
Compact Evolutive Design of Error-Correcting
Output Codes

Miguel Àngel Bautista1, Xavier Baró1,2,3, Oriol Pujol1,2, Petia Radeva1,2, Jordi
Vitrià1,2, and Sergio Escalera1,2

1Dept. Matemàtica Aplicada i Anàlisi, Gran Via les Corts Catalanes 585, Barcelona
2Computer Vision Center, Campus UAB, Edifici O, 08193, Bellaterra, Barcelona

3Department of Computer Science, Multimedia, and Telecomunications, Universitat
Oberta de Catalunya, Rambla del Poblenou 156, 08018, Barcelona

miguelangelbautistamartin@gmail.com,

{xevi, oriol, petia, jordi, sergio}@maia.ub.es

Abstract. The classification of large number of object categories is a
challenging trend in the Machine Learning field. In literature, this is
often addressed using an ensemble of classifiers. In this scope, the Error-
Correcting Output Codes framework has demonstrated to be a powerful
tool for the combination of classifiers. However, most of the state-of-the-
art ECOC approaches use a linear or exponential number of classifiers,
making the discrimination of a large number of classes unfeasible. In this
paper, we explore and propose a minimal design of ECOC in terms of
the number of classifiers. Evolutionary computation is used for tuning
the parameters of the classifiers and looking for the best Minimal ECOC
code configuration. The results over several public UCI data sets and a
challenging multi-class Computer Vision problem show that the proposed
methodology obtains comparable and even better results than state-of-
the-art ECOC methodologies with far less number of dichotomizers.

Keywords: Ensemble of Dichotomizers, Error-Correcting Output Codes,
Evolutionary optimization

1 Introduction

Nowadays challenging applications of Machine Learning deal with changing en-
vironments, online adaptations, contextual information, etc. In order to deal
with all these problems, efficient ways for processing huge amount of data are
often required. Usual machine learning strategies are effective for dealing with
small number of classes. The choices are limited when the number of classes
becomes large. In that case, the natural algorithms to consider are those that
model classes in an implicit way, such as instance based learning (i.e. nearest
neighbors). However, this choice is not necessarily the most adequate for a given
problem. Moreover, we are forgetting many algorithms of the literature such as
ensemble learning (i.e. Adaboost) or kernel based discriminant classifiers (i.e.
support vector machines) that have been proven to be very powerful tools.

Most of state-of-the-art multi-class architectures need to deal with the dis-
crimination of each class either by modeling its probability density function, or
by storing a classification boundary and using some kind of aggregation/selection



function to obtain a final decision. Another way to deal with this kind of prob-
lems is to use a divide-and-conquer approach, such as flat strategies (voting),
hierarchical classifiers, or Error-Correcting Output Codes (ECOC). ECOC en-
codes different partitions of the problem in a matrix of codewords (one codeword
per class) and the final decision is obtained by looking at the most similar code-
word at the test step. ECOC allows the inclusion of flat strategies as well as
hierarchical classifiers [1]. Moreover, the analysis of the ECOC error evolution
has demonstrated that ECOC corrects errors caused by the bias and the variance
of the learning algorithm [2]. However, note that by construction or in order to
obtain the desired performance, most of the strategies need between N and N2

classifiers, given N different classes. Although this is adequate and acceptable
when the number of classes is small, it becomes prohibitive when the number
of classes becomes large. This number of classifiers has been recently reduced in
some ECOC designs, such as the DECOC approach of [1], that requires N − 1
classifiers. The Dense Random and Sparse Random designs also reduce this num-
ber of classifiers to 15 · log2(N) and 10 · log2(N), respectively. However this kind
of approaches design the problems without taking into account the underlying
distribution of the class characteristics.

The goal of this paper is to propose and evaluate different general ways of
making the multi-class machine learning problem tractable when the number of
categories makes most of the models computationally unfeasible. In particular,
we are interested in methods that scale sub-linearly with the number of classes,
allowing their applicability in general Machine Learning problems. The proposal
relies on the Error Correcting Output Codes framework, reducing the number of
binary classifiers that have to be trained in the ensemble. Following the Occam
razor principle, we propose a minimal ECOC design of size log2(N) in terms
of the number of classifiers. An evolutionary approximation, similar to the one
proposed in [3] is proposed for tuning the parameters of the classifiers and looking
for a Minimal design with high generalization capabilty. Moreover, this design is
problem dependent in the sense that the evolved ECOC fits the distribution of
the object characteristics. The novel Minimal ECOC is compared with the state-
of-the-art ECOC approaches, obtaining comparable and even better results when
classifying several object categories in different Machine Learning applications
with far less cost.

The paper is organized as follows: Section 2 presents the Minimal ECOC
design. Section 3 evaluates the novel methodology comparing with the state-of-
the-art approaches on public and challenging Pattern Recognition Applications.
Finally, Section 4 concludes the paper.

2 Minimal Error-Correcting Output Codes

In this section, we review the ECOC framework and propose a Minimal ECOC
design in terms of the number of classifiers.

2.1 Error-Correcting Output Codes

Given a set of N classes to be learnt in an ECOC framework, n different bi-
partitions (groups of classes) are formed, and n binary problems (dichotomizers)



over the partitions are trained. As a result, a codeword of length n is obtained
for each class, where each position (bit) of the code corresponds to a response
of a given dichotomizer (coded by +1 or -1 according to their class set member-
ship). Arranging the codewords as rows of a matrix, we define a coding matrix
M , where M ∈ {−1,+1}N×n in the binary case. In Figure 1 we show an exam-
ple of a binary coding matrix M . The matrix is coded using five dichotomizers
{h1, ..., h5} for a 4-class problem {c1, ..., c4} of respective codewords {y1, ..., y4}.
The hypotheses are trained by considering the labeled training data samples
{(ρ1, l(ρ1)), ..., (ρm, l(ρm))} for a set of m data samples. The white and black re-
gions of the coding matrix M are coded by +1 and -1, respectively. For example,
the first classifier is trained to discriminate c3 against c1, c2, and c4; the second
one classifies c2 and c3 against c1 and c4, etc., as follows:

h1(x) =

{
1 if x ∈ {c3}
−1 if x ∈ {c1, c2, c4}

, . . . , h5(x) =

{
1 if x ∈ {c2, c4}
−1 if x ∈ {c1, c3}

(1)

Fig. 1. Binary ECOC design for a 4-class problem. An input test codeword x is clas-
sified by class c2 using the Hamming or the Euclidean Decoding.

The standard binary coding designs are the one-versus-all [4] strategy with
N dichotomizers and the dense random strategy [5], with 10 log2 N classifiers.
In the case of the ternary symbol-based ECOC, the coding matrix becomes
M ∈ {−1, 0,+1}N×n. In this case, the symbol zero means that a particular class
is not considered for a given classifier. In this ternary framework, the standard
designs are the one-versus-one strategy [6] and the sparse random strategy [5],

with N(N−1)
2 and 15 log2 N binary problems, respectively.

During the decoding process, applying n binary classifiers, a code x is ob-
tained for each data sample ρ in the test set. This code is compared to the base
codewords (yi, i ∈ [1, .., N ]) of each class defined in the matrix M , and the data
sample is assigned to the class with the closest codeword. In Figure 1, the new
code x is compared to the class codewords {y1, ..., y4} using Hamming [4] and
Euclidean Decoding [5]. The test sample is classified by class c2 in both cases,
correcting one bit error.

In literature there roughly exists three different lines for decoding [7]: those
based on similarity measurements, including the Hamming and Euclidean de-
coding, probabilistic approaches, and loss-functions strategies.



2.2 Minimal ECOC Coding

Although the use of large codewords was initially suggested in order to correct
as many errors as possible at the decoding step, high effort has been put into
improving the robustness of each individual dichotomizer so that compact code-
words can be defined in order to save time. In this way, the one-versus-all ECOC
coding has been widely applied for several years in the binary ECOC framework.
Although the use of a reduced number of binary problems often implies deal-
ing with more data per classifier (i.e. compared to the one-versus-one coding),
this approach has been defended by some authors in the literature demonstrat-
ing that the one-versus-all technique can reach comparable results to the rest
of combining strategies if the base classifier is properly tuned [8]. Recently, this
codeword length has been reduced to N−1 in the DECOC approach of [1], where
the authors codify N − 1 nodes of a binary tree structure as dichotomizers of
a ternary problem-dependent ECOC design. In the same line, several problem-
dependent designs have been recently proposed [9, 1, 10]. The new techniques are
based on exploiting the problem domain by selecting the representative binary
problems that increase the generalization performance while keeping the code
length ”relatively” small.

Although one-versus-all, DECOC, dense, and sparse random approaches have
a relatively small codeword length, we can take advantage of the information
theory principles to obtain a more compact definition of the codewords. Having a
N -class problem, the minimum number of bits necessary to codify and univocally
distinguish N codes is B = ⌈log2 N , where ⌈.⌉ rounds to the upper integer.

For instance, we can think in a codification where the class codewords corre-
spond to the N first Gray or binary code sequences of B bits, defining the Gray
or binary Minimal ECOC designs. Note that this design represents the minimal
ECOC codification in terms of the codeword length. An example of a binary
Minimal ECOC, Gray Minimal ECOC, and one-versus-all ECOC designs for a
8-class problem are shown in Figure 2. The white and black positions correspond
to the symbols +1 and -1, respectively.

(a) (b) (c)

Fig. 2. (a) Binary Minimal, (b) Gray Minimal, and (c) one-versus-all ECOC coding
designs of a 8-class problem.

Besides exploring predefined binary or Gray minimal coding matrices, we
also propose the design of different minimal codification based on the distribu-
tion of the data and the characteristics of the applied base classifier, which can



increase the discrimination capability of the system. However, finding a suitable
minimal ECOC matrix for an N−class problem requires to explore all the pos-
sible N ×B binary matrices, where B is the minimum codeword length in order
to define a valid ECOC matrix. For this reason, we also propose an evolutionary
parametrization of the Minimal ECOC design.

Evolutionary Minimal Parametrization When defining a minimal design
of an ECOC, the possible lost of generalization performance has to be taken into
account. In order to deal with this problem an evolutionary optimization process
is used to find a minimal ECOC with high generalization capability.

In order to show the parametrization complexity of the Minimal ECOC de-
sign, we first provide an estimation of the number of different possible ECOC
matrices that we can build, and therefore, the search space cardinality. We ap-
proximate this number using some simple combinatorial principles. First of all,
if we have an N−class problem and B possible bits to represent all the classes,
we have a set CW with 2B different words. In order to build an ECOC matrix,
we select N codewords from CW without reposition. That is, taking N from a
variation of 2B elements and considering the symmetry of binary partitions, we

can construct V 2B

N = 2B !
2N(2B−N)!

different ECOC matrices.

In this type of scenarios evolutionary approaches are often introduced with
good results. Evolutionary algorithms are a wide family of methods that are
inspired on the Darwin’s evolution theory, and used to be formulated as op-
timization processes where the solution space is not differentiable or is not
well defined. In these cases, the simulation of natural evolution process using
computers results in stochastic optimization techniques which often outperform
classical methods of optimization when applied to difficult real-world problems.
Although the most used and studied evolutionary algorithms are the Genetic
Algorithms (GA), from the publication of the Population Based Incremental
Learning (PBIL) in 1995 by Baluja and Caruana [11], a new family of evolu-
tionary methods is striving to find a place in this field. In contrast to GA, those
new algorithms consider each value in the chromosome as a random variable,
and their goal is to learn a probability model to describe the characteristics of
good individuals. In the case of PBIL, if a binary chromosome is used, a uniform
distribution is learnt in order to estimate the probability of each variable to be
one or zero.

In this paper we experiment with both evolutionary strategies, GA and PBIL.

Problem encoding: The first step in order to use an evolutionary algorithm
is to define the problem encoding, which consists of the representation of a cer-
tain solution or point in the search space by means of a genotype or alternatively
a chromosome [12]. Binary encoding is the most common, mainly because first
works about GA used this type of encoding. In binary encoding, every chromo-
some is a string of bits 0 or 1. Each ECOC is encoded as a binary chromosome
ζ =< hc1

1 , . . . , hc1
B , hcN

1 , . . . , hcN
B >, where h

cj
i ∈ {0, 1} is the expected value of

the i − th classifier for the class cj , which corresponds to the i − th bit of the
class cj codeword.



Adaptation function: Once the encoding is defined, we need to define the
adaptation function, which associates to each individual its adaptation value to
the environment, and thus, their survivor probability. In the case of the ECOC
framework, the adaptation value must be related to the classification error.

Given a chromosome ζ =< ζ0, ζ1, . . . , ζL > with ζi ∈ {0, 1}, the first step
is to recover the ECOC matrix M codified in this chromosome. The values of
M allows to create binary classification problems from the original multi-class
problem, following the partitions defined by the ECOC columns. Each binary
problem is addressed by means of a binary classifier, which is trained in order
to separate both partitions of classes. Assuming that there exists a function
y = f(x) that maps each sample x to its real label y, to train a classifier means
to find the best parameters w∗ of a certain function y = f ′(x,w), in the
manner that for any other w ̸= w∗, f ′(x,w∗) is a better approximation to f
than f ′(x,w). Once w∗ are estimated for each binary problem, the adaptation
value corresponds to the classification error. In order to take into account the
generalization power of the trained classifiers, the estimation of w∗ is performed
on a subset of samples, while the rest of the samples are reserved for validation.
The adaptation value for an individual represented by a certain chromosome ζi
can be formulated as:

εi(X,Y,Mi) =
∑
j

δj(xj ,Mi ̸= yj) (2)

where Mi is the ECOC matrix encoded in ζ, X = ⟨x1, . . . , xN ⟩ a set of samples,
Y = ⟨y1, . . . , yN ⟩ the expected labels for samples in X, and δi is the function
that returns the classification label applying the decoding strategy.

Evolutionary process: Once the encoding and adaptation function have
been defined, we use standard implementation for GA and PBIL, in order to
evolve the Minimal ECOC matrices. In the case of GA, scattered crossover op-
erator is used, in which, we generate a random binary vector, with a binary value
assigned to each gene. The first child is created using all the genes from the first
parent in those positions with a value of one, and the genes of the second parent
with positions with the value zero. The second child is created as the comple-
mentary of the first one. That is, taking genes from second parent for values
one and from first parent for values zero. In order to introduce variations to
the individuals, we use mutation operator that adds a unit Gaussian distributed
random value to the chosen gene. The new gene value is clipped if it falls outside
of the user-specified lower or upper bounds for that gene. For PBIL, the best
two individuals of each population are used to update the probability distribu-
tion. At each generation, this probability distribution is used to sample a new
population of individuals. A uniform random noise is applied to the probability
model to avoid convergence to local minima.

Finally, in both evolutionary strategies we adopt an Island Model evolution
scheme in order to exploit a more coarse grain parallel model. The main idea is to
split a population of K individuals into S sub-populations of K/S individuals. If
each sub-population is evolved independently from the others, genetic drift will



tend to drive these populations in different directions. By introducing migration,
the Island Model is able to exploit differences in the various sub-populations (this
variation in fact represents a source of genetic diversity). Each sub-population
is an island and there is a chance movement of genetic material from one island
to another.

Training the binary classifiers: In [8], Rifkin concludes that the number of
classifiers in the ECOC problem can be reduced using more accurate classifiers.
Therefore, in this paper we adopt the Support Vector Machines with Gaussian
Radial Basis Functions kernel (SVM-RBF). Training a SVM often implies the
selection of a subset of data points (the support vectors), which are used in
order to build the classification boundaries. In the specific case of Gaussian RBF
kernels, we need to optimize the kernel parameter γ and the regularizer C, which
have a close relation to the data distribution. While the support vectors selection
is part of the SVM learning algorithm, and therefore, is clearly defined, finding
the best C and γ is addressed in literature with various heuristic or brute-force
approaches. The most common approach is the use of cross-validation processes
which select the best pair of parameters for a discretization of the parameters
space. Nevertheless, this can be viewed as another optimization problem. An
therefore, it can be faced using evolutionary algorithms. For each binary problem,
defined by one column of the ECOC matrix, we use Genetic Algorithms in order
to find good values for C and γ parameters, using the same settings than in [3],
where individuals correspond to a pairs of genes, and each gene corresponds to
the binary codification of a floating point value.

3 Results

In order to present the results, first, we discuss the data, methods, and evaluation
measurements of the experiments.

• Data: The first data used for the experiments consists of twelve multi-class
data sets from the UCI Machine Learning Repository database [13]. Then, we
apply the classification methodology in the public Labeled Faces in the Wild [14]
data set to perform the multi-class face classification of a large problem consisting
of 610 face categories.

• Methods: We compare the one-versus-one [6] and one-versus-all [4] ECOC
approaches with the binary and evolutionary Minimal approaches. For simplicity
we omitted the Gray Minimal design. The Hamming decoding is applied at the
decoding step [15]. The ECOC base classifier is the OSU implementation of
SVM with Radial Basis Function kernel [16]. The SVM C and γ parameters are
tuned via Genetic Algorithms and PBIL for all the methods, minimizing the
classification error of a two-fold evaluation over the training sub-set.

• Evaluation measurements: The classification performance is obtained by
means of a stratified ten-fold cross-validation, and testing for the confidence
interval with a two-tailed t-test. We also apply the Friedman test [17] in order
to look for statistical significance among the obtained performances.



3.1 UCI categorization

The classification results obtained for all the UCI data sets considering the dif-
ferent ECOC configurations are shown in Table 1. In order to compare the
performances provided for each strategy, the table also shows the mean rank of
each ECOC design considering the twelve different experiments. The rankings
are obtained estimating each particular ranking rji for each problem i and each
ECOC configuration j, and computing the mean ranking R for each design as
Rj =

1
N

∑
i r

j
i , where N is the total number of data sets. We also show the mean

number of classifiers (#) required for each strategy.

Table 1. UCI classification results.

Binary Minimal ECOC Evol. Minimal ECOC one-vs-all ECOC one-vs-one ECOC

Data set Perf. Classif. Perf. Classif. Perf. Classif. Perf. Classif.

Derma 96.0±2.9 3 96.3±2.1 3 95.1±3.3 6 94.7±4.3 15

Iris 96.4±6.3 2 98.2±1.9 2 96.9±6.0 3 96.3±3.1 3

Ecoli 80.5±10.9 3 81.4±10.8 3 79.5±12.2 8 79.2±13.8 28

Vehicle 72.5±14.3 2 76.99±12.4 2 74.2±13.4 4 83.6±10.5 6

Wine 95.5±4.3 2 97.2±2.3 2 95.5±4.3 3 97.2±2.4 3

Segment 96.6±2.3 3 96.6±1.5 3 96.1±1.8 7 97.18±1.3 21

Glass 56.7±23.5 3 50.0±29.7 3 53.85±25.8 6 60.5±26.9 15

Thyroid 96.4±5.3 2 93.8±5.1 2 95.6±7.4 3 96.1±5.4 3

Vowel 57.7±29.4 3 81.78±11.1 3 80.7±11.9 8 78.9±14.2 28

Balance 80.9±11.2 2 87.1±9.2 2 89.9±8.4 3 92.8±6.4 3

Shuttle 80.9±29.1 3 83.4±15.9 3 90.6±11.3 7 86.3±18.1 21

Yeast 50.2±18.2 4 54.7±11.8 4 51.1±18.0 10 52.4±20.8 45

Rank & # 2.9 2.7 2.0 2.7 2.7 5.7 2.2 15.9

In order to analyze if the difference between method ranks is statistically
significant, we apply a statistical test. In order to look if the measured ranks
differ from the mean rank we use the Friedman test. The Friedman statistic
value is computed as X2

F = 12N
k(k+1)

[∑
j R

2
j −

k(k+1)2

4

]
. In our case, with k = 4

ECOC designs to compare, X2
F = −4.94. Since this value is undesirable conser-

vative, Iman and Davenport proposed a corrected statistic: FF =
(N−1)X2

F

N(k−1)−X2
F
.

Applying this correction we obtain FF = −1.32. With four methods and twelve
experiments, FF is distributed according to the F distribution with 3 and 33
degrees of freedom. The critical value of F (3, 33) for 0.05 is 2.89. As the value
of FF is no higher than 2.98 we can state that there are no statistical different
among the ECOC performances. This means that all four strategies are suitable
in order to deal with multi-class categorization problems. This result is very
satisfactory and encourages the use of the Minimal approach since similar (or
even better) results can be obtained with far less number of classifiers. Moreover,
the GA evolutionary version of the Minimal design improves in the mean rank
to the rest of classical coding strategies, and in most cases outperforms the bi-
nary Minimal approach in the present experiment. This result is expected since
the evolutionary version looks for a minimal ECOC matrix configuration that
minimizes the error over the training data. In particular, the advantage of the
evolutionary version over the binary one is more significant when the number of
classes increases, since more minimal matrices are explored, and hence, on an
average, it is capable of finding a better solution.

On the other hand, possible reasons why the evolutionary Minimal ECOC
design obtains similar or even better performance results than the one-versus-
one and one-versus-all approaches with far less number of dichotomizers can be



the few classifiers considered for tuning, and the use of all the classes in balanced
binary problems, which can help the system to increase generalization if a good
decision boundary can be found by the classifier. Note that the one-versus-one
classifier looks for binary problems that split just two classes. In those cases,
though good and fast solutions could be found in training time, the use of less
data does not assure a high generalization capability of the individual classifiers.

In terms of testing time, since all the trained classifiers spend the same time
for testing, classification time is proportional to the number of trained classifiers.
The mean number of dichotomizers used for each strategy is shown in the last
row of Table 1. Observe the great difference in terms of the number of classifiers
between the minimal approaches and the classical ones. The Minimal approaches
obtain an average speed up improvement of 111% respect the one-versus-all
approach in testing time. Meanwhile in the case of the one-versus-one technique
this improvement is of 489%.

In the next section we test if the same behavior occurs classifying a challeng-
ing Computer Vision problem with several object categories.

3.2 Labeled Faces in the Wild categorization

This data set contains 13000 faces images taken directly from the web from over
1400 people. This images are not constrained in terms of pose, light, occlusions
or any other relevant factor. For the purpose of this experiment we used a specific
subset, taking only the categories which at least have four or more examples,
having a total of 610 face categories. Finally, in order to extract relevant fea-
tures from the images, we apply an Incremental Principal Component Analysis
procedure [18], keeping 99.8% of the information. An example of face images is
shown in 3.

Fig. 3. Labeled Faces in the Wild data set.

The results in Table 2 show that the best performance is obtained by the Evo-
lutionary GA and PBIL Minimal strategies. One important observation is that
Evolutionary strategies outperform the classical one-versus-all approach, with
far less number of classifiers (10 instead of 610). Note that in this case we omit-
ted the one-vs-one strategy since it requires 185745 classifiers for discriminating
610 face categories.

Table 2. Labeled Faces in the Wild data set classification results.

Binary M. ECOC GA M. ECOC PBIL M. ECOC one-vs-all one-vs-one

Data set Perf. # Perf. # Perf. # Perf. # Perf. #

FacesWild 26.4±2.1 10 30.7±2.3 10 30.02.4± 10 25.0±3.1 610 - 185745



4 Conclusion
We presented a general methodology for the classification of several object cate-
gories which only requires ⌈log2 N⌉ classifiers for aN -class problem. The method-
ology is defined in the Error-Correcting Output Codes framework, designing a
minimal coding matrix in terms of dichotomizers which univocally distinguish
N codes. Moreover, in order to speed up the design of the coding matrix and
the tuning of the classifiers, evolutionary computation is also applied.

The results over several public UCI data sets and a challenging multi-class
Computer Vision problem with several object categories show that the proposed
methodology obtains statistically equivalent results as the state-of-the-art ECOC
methodologies with far less number of dichotomizers. For example, the Minimal
approach trained 10 classifiers to split 610 face categories, meanwhile the one-
versus-all and one-versus-one approaches required 610 and 185745 dichotomizers,
respectively.

References

1. O. Pujol, P. Radeva, J. Vitrià, Discriminant ECOC: A heuristic method for ap-
plication dependent design of error correcting output codes, in: Trans. on PAMI,
Vol. 28, 2006, pp. 1001–1007.

2. T. Dietterich, E. Kong, Error-correcting output codes corrects bias and variance,
in: ICML (Ed.), S. Prieditis and S. Russell, 1995, pp. 313–321.

3. A. C. Lorena, A. C. de Carvalho, Evolutionary tuning of svm parameter values in
multiclass problems, Neurocomputing 71 (16-18) (2008) 3326 – 3334.

4. M. Pelikan, D. E. Goldberg, Learning machines, in: McGraw-Hill, 1965.
5. E. Allwein, R. Schapire, Y. Singer, Reducing multiclass to binary: A unifying ap-

proach for margin classifiers, in: JMLR, Vol. 1, 2002, pp. 113–141.
6. T.Hastie, Classification by pairwise grouping, NIPS 26 (1998) 451–471.
7. S. Escalera, O. Pujol, P. Radeva, On the decoding process in ternary error-

correcting output codes, PAMI 99 (1).
8. R. Rifkin, A. Klautau, In defense of one-vs-all, JMLR 5 (2004) 101–141.
9. K. Crammer, Y. Singer, On the learnability and design of output codes for multi-

class problems, in: Machine Learning, Vol. 47, 2002, pp. 201–233.
10. S. Escalera, O. Pujol, P. Radeva, Error-correcting output codes library, Journal of

Machine Learning Research 11 (2010) 661–664.
11. S. Baluja, R. Caruana, Removing the genetics from the standard genetic algorithm,

in: ICML, 1995, pp. 38–46.
12. J. Holland, Adaptation in natural and artificial systems: An analysis with appli-

cations to biology, control, and AI, University of Michigan Press, 1975.
13. A. Asuncion, D. Newman, UCI machine learning repository,

http://www.ics.uci.edu/∼mlearn/MLRepository.html, 2007.
14. G. B. Huang, M. Ramesh, T. Berg, E. L. Miller, Labeled faces in the wild, Tech.

Rep. University of Massachusets Amherst, 07-49 (October 2007).
15. T. Dietterich, G. Bakiri, Solving multiclass learning problems via error-correcting

output codes, in: JAIR, Vol. 2, 1995, pp. 263–286.
16. OSU-SVM-TOOLBOX, http://svm.sourceforge.net/.
17. J. Demsar, Statistical comparisons of classifiers over multiple data sets, JMLR 7

(2006) 1–30.
18. W. Hwang, J. Weng, Y. Zhang, Candid covariance-free incremental principal com-

ponent analysis, PAMI 25 (8) (2003) 1034–1040.


