ðSv ; Tð�; jÞ; lÞÞ 8l 2 f1;�1g

end
begin step 2: Base horizontal expansioneT ðK þ 1;M þ 1Þ ¼ �1eT ðj;M þ 1Þ ¼ 1 8j 2 f1 . . . Kg

w(K + 1,M + 1) = arK+1(St,T(�,M + 1), �1) + (1 � a)
rK+1(Sv,T(�,M + 1), �1)

end
begin step 3: Problem dependent horizontal expansion

while wðK þ 1;M þ 1Þ 6 � and

jfeT ðj;M þ 1Þ ¼ 1; 8j 2 f1 . . . Kggj > 1 do
Calculate the confusion vector with respect to class CK+1

Select the class Ce with maximum erroreT ðe;M þ 1Þ ¼ 0

Add a new column at position s ¼ lengthðeT Þ þ 1 so that,

eT ðj; sÞ ¼ 1 j ¼ e
�1 j ¼ K þ 1
0 otherwise

8<:
Find the new weights according to the new dichotomy

definitions
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The process is exemplified in Fig. 2, where a black square represents
a �1 symbol in the matrix T, and a white square corresponds to the
symbol +1. Notice that the addition of the new class increases in one
row and column the characteristic identity matrix of the one-
versus-all online approach.

4.1.2. Unbalanced online ECOC (UNBo)
If we want to extend the online layer-2 behavior to batch base

classifiers, we must be sure not to retrain the classifiers whenever
the metaclass definition is changed by the fact of adding a new
codeword. This objective can be achieved by ignoring new classes
in previously trained classifiers. This leads to a degenerate matrix
which we call unbalanced online ECOC1 (UNBo).

Analogous to the previously defined method, the online unbal-
anced ECOC requires of a new dichotomizer hM+1 and a new code-
word CK+1. The new dichotomizer is defined by the one-versus-all
strategy as shown in Eq. (2). On the other hand, since we cannot
afford to retrain any previously learnt dichotomizer, the new code-
word preserves the original encodings by adding the ’don’t care’
symbol to all positions of the new codeword except for the position
M + 1, in the following way,

TðK þ 1; iÞ ¼
0 i – M þ 1;
þ1 otherwise:

�
The process is exemplified in Fig. 3(a), where a black square repre-
sents the �1 symbol in the matrix T, a grey square represents the
zero symbol and a white square the +1 symbol. In this case, the
incremental addition of new classes generates binary dichotomizers
as in the 1vsAll case. However, the codewords for the new classes
are selected in such a way that do not distort the previously learned
dichotomizers. From the perspective of tree embedding into ECOC
matrices (Pujol et al., 2006) this kind of codification comes from
an unbalanced classification tree. Fig. 3(b) shows the unbalanced
tree that generates the ECOC matrix of Fig. 3(a).

4.1.3. One-versus-one online strategy (1vs1o)
Another widely used ECOC coding strategy is one-versus-one.

The definition of this technique allows to extend its behavior to
the online case in a simple way independently of the type of base
classifier used. Observe that in this scheme a new class introduces
a new codeword for class K + 1 and K dichotomizers corresponding
to all pairs of classes involving class K + 1.

Given the K �M encoding ECOC matrix T, and using the ternary
representation, T(i,j_) 2 {+1, 0,�1}, the online one-versus-one meth-
od requires the definition of a new codeword of size (K + 1)K/2 as
follows:

TðK þ 1; iÞ ¼
0 i 6 K;

þ1 otherwise:

�
Observe that the new class it is not considered in the previously
trained classifiers. On the other hand, a new class will need of K
new classifiers,

Tði;M þ jÞ ¼
�1 i ¼ j;
þ1 i ¼ K þ 1;
0 otherwise:

8><>: 8i; j 2 1 . . . Kf g:

The main drawback of this technique is that the addition of a new
class makes the ECOC matrix to grow linearly, resulting in quadratic
codewords with respect to the number of classes. This makes this
w(j,M + 1) = arj(St,T(�,M + 1), T(j,M + 1)) +
(1 � a)rj(Sv,T(�,M + 1), T(j,M + 1))

and w(j,s) = arj(St, T(�,s), T(j,s)) + (1 � a)rj(Sv, T(�,s),
T(j,s)) "j 2 {1, . . . ,K + 1}

1 Note that, though this method is motivated by the necessity of extending the one-
versus-one technique when the base dichotomizers belong to the batch classifiers
family, this strategy supports both layer-1 online and batch learners.
approach unfeasible if the expected number of classes is high – as it
is usual in machine vision applications.

4.2. General problem dependent online ECOC (PDo)

In the previous algorithms, the grouping properties of the
encoding matrix T are predefined at design time. Nevertheless, it
seems that more efficient grouping decisions could be performed
when the specific nature of the problem is taken into account. A
problem dependent approach can select the proper values of
T(i, j) using a data driven criteria, such as the training error on a val-
idation subset. For this purpose, we take advantage of the previ-
ously defined weighted decoding, which allows to take into
account the metaclass relative accuracy (r-value) as defined in
Eq. (1). The new algorithm is independent of the base classifier
applied.



Fig. 4. Problem dependent online strategy.

Table 1
UCI repository data sets characteristics.

Problem #Training samples #Features #Classes

Dermathology 366 34 6
Iris 150 4 3
Ecoli 336 8 8
Vehicle 846 18 4
Wine 178 13 3
Segmentation 2310 19 7
Glass 214 9 7
Thyroid 215 5 3
Vowel 990 10 11
Balance 625 4 3
Yeast 1484 8 10

Fig. 3. Unbalanced encoding strategy. (a) Coding matrix and (b) unbalanced tree associated.
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The problem dependent online ECOC coding is built in three
steps:

(1) Vertical extension: This step consists of creating a new code-
word for the new class. As such, a new row is added to the
matrix. The values of this codeword depend on how well
each dichotomy models the new class. The metaclass rela-
tive performance is a measure that reflects how well the
dichotomizer splits the new class when it is considered as
belonging to the metaclass +1 or �1. Then, the new code will
be the value of the metaclass that maximizes the metaclass
relative performance. Note that the maximum of this value
lies between [0.5. . .1]. Additionally, the value is stored in
the weighting matrix as a measure of the confidence in that
code position. Observe that if one considers the r-value to be
too small, one has the option of setting the value to zero
meaning that we ’do not consider’ that dichotomizer in the
new codeword. We reflect this issue by allowing the user
to define a minimum confidence represented by � (� > 0.5).
In Fig. 4, the first step tests dichotomizers (h1, h2, h3) with
the samples of the new class, assuming that they belong to
the metaclasses {+1, �1}. The value of the metaclass with
higher r-value is assigned to the new code. In the example,
the new code corresponds to {�1, 0, +1}. As we commented,
the r-value obtained for the new class by h2 is not higher
than epsilon and, thus, the result of the dichotomizer is not
considered in the decoding step.
(2) Base horizontal extension: In general, a new class requires of
an specialized dichotomizer. The second step uses a one-
versus-all configuration as basic horizontal extension to
define the new dichotomizer. This step requires the training
of a new classifier and the adjustment of the corresponding
r-values in the weighting matrix. In Fig. 4, the second step
sets class 5 to +1 and the rest to �1. Again the r-value for
each class must be computed and stored in the weighting
matrix W.

(3) Problem dependent horizontal refinement: This step proposes
an r-value driven variable codeword expansion. If the r-
value for the new class in the specialized dichotomizer



Fig. 5. Traffic sign classes.

Table 2
UCI classification results using online classifiers.

DB 1vs1o iLDA 1vsAllo UNBo PDo Batch PDo Learn++ SVM

Balance 0.97 (0.02)* 0.84 (0.03) 0.91 (0.01) 0.97 (0.02)* 0.97 (0.02)* 0.97 (0.02)* 0.94 (0.02) 0.97 (0.02)
Wine 0.61 (0.04) 0.74 (0.06)* 0.51 (0.10) 0.62 (0.03) 0.65 (0.05) 0.64 (0.04) 0.71 (0.04) 0.61 (0.04)
Thyroid 0.95 (0.03) 0.72 (0.03) 0.90 (0.04) 0.95 (0.03) 0.96 (0.03)* 0.96 (0.03)* 0.90 (0.02) 0.95 (0.03)
IRIS 0.97 (0.04)* 0.97 (0.03)* 0.97 (0.04)* 0.97 (0.04)* 0.95 (0.04) 0.95 (0.04) 0.93 (0.02) 0.97 (0.04)
Glass 0.46 (0.04) 0.53 (0.08)* 0.46 (0.02) 0.36 (0.03) 0.50 (0.04) 0.49 (0.04) 0.50 (0.03) 0.46 (0.04)
Ecoli 0.86 (0.02)* 0.82 (0.04) 0.77 (0.03) 0.79 (0.04) 0.84 (0.03) 0.86 (0.02) 0.85 (0.02) 0.85 (0.02)
Yeast 0.59 (0.02)* 0.52 (0.02) 0.46 (0.02) 0.56 (0.03) 0.58 (0.03) 0.57 (0.03) 0.51 (0.03) 0.59 (0.02)
Vowel 0.55 (0.04) 0.74 (0.04)* 0.39 (0.09) 0.45 (0.04) 0.54 (0.05) 0.50 (0.03) 0.72 (0.01) 0.53 (0.04)
Derma. 0.96 (0.01)* 0.88 (0.03) 0.81 (0.03) 0.68 (0.01) 0.96 (0.01)* 0.96 (0.01)* 0.95 (0.01) 0.96 (0.01)
Vehicle 0.72 (0.02) 0.38 (0.04) 0.70 (0.01) 0.73 (0.02)* 0.73 (0.02)* 0.73 (0.03)* 0.73 (0.02)* 0.72 (0.02)
Segmen. 0.95 (0.02)* 0.60 (0.01) 0.87 (0.02) 0.86 (0.02) 0.95 (0.02)* 0.91 (0.03) 0.90 (0.03) 0.95 (0.02)
Rank 1.86 3.68 5.13 3.77 1.50 2.04 2.86
Dichot. 16.73 – 5.64 5.64 8.52 8.52
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obtained at step 2 is too small, we can look for a more suit-
able dichotomy configuration by designing and adding a
new set of columns in order to obtain the desired r-values
for the new class. To perform this step, we look for the class
that reduces the metaclass relative performance of the new
class the most, by means of the confusion matrix. Once this
value is located, we remove this class by setting the value in
the new dichotomizer to zero. We create an specialized
dichotomizer that trains the new class against the removed
one. In Fig. 4, C2 is the class with the highest error in the con-
fusion vector for the new class. Thus, we set the value corre-
sponding to that class to zero in dichotomizer 4.
Furthermore, we create a new dichotomizer specialized on
distinguishing C2 from C5.

Algorithm 1 shows the detailed procedure for coding a problem
dependent online ECOC. Note that the algorithm splits the training
set in two subsets: the validation and training sets. The validation
set is used as an external oracle and allows to model the general-
ization of the method avoiding or delaying overfitting in the matrix
designing process.

Although this algorithm is general with respect of the base clas-
sifier, few considerations could be taken into account to take
advantage of the full capabilities of the base classifier:

� The base classifier belongs to the batch family: In this case, the r-
values come from the evaluation of the dichotomizer assuming
that the new items belong either to +1 or �1. This means that
we have to test each classifier on both training and validation
sets for all the elements of that class and obtain and combine
the r-values. This requires to run each dichotomizer once on
the subset for the new class.
� The base classifier is layer-1 online: In this case, we can take
advantage of the online behavior of the classifier and we can
choose either to treat it as a batch classifier or to incrementally
train each dichotomizer with the data of the new class in order
to obtain the best codification. In the same way, as in the other
case, the r-values for the new data must be obtained and
combined.

5. Results

In order to present the results, first, we discuss the data, meth-
ods, measurements, and experimental settings of the experiments.

� Data: The first data used for the experiments consists of 11
multi-class data sets from the UCI Machine Learning Repository
database (Asuncion and Newman, 2007). The number of train-
ing samples, features, and classes per data set are shown in
Table 1. Then, we apply the online classification methodology
in two challenging computer vision categorization problems.
First, we use the video sequences obtained from a Mobile Map-
ping System (Casacuberta et al., 2004) to test the methods in a
real traffic sign categorization problem consisting of 36 traffic
sign classes. And second, 30 classes from the ARFaces (Martinez
and Benavente, 1998) data set are classified using the present
methodology.
� Methods: For the experimental evaluation, we test the online

and batch classifiers presented in this paper. Concerning the
batch classifiers, we test the multi-class OSU implementation
of Support Vector Machines with Radial Basis Function kernel
(Vapnik, 1995; Osu-svm-toolbox, xxxx). In the case of the online
classifiers, we compare the iLDA with one-nearest neighbor
classifier and our ECOC online methodologies: online one-
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versus-all ECOC (1vsAllo), online unbalanced ECOC (UNBo),
online one-versus-one ECOC (1vs1o), the Problem Dependent
online ECOC (PDo), and the online Problem Dependent ECOC
with batch base classifier (batch PDo). For all the ECOC strate-
gies, the decoding is performed with the weighted decoding
with Linear Loss-based function, as described in Section 3.1, to
test the methods performances in the same conditions. We also
provide a comparative with the incremental learn++ algorithm
of Muhlbaier et al. (2009).
� Measurements: To measure the performance of the different

strategies, we apply stratified tenfold cross-validation and test
for the confidence interval with a two-tailed t-test. We also
use the Friedman and Nemenyi test to look for significant statis-
tical differences between the methods’ performances (Demsar,
2006).
� Experimental settings: All the data used in the experiments is

normalized to a hypercube with side length of one. The RBF
SVM classifier is tuned via cross-validation, where the sigma
and regularization parameters are tested from 0.05 increasing
per 0.05 up to one and from one increasing per five up to 150,
respectively. Once the multi-class SVM has been optimized,
the optimal parameters for each data set are shared for all the
classification strategies that use SVM as the base classifier and
for the online version of SVM used in the PDo approach. The
optimization for the PDo classifiers is done via cross-validation
of a on the validation set from 0.2 up increasing per 0.2 up to 0.8
and � is estimated from 0.05% increasing per 0.05 up to 0.4. All
online multi-class experiments are solved by considering an ini-
tial 2-class problem and progressively increasing the number of
classes by one.

5.1. Validation over UCI data sets

In order to understand the behavior of the different ECOC online
strategies on different feature spaces, we classify the 11 UCI data
Fig. 6. Traffic sign data set

Table 3
Traffic signs data set classification results.

Strategy 1vs1o 1vsALL

Performance 0.98 (0.01)* 0.95 (0.02)
Rank 1.9 3.5
Strategy 1vsAllo UNBo
Performance 0.94 (0.01) 0.92 (0.03)
Rank 5.4 6.2
sets of Table 1 with the online classifiers. The average accuracy
and rankings are shown in Table 2. The asterisks mark the best per-
formance and the values in bold correspond to the methods which
fall within the 95% confidence interval of the best result. The rank-
ings are obtained estimating each relative rank rj

i for each data set i
and each classification strategy j, and computing the mean ranking
R for each classifier as Rj ¼ 1

I

PI
i¼1rj

i, where I is the total number of
data sets. Thus, the smaller the ranking value, the best results the
method achieves. The numbers in parenthesis correspond to the
confidence interval computed using a two-tailed t-test. For com-
parison purposes, the last column in the table shows the SVM re-
sults trained as a multi-class off-line classifier, which are not
used in the computation of the ranking and confidence interval.
Notice that the best online method is the PDo, followed by the
1vs1o and the batchPDo. In addition, PDo compares favorably with
the reference off-line SVM trained with the full set of classes, being
their performance not statistically distinguishable in any dataset.
In order to further analyze the results, we test for statistical signif-
icance applying the Nemenyi test (Demsar, 2006): two techniques
are significantly different if the corresponding average ranks differ
by at least the critical difference value (CD):

CD ¼ qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 1Þ

6N

r
; ð4Þ

where qa is based on the Studentized range statistic divided by
ffiffiffi
2
p

.
In our case, when comparing seven methods (k = 7) in 11 experi-
ments (N = 11 data sets) with a confidence value a = 0.10,
q0.10 = 1.41. Substituting in Eq. (4), we obtain a critical difference va-
lue of 1.29. Observing the ranks of each classifier in the global rank
row of Table 2, one can see that the only combination of methods
for which the difference is smaller than the critical value of 1.29
is achieved when comparing the PDo approach, the batch PDo and
online one-versus-one ECOC against the rest. Therefore, we can ar-
gue that these strategies are significantly better than the rest in
the present experiments. Observe also that the mean number of
performance results.

SVM iLDA Learn++

0.97 (0.01) 0.90(0.01) 0.83(0.04)
2.7 7.3 8.2
PDo batch PDo
0.95 (0.02) 0.93 (0.03)
3.4 4.9
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dichotomizers in PDo and batch PDo is half the number of dichot-
omizers of the 1vs1o approach. We argue that this fact is important
when considering computational resources. On the other hand, the
mean ranks for the iLDA and Learn++ classifiers show that they offer
better results than the online one-versus-all and unbalanced
approaches for these data sets.

5.2. Computer vision applications

In this section, we test the ECOC online methodology on two
real challenging Computer Vision problems: traffic sign and face
categorization.

5.2.1. Traffic sign categorization
For this first computer vision experiment, we use the video se-

quences obtained from the Mobile Mapping System of Casacuberta
et al. (2004) to test the online ECOC methodology on a real traffic
sign categorization problem. In this system, the position and orien-
tation of the different traffic signs are measured with video cam-
eras fixed on a moving vehicle. The system has a stereo pair of
calibrated cameras, which are synchronized with a GPS/INS sys-
tem. The result of the acquisition step is a set of stereo-pairs of
images with their position and orientation information. From this
system, a set of 36 circular and triangular traffic sign classes are
obtained. Some categories from this data set are shown in Fig. 5.
The data set contains a total of 3481 samples of size 32 � 32, fil-
tered using the Weickert anisotropic filter, masked to exclude the
background pixels, and equalized to prevent the effects of illumi-
nation changes. These feature vectors are then projected into a
100 feature vector by means of PCA. More details of this system
can be found in Escalera et al. (2010).

The classification results of the traffic sign data set considering
all the previous classification strategies and ranks are numerically
and graphically shown in Table 3 and Fig. 6, respectively. The ranks
are computed taking into account each iteration of the 10-fold
evaluation as a different experiment. On can see that the PDo
and batch PDo strategies are close to the online one-versus-one
and batch SVM strategies, meanwhile the online one-versus-all
and unbalanced ECOC approaches are similar to the batch one-
versus-all ECOC design.

In order to analyze if the difference between methods ranks are
statistically significant, we apply the Friedman and Nemenyi tests.
In order to reject the null hypothesis that the measured ranks differ
from the mean rank, and that the ranks are affected by randomness
in the results, we use the Friedman test. The Friedman statistic va-
lue is computed as follows:

X2
F ¼

12N
kðkþ 1Þ

X
j

R2
j �

kðkþ 1Þ2

4

" #
: ð5Þ
Fig. 7. ARFaces data set classes. Examples from a category with neutral, smile, anger, scr
sun glasses and right light on, wearing scarf, wearing scarf and left light on, and wearin
In our case, with k = 9 designs to compare, X2
F ¼ 29:13. Since this va-

lue is undesirable conservative, Iman and Davenport proposed a
corrected statistic:

FF ¼
ðN � 1ÞX2

F

Nðk� 1Þ � X2
F

: ð6Þ

Applying this correction we obtain FF = 5.15. With nine methods
and ten experiments, FF is distributed according to the F distribution
with eight and 72 degrees of freedom. The critical value of F(8,72)
for 0.05 is 2.02. As the value of FF is higher than 2.02 we can reject
the null hypothesis. Once we have checked for the non-randomness
of the results, we can perform a post hoc test to check if one of the
techniques can be singled out. For this purpose we use the previ-
ously commented Nemenyi test. In our case, when comparing nine
methods with a confidence value a = 0.10, q0.10 = 1.38. Substituting
in Eq. (4), we obtain a critical difference value of 1.69. Considering
this CD value, only the 1vs1o, SVM, 1vsAll, and PDo methods can be
singled out as the best methods in the traffic sign recognition
experiment.

5.2.2. Face classification
We applied the online ECOC methods described in this paper to

a class-incremental face classification problem using the public AR
Face database. The AR Face database (Martinez and Benavente,
1998) is composed of 26 face images from 126 different subjects
(70 men and 56 women). The images have uniform white back-
ground. The database has from each person two sets of images, ac-
quired in two different sessions, with the following structure: one
sample of neutral frontal images, three samples with strong
changes in the illumination, two samples with occlusions (scarf
and glasses), four images combining occlusions and illumination
changes, and three samples with gesture effects. One example of
each type is plotted in Fig. 7. For this experiment, we selected all
the samples from 30 different categories (persons). The classifica-
tion results and ranks applying the batch and online base classifiers
are shown in Table 4 and Fig. 8, respectively. The ranks are com-
puted taking into account each iteration of the 10-fold evaluation
as a different experiment. The differences among strategies are
similar to the previous cases. The better results are obtained by
the online one-versus-one ECOC and batch SVM approaches, fol-
lowed by the PDo and batch PDo strategies, respectively. Finally,
the iLDA approach offers the less performance in this problem.

In order to analyze if the difference between methods ranks are
statistically significant, we apply the previously described Fried-
man and Nemenyi tests. In our case, with k = 9 designs to compare,
X2

F ¼ 26:04. Applying the corrected statistic of Iman and Daven-
port, we obtain FF = 4.34. With nine methods and ten experiments,
FF is distributed according to the F distribution with eight and 72
degrees of freedom. The critical value of F(8,72) for 0.05 is 2.02.
eam expressions, wearing sun glasses, wearing sunglasses and left light on, wearing
g scarf and right light on.



Fig. 8. ARFaces data set performance results.

Table 4
AR faces data set classification results.

Strategy 1vs1o 1vsALL SVM iLDA Learn++

Performance 0.88 (0.06)* 0.69 (0.10) 0.88 (0.06)* 0.49 (0.09) 0.72 (0.08)
Rank 1.3 6.8 1.4 7.5 5.2
Strategy 1vsAllo UNBo PDo batch PDo
Performance 0.68 (0.10) 0.55 (0.08) 0.83 (0.07) 0.74 (0.09)
Rank 6.9 6.7 2.1 3.8
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As the value of FF is higher than 2.02 we can reject the null hypoth-
esis. Once we have checked for the non-randomness of the results,
we use the Nemenyi test. In this case, when comparing nine meth-
ods with a confidence value a = 0.10, q0.10 = 1.38. Substituting in
Eq. (4), we obtain a critical difference value of 1.69. Considering
this CD value, as in the previous computer vision experiment, only
the 1vs1o, SVM, and PDo approaches can be singled out as the best
methods in the ARFace categorization experiment. This result is
specially significant in the face classification field, given that both
1vs1o and PDo achieve similar accuracies as the state-of-the-art
batch SVM technique, where all data has been made available in
training time. The contribution is twofold: (i) face recognition
applications can usually manage large amounts of training samples
that can only be faced using online learning strategies, and (ii) of-
ten only a small portion of the face recognition problem is known
at the first training stage (limiting the availability of data), there-
fore we seek for online learning techniques that can accommodate
new classes and fare equivalently to solving the whole classifica-
tion problem.

In addition, we show in Fig. 8 the evolution of the mean classi-
fication accuracies with respect to the number of classes. Notice
that the more classes are included in the problem, the less accuracy
is obtained (large class classification problems are inherently more
complex). Nevertheless, the proposed ECOC-based methodologies
show increased stability as a function of the number of classes in
comparison with the classic Feature Extraction + Nearest Neighbor
approach (iLDA in the figure), where a decrease of a 20% in the
accuracy is observed as the number of classes increases. We con-
jecture that the error induced by the addition of new samples
can be better isolated in a ECOC approach than a NN classifier,
where a few set of outliers in the training set can miss lead the
classification of multiple samples.

6. Conclusions

In this paper, we proposed an online version for the Error Cor-
recting Output Codes framework. Different alternatives to design
online ECOC matrices for both online and batch base classifiers
have been proposed. We have shown different applications where
the online methodology can be applied. In the different scenarios,
multi-class problems are solved by considering an initial 2-class
problem and progressively increasing the number of classes. More-
over, these online results have been compared with multi-class
batch classifiers by learning directly the whole set of classes. We
have proposed and compared four online ECOC approaches. The
two first approaches, the problem independent online one-
versus-all (1vsAllo) and unbalanced ECOC (UNBo), do not take into
account the knowledge of the problem domain, so the analysis of
the data before the ECOC matrix is designed is not required.
Moreover, these two strategies yield a relatively small length code-
words, since only K classifiers are required for an K-class problem.
The 1vsAllo approach requires the use of an online base classifier,
whereas the UNBo approach can work with either online and batch
base classifiers. In the experimental section, we found that in most
cases these two approaches tend to the results of the batch one-
versus-all approach. A third problem-independent online ECOC ap-
proach has been proposed, the one-versus-one (1vs1o). In this case,
the 1vs1o provides a successful way to use either batch and online
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base classifiers reaching the same performance that its batch coun-
terpart. However, in this case, a quadratic number of dichotomizers
is required to model each problem. Finally, the last online ECOC ap-
proach corresponds to a problem dependent design (PDo). In this
case, the knowledge of the problem domain is exploited so that
for both online and batch base classifiers, the coding matrix adapts
to the different distributions of the data, obtaining a robust trade
off between performance and codeword length. Although in the
present work we only consider the inclusion of new classes in
the online ECOC framework, the addition of new samples to previ-
ously learnt classes results straightforward by using the online
base classifiers, without modifying the coding matrix. The evalua-
tion of the novel methodology has been performed on 11 data sets
from the UCI machine learning repository and two real computer
vision problems, traffic sign categorization and face recognition,
showing robust results when compared to batch classifiers.

We plan as a future work to develop semi-supervised exten-
sions of the proposed online ECOC methodology, and the use of
decremental learning strategies for class/sample forgetting.
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