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Traffic Sign Recognition using Evolutionary
Adaboost detection and Forest-ECOC classification
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Abstract—The high variability of sign appearance in uncon-
trolled environments has made the detection and classification of
road signs a challenging problem in computer vision nowadays.
In this paper, we introduce a novel approach for detection and
classification of traffic signs. The detection process is based on a
boosted detectors cascade, trained with a novel evolutive version
of Adaboost, which allows the use of large feature spaces. The
classification process is defined as a multi-class categorization
problem. A battery of classifiers is trained to split classes in
an Error Correcting Output Codes (ECOC) framework. We
propose a ECOC design by means of a forest of optimal tree
structures that are embedded in the ECOC matrix. The novel
system offers high performance and better accuracy than the
state-of-the-art strategies, being potentially better in case of noise,
affine deformation, partial occlusions, and reduced illumination.

Index Terms—Traffic Sign Recognition, Dissociated dipoles,
Evolutive boosting, Error Correcting Output Codes, Ensemble
of dichotomizers.

I. INTRODUCTION

TRAFFIC sign recognition is studied for several purposes,
such as autonomous driving or assisted driving [1], [2].

Recognition of traffic signs allows warning the driver for
inappropriate actions and potentially dangerous situations.
In the mobile mapping framework, traffic sign recognition
methods are used in combination with other methods in
order to compile road information and measuring position and
orientation of different landmarks in movement either in an
aerial or a terrestrial platform. An example of this system
is given by Madeira et al. [3], where a mobile mapping
system automatically processes traffic signs. In this work, a
recognition accuracy over 80% on a reduced set of sign types
is obtained. In [4], a vehicle based vision platform is used to
detect road signs, where the main goal is mainly focused on
speed signs.

In the literature, we can find two main approaches to solve
the problem of road sign recognition: color-based and grey
scale-based sign recognition. The first one relies on color to
reduce false positive results in the recognition process [5],
[6], [7], [8], [9], [10], [11], [12], [13], whereas the greyscale
methods concentrate on the geometry of the object [14], [15],
[16], [17]. Recent works use combination of both cues to
improve the detection rates. For instance, in [18] a threshold
is applied over a HSV representation of the image to find
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regions with high probability of having a traffic sign. As
many background objects can share colors with traffic signs,
heuristics over the size and aspect ratio are used to reduce
the number of false alarm regions. Once the regions are
normalized to a predefined size, a linear SVM is used to
classify the region in one of the possible shapes, such as
circle or triangle. The color and shape information are used
as a coarse classification, and finally a SVM with Gaussian
kernels is used to perform the fine classification step. Since
the color information is strongly related to the type of camera,
illumination and sign aging, the use of color information
introduces additional difficulties to the recognition process. In
the work of A. de la Escalera et al. [19], these difficulties are
addressed using an enhancement step previous to the use of
thresholds on the color values. After applying size heuristics
to remove non-sign regions, the authors use a fusion of color
information, the gradient, and a distance image to remove
regions with low probability of having a traffic sign. Final
classification is performed by means of a Neural Network.
Other recent works are focused on the final classification step.
The authors of [20] propose a representation of road sign data
based on extending the traditional normalized cross correlation
approach to a similarity based on individual matches in a set
of local image regions.

Traffic sign recognition is a straightforward application for
object recognition algorithms in which previous addressing of
the category detection (e.g. object location) is often required.
In the last years, one of the most accepted and used approaches
in the object detection field has been the one proposed by
Viola & Jones in [21]. Their approach is based on a cascade of
detectors, where each one is an ensemble of boosted classifiers
based on the Haar-like features. Lienhart and Maydt [22]
presented an extension of the original Haar-like features set,
demonstrating that Adaboost converges faster and with better
results when the features set is large. On the other hand, due
to the exhaustive search over the features set, the training time
grows with respect to the number of features. This fact makes
unfeasible any approach that tries to extend the feature set.

Once an object (traffic sign) is located, it should be recog-
nized from a wide set of possible classes using some kind of
classification technique. Designing a machine learning multi-
class technique is a hard task. In this sense, it is common to
conceive algorithms to distinguish between just two classes
and combine them in some way. Following the multi-class
categorization problem, where a set of classifiers should learn
in a natural way the features shared between categories,
the Error Correcting Output Codes technique was proposed
with very interesting results [23]. This technique is a very
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successful multi-class categorization tool due to its ability to
share the classifiers knowledge among classes. Recently, the
embedding of a tree structure in the ECOC framework has
shown to obtain high accuracy with a very small number of
binary classifiers [24]. However, the ECOC design is still an
open issue.

The goal of this paper is two-fold: first, at the detection
step, in order to discriminate a set of traffic signs from the
background, we propose a novel binary classifier by means of
an evolutive version of Adaboost, which avoids the limitations
of the original algorithm in terms of the dimensionality of
the feature space. Second, to deal with the multi-class cat-
egorization problem, in order to distinguish among a large
set of classes, a multi-class learning technique is proposed.
The approach is based on embedding a forest of optimal
tree structures in the ECOC framework, allowing to share
features (tree nodes, base classifiers, or dichotomies) among
classes in a very robust way. Finally, we develop a real traffic
sign recognition system for a mobile mapping process [25],
in which we validate the robustness of our approach. We
show that the present strategy obtains high accuracy and
outperforms the state-of-the-art strategies, being robust against
a high variability of sign appearance.

The paper is organized as follows: section II presents the
novel detection and multi-class categorization approaches.
Section III shows the architecture of the real traffic sign
recognition system and integration details. Section IV shows
the experimental results, and section V concludes the paper.

II. METHODOLOGY

In this chapter, we present the new Evolutionary boosting
strategy and the Forest-ECOC technique to deal with the object
detection and classification stages, respectively.

A. Detection

The detection process takes an image as input and gives
at the output the regions that contain the candidate object.
Our detector is inspired on the face detector presented
by Viola & Jones in [21]. We consider the use of the
attentional cascade concept, boosting as the feature selection
strategy, and the representation of the image in terms of the
integral image. With our approach, we solve the limitation
of the exhaustive search of the boosting formulation in
[21]. Moreover, we present a solution to the restriction
of the boosting process computation when the feature set
size is large. We propose an evolutive vision of boosting,
which not only drastically reduces the training time, but
also allows the use of huge feature sets. In this way, we
propose the use of the dissociated dipoles, a more general
type of features than the Haar-like features [21], which can
also be calculated using the integral image. In addition, we
introduce another variation in the Weak Classifier, changing
the decision rule from the threshold value used in the original
schema to its ordinal definition, where only the sign is
considered. This representation has been demonstrated to
be more robust in case of noise and illumination changes [26].

1) Detection Architecture: Working with unbalanced prob-
lems like object detection, each time we analyze an image,
the system must discard a huge number of negative regions
while just few or any correspond to the object we look
for. The attentional cascaded architecture allows to discard
easy non-object regions at low computation cost, while more
complex regions are deeply analyzed. An attentional cascade
is composed by a set of classifiers or stages, where the input
to each classifier corresponds to those regions classified as
object-regions by the previous stages. The regions classified as
object-regions by the last stage are the output of the detector.

Although any learning method can be used to learn
the cascade, the usefulness of Adaboost has been widely
demonstrated. Before each stage training process, a new
samples set is built using the positive samples and the false
positives of the previous stages of the cascade. Then a
classifier is learned to achieve a given minimum hit and a
maximum false alarm rates. This process is repeated until
the desired number of stages or the goal false alarm rate are
reached.

2) Dissociated dipoles: In [22], Lienhart and Maydt show
that the accuracy of the detector increases with the number
of available features. Therefore, in this work we use the
dissociated dipoles, a more general type of features than the
Haar-like features, and thus, dealing to a larger feature set.
The dissociated dipoles or sticks have been presented by Balas
and Sinha in [27], and they are a kind of features composed
by a pair of rectangular regions, named the excitatory dipole
and the inhibitory dipole, respectively (see Fig. 1). The mean
value of all the pixels in the inhibitory dipole is subtracted
from the mean value of the excitatory dipole pixels. As in the
case of the Haar-like features, the integral image is used to
calculate the sum of the pixels inside the rectangular regions.
Similar features are also used in other recent works, such as
the one of Bay [28], where weighted dipoles with a fixed
position are used in order to describe objects.
In computational terms, the use of dissociated dipoles means

Fig. 1. Dissociated dipoles. The black region corresponds to the inhibitory
dipole and the white one to the excitatory dipole [27].

to increase from the about 600.000 features in the approach of
Lienhart to more than 230 features in a training window size of
30×30 pixels, making the classical approach computationally
unfeasible. In order to deal with this limitation, we define an
evolutionary approach of Adaboost.

3) Evolutive Adaboost: Boosting is a powerful learning
technique that allows to combine the performance of many
simple classification functions or Weak Classifiers to produce a
Strong classifier [29]. At each round of learning, the examples
are re-weighted in order to emphasize those which were
incorrectly classified by the previous Weak Classifier. The final
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Strong Classifier is a decision stump, composed by a weighted
combination of Weak Classifiers followed by a threshold [30].
In the classical boosting approach, an exhaustive search is
used to find the best Weak Classifier. Therefore, with an
enormous features set, this approach becomes computationally
unfeasible.
Our evolutionary weak learner minimizes the weighted error
function ε of the Adaboost scheme as:

ε =
∑

i:h(xi)6=yi

wi (1)

where X = {(xi, yi)|i = 1 : m} are the pairs sample-label
which compound the training set, W = {w1, w2, ..., wm} is
the Adaboost weights distribution over the training set, and
h(xi) corresponds to the label predicted by the hypothesis
h for the training object xi. Although in the rest of this
section, we use the original Discrete Adaboost algorithm
for simplicity, our approach can by applied to any existing
variant of Adaboost.
The Weak Learner can be seen as an optimization problem,
where we need to find the parameters of the Weak Classifier
that minimize the error function ε. As this function is defined,
it seems logical to consider it as a non-derivative function full
of discontinuities. Therefore, the classical approaches based
on gradient descend can not be applied on this problem. An
alternative solution is the use of an evolutive approach. The
most well-known evolutive strategy is the genetic algorithm,
which does a search over the spaces of solutions using
the three basic concepts of the Darwin’s theory: mutation,
cross-over, and natural selection.

4) Weak Classifier: When we work with evolutionary algo-
rithms, we should define two basic elements: the individuals
and the evaluation function. Each individual must represent
a point in the space of solutions, and the evaluation function
measures the function value at the point represented by the
individual. We define the evaluation function as F(I) 7→
R, I ∈ Rd, where I is an individual. In this case, the
function we are optimizing is the classification error over a
given labeled data set X , using a weights distribution W over
the data. Then, the function F corresponds to ε (eq. 1), where
the individual I defines the hypothesis h. Combining both
equations, we can write the evaluation function as:

F(I, W,X) =


 ∑

i:h(I,xi)6=yi

wi




where h(I, x) 7→ {−1, +1} (2)

Note that the function h depends not only on a certain data
instance, but also on the individual. At this point, we formu-
lated the evaluation function in terms of the Weak Learner. The
following step is to determine which parameters are required
to define h, or in other terms, to decide the dimension of I .
An important consideration when we choose the parameters
is to evaluate the relevance of each of them in contrast to the

introduced complexity.
The Viola & Jones definition of the Weak Learner consists of a
feature and a threshold value. The feature can be parameterized
by the upper-left position and size of one of the regions and
their type. The size, weight, and position of the other regions
that conform the Haar-like feature are fixed by the feature
type (see Fig. 2). Given a feature, the threshold value must

Fig. 2. Haar-like features definition from a given region and the type value.

be learnt using the training samples, applying an exhaustive
search over all the possible threshold values to find the one
that minimizes the error. Therefore, for the Viola approach, a
Weak Learner can be defined as h(I, Thr, xi) 7→ {−1, +1},
where I = (Rx, Ry, Rw, Rh, T ), Thr is the threshold value,
Rx, Ry, Rw, and Rh correspond to the upper-left corner (x, y),
the width, and height of one of the regions, and T is the type
of the Haar-like feature (see Fig. 2). Note that the threshold
value is not included in the individual I . The reason is that
this value is learnt once the other parameters have been fixed.
In the case of the Dissociated Dipoles, the regions have no
constraints, so, both regions are independently learnt. Using
the same reasoning, we define a Weak Classifier based on
the Dissociated Dipoles as h(I, Thr, xi) 7→ {−1, +1} where
I = (Rex, Rey, Rew, Reh, Rix, Riy, Riw, Rih), being Re the
excitatory dipole, and the type parameter T is changed by the
parameters of the inhibitory dipole Ri. This representation can
be extended including extra parameters, such as the weights
of the regions, which are necessary to represent some types
of Haar-like features.
In the previous approaches, the difference between both re-
gions depends on the illuminance conditions. Thus, we need
to define a normalization criterion to make the representation
invariant to those conditions. In [21], a method so-called
fast lighting correction is used to deal with the illuminance
variations. In addition, the Haar-like approach uses the sum
of the pixels to represent the region, which introduces a scale
dependence, that must be corrected to deal with the multi-
scale detection. The dissociated dipoles are not affected by
scale, since the mean value is used instead of the sum.
The above formulations are quantitative comparisons between
the regions, not only taking in account which region has a
higher value, but also the difference between these values. We
can simplify by only using qualitative comparisons, therefore,
the calculus of the threshold value becomes unnecessary since
we use only the sign of the difference. This approach has two
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main advantages: the illuminance normalization is unneces-
sary, and to remove the threshold learning process reduces the
evaluation time. We can rewrite the previous formulations as:

h(I, xi) 7→ {−1, +1}
where (3)

I = (Rx, Ry, Rw, Rh, T )
I = (Rex, Rey, Rew, Reh, Rix, Riy, Riw, Rih)

5) Learning Algorithm: The final approach is summarized
in the Evolutionary Adaboost algorithm shown in Algorithm 1.
This algorithm is used to learn all the stages of the detection
cascade. Using a set 〈(x1, y1), ..., (xm, ym)〉 of samples classi-
fied as positive samples in the previous stages of the cascade.
This algorithm iteratively use a genetic algorithm to minimize
the weighted error and to instantiate the parameters of a new
Weak classifier which is added to the final ensemble.

Algorithm 1 The evolutive Discrete Adaboost.
Given: (x1, y1), ..., (xm, ym)

where xi ∈ X, yi ∈ Y = {−1, +1}
Initialize W1(i) = 1/m
for t = 1, .., T do

Use a genetic algorithm to minimize:
εt = Pri∼Wt [ht(xi) 6= yi]
the given solution is taken as the hypothesis ht

Get the weak hypothesis ht : X 7→ {−1, +1} with error εt.
Choose αt = 1

2 ln
(

1−εt
εt

)
Update:

Wt+1(i) =
Wt(i)

Zt

×
{

e−αt if ht(xi) = yi

eαt if ht(xi) 6= yi

=
Wt(i) exp(−αtyiht(xi))

Zt

where Zt is a normalization factor (chosen so that
Wt+1 will be a distribution).

end for
Output the final hypothesis:

H(x) = sign

(
T∑

t=1

αtht(x)

)

B. Classification: Forest-ECOC

Once we located an object, we need to categorize among
a large set of classes. Although various systems of multiple
classifiers were proposed, most of them use similar constituent
classifiers, which are often called base classifiers (dichotomies
from now on). In this sense, Error Correcting Output Codes
represent a classification technique that allows a successful
combination of base classifiers to address the multi-class
problem [31], [23].

1) Error Correcting Output Codes: The design of an Error
Correcting Output Code is based on a coding and a decoding
strategy, where coding aims in assigning a codeword1 to each
of the Nc classes (up to Nc codewords), and decode aims in
assigning a class label to a new test codeword. Arranging the

1A codeword is a sequence of bits that represents a class.

(a) (b)

Fig. 3. Four-class ECOC designs. (a) One-versus-all ECOC codification and
(b) one-versus-one ECOC codification (white: 1, black: -1, grey: 0).

codewords as rows of a matrix, we define the ”coding matrix”
M , where M ∈ {−1, 1}Nc×n, being n the code length. From
the point of view of learning, the matrix M represents n
binary learning problems (dichotomies), each corresponding to
a column of the ECOC matrix M . Each dichotomy defines a
sub-partition of classes, coded by {+1,−1} according to their
class membership. In Fig. 3(a) the codification for a four-class
problem using the one-versus-all coding strategy is shown.
The white and black regions correspond to +1 and −1 valued
positions, respectively. Thus, in (a), the dichotomy hi is trained
to discriminate class ci against the rest of classes. If we use a
larger set of symbols for coding M ∈ {−1, 0, 1}Nc×n, some
entries in the matrix M can be zero, indicating that a particular
class is not considered for a given dichotomy. In Fig. 3(b),
the codification for a four-class problem using one-versus-one
coding strategy is shown. The grey regions correspond to the
zero value (non-considered classes for the classifiers). In this
strategy, all possible pairs of classes are split. For example,
dichotomy h1 classifies class c1 versus class c2, etc.

As a result of the outputs of the n binary classifiers, at
the decoding step a code is obtained for each data point in
the test set. This code is compared to the base codewords
of each class defined in the coding matrix M , and the data
point is assigned to the class with the ”closest” codeword.
The common distances to decode are the Hamming and the
Euclidean distances [32].

2) Forest-ECOC: Most of the discrete coding strategies
up to now are pre-designed problem-independent codewords
(one-versus-all [33], one-versus-one [34]). In the work of
Pujol et al. [24], a method for embedding tree structures in
the ECOC framework is proposed. Beginning on the root
containing all classes, the nodes associated to the best partition
in terms of the mutual information are found, and the process
is repeated until the sets with a single class are obtained.

Taking the previous work as a baseline, we propose to use
multiple trees embedding, forming a Forest-ECOC. We build
an optimal tree - the one with the highest classification score
at each node - and several suboptimal trees - the ones closer to
the optimal one under certain conditions. Let us keep at each
iteration the best k partitions of the set of classes. If the best
partition is used to construct the current ECOC tree, the rest of
partitions form the roots of k − 1 trees. We repeat iteratively
this process until all nodes from the trees are decomposed
into one class. Given a base classifier, the sub-optimal tree
candidates are designed to have the maximum classification
score at each node without repeating previous sub-partitions
of classes. In the case of generating T first optimal trees, we
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can create an ensemble of trees by embedding them in the
ECOC matrix, as shown in Algorithm 2.

Algorithm 2 Training algorithm for the Forest-ECOC.
Given Nc classes: c1, ..., cNc and T trees to be embedded
Ω0 ⇐ ∅
i ⇐ 1
for t = 1, .., T do

Initialize the tree root with the set Ni = {c1, ..., cNc}
Generate the best tree at iteration t:
for each node Ni do

Train the best partition of its set of classes {P1P2}|Ni = P1 ∪ P2, Ni /∈
Ωt−1 using a classifier hi so that the training error is minimal
According to the partition obtained at each node, codify each column of the
matrix M as:

M(r, i) =

{
0 if cr /∈ Ni

+1 if cr ∈ P1

−1 if cr ∈ P2

where r is the index of the corresponding class cr

Ωt ⇐ Ωt−1 ∪Ni

i ⇐ i + 1
end for

end for

The proposed technique provides a sub-optimal solution
because of the combination of robust classifiers obtained from
a greedy search using the classification score. One of the main
advantages of the proposed technique is that the trees share
their information among classes in the ECOC matrix M . It
is done at the decoding step by considering all the coded
positions of a class jointly instead of separately. It is easy
to see that each tree structure of Nc classes introduces Nc−1
classifiers, that is far from the Nc·(Nc−1)

2 dichotomies required
for the one-versus-one coding strategy.
An example of two optimal-trees and the Forest-ECOC matrix
for a toy problem is shown in Fig. 4. The Fig. 4(a) and (b)
show two examples of optimal trees. The second optimal tree
is constructed based on the following optimal sub-partitions
of classes. In this way, for the first initial set of classes
{c1, c2, c3, c4}, the two optimal trees include the best sub-
partitions of classes in terms of the classification score, that
in the example corresponds to c1, c3 vs c2, c4 for the first tree,
and c1, c2, c3 vs c4 for the second tree, respectively. Fig. 4(c)
shows the embedding of trees into the Forest-ECOC matrix M .
Note that the column h3 corresponds to the node N3, and the
following dichotomies correspond to the nodes of the second
tree. The classes that do not belong to the sub-partitions of
classes are set to zero. On the other hand, the classes belonging
to each partition are set to +1 and −1 values, defining the
subset of classes involved on each classifier.

Recent studies on the decoding steps have shown that
the zero symbol introduces decoding errors in the traditional
decoding distances [35]. To deal with this problem and to in-
crease the performance of the Forest-ECOC coding design, we
propose the Attenuated Euclidean decoding strategy, defined

as dj =
√∑n

i=1 |yj
i |(xi − yj

i )2, where dj is the distance to
row j, n is the number of dichotomies, xi is the response of
the classifier hi over the test sample, and yj

i is the value of
the coding matrix M at ith row and jth column, respectively.
We introduce the factor |yj

i | to avoid the error that the zero
symbol introduces.

(a) (b)

(c)

Fig. 4. Four-class optimal trees and the Forest-ECOC matrix. (a) First
optimal tree for a four-class problem, (b) Second optimal tree for the same
problem, and (c) Forest-ECOC matrix M for the problem, where h1, h2 and
h3 correspond to classifiers of N1, N2 and N3 from the first tree, and h4,
h5 and h6 to N4, N5 and N8 from the second tree.

Fig. 5. Scheme of the whole traffic sign recognition system.

III. TRAFFIC SIGN RECOGNITION SYSTEM

This chapter presents the details of the system scheme
shown in Fig. 5. We explain the relationship between each
of the methods explained at the previous chapter and their
integration in a real traffic sign recognition system.

A. Acquisition module

The mobile mapping system has a stereo pair of calibrated
cameras, which are synchronized with a GPS/INS system.
Therefore, the result of the acquisition step is a set of stereo-
pairs of images with their position and orientation information.
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This information allows the use of epipolar geometry in order
to change from one camera to the other one and to obtain the
real position in world coordinates of a point. In order to detect
all signs that appear in the input image independently of their
size and position, we scan the image using windows at differ-
ent scales. All these windows are used as the detector input.
In this sense, the detector can be defined as a classification
function h : X 7→ {−1, 1}, where X is a window from the
input image. The result of the detection process is a set of
windows that corresponds to the valid objects, that is, all the
windows X where h(X) = 1.

B. Detection module

All the data generated in the acquisition process is
given to the detector. We organize the trained detectors as
an attentional cascade [21]. The attentional cascade is a
degenerated decision tree where at each stage a detector
is trained to detect almost all objects of interest while
rejecting a certain fraction of the non-signs patterns. Because
of the huge number of different traffic signs types, we
group them using a similarity criterion, and we train a
different cascade for each group. Each window in the input
images is analyzed by all the cascades, and the detected
objects from each cascade are given as output of the
detector. Since each cascade detects only a certain category of
signs, the output objects have a first classification information.

1) Stereo association: Since we work with a stereo system,
all signs appear on both cameras at each frame (except in
case of occlusions or if one of the signs is out of the field
of view). This redundant information is used in order to
improve the detection ratio. Using the epipolar geometry, given
an instance of a sign in one of the sources, we estimate
the region where it must appear in the other source. Once
we have a reduced search window in the other source, we
apply similarity criterion based on normalized correlation. The
point with the highest similarity value gives us the position
of the target object. This information is used to link the
object of a source with its stereo objector to recover it. Using
this information, we only lose the objects that have been
lost in both cameras. Using the calibration data, the position
and orientation information of the GPS/INS system, and the
coordinates of an object in each camera, we compute the object
position in world coordinates.

C. Classification module

Using the Evolutive Adaboost, a region of interest (ROI)
that contains a sign is determined. Depending on the type of
the detected sign, a different model fitting is applied before
classification, looking for affine transformations that perform
the spatial normalization of the object.

1) Model fitting: Because of the few changes on the point
of view of the captured signs, we apply the fast radial sym-
metry [36] for the circular signs, which offers high robustness
against image noise. As it is shown if Fig. 6, the fast radial

(a) (b) (c) (d) (e) (f)

Fig. 6. (a) Input image, (b) X-derivative, (c) Y -derivative, (d) image gradient,
(e) accumulator of orientations, (f) center and radius of the sign.

symmetry provides an approximation to the center and the
radius of the circular sign.

On the other hand, for the case of triangular signs, the
method that allows a successful model fitting is based on
the Hough transform [37]. Nevertheless, we need to consider
additional constraints to obtain the three representative border
lines of a triangular traffic sign. Each line has associated a
position in relation to the others. In Fig. 7(a) a false horizontal
line is shown. Since this line does not fulfil the expected spatial
constraints of the object, we iterate the Hough procedure to
detect the next representative line in the allowed range of
degrees. The corrected image is shown in Fig. 7(b). Once we
have the three detected lines, we calculate their intersection,
as shown in Fig. 7(c). To assure that the lines are the expected
ones, we complement the procedure looking for a corner at the
circular region of each intersection surroundings (as shown in
Fig. 7(d) and (e)) S = {(xi, yi) | ∃p < ((x−xi)2+(y−yi)2−
r2)} | i ∈ [1, ..., 3], where S is the set of valid intersection
points, and p corresponds to a corner point to be located in
a neighborhood of the intersection point. Since at each lines
intersection a corner should be determined, we apply a corner
detector at surroundings of the triangular vertices to increase
the confidence of determining a sign.

(a) (b) (c) (d) (e)

Fig. 7. (a) Detected lines, (b) corrected line, (c) intersections, (d) corner
region, (e) corner found.

2) Spatial normalization: Once the sign model is fitted
using the previous methods, the next step is the spatial
normalization of the object before classification. The steps
are: a) transform the image to make the recognition invariant
to small affine deformations, b) resize the object to the signs
database size, c) filter using the Weickert anisotropic filter
[38], and d) mask the image to exclude the background pixels
at the classification step. To prevent the effects of illumination
changes, the histogram equalization improves image contrast
and yields an uniform histogram.

3) Forest-ECOC: Once the signs are extracted, they are
classified by means of the Forest-ECOC strategy. The optimal
trees consider the best sub-partitions of classes to obtain robust
classifiers based on the gray-level pixel-values of the object.

D. System outputs
At the end of the system, a XML file is generated, con-

taining the position, size, and class of each of the detected
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traffic signs. This information is used to obtain the real world
position of each detected and recognized sign. An execution
example of the whole process is shown in Fig. 8.

Fig. 8. Example of the system execution: image acquisition, detection, and
classification.

IV. RESULTS

The different experiments of this section are focused on
evaluating each individual part of the framework separately
(detection and classification), and finally, performing the
whole system evaluation. The validation of the methodology
is carried out using real images from the mobile mapping
system Geomobil [25]. This system captures georeferenced
stereo-pairs of images, which are the input of the recognition
system. For these experiments, the system was configured to
acquire one frame each ten meters or when the orientation
variation is greater than 60o. These parameters are hardly
tested to assure a correct acquisition in road scenarios, which
means that all the interesting objects appear at least in two or
three stereo-pairs of images with a minimum size of 30× 30
pixels resolution to be processed.
To assure a high diversity of road conditions, we selected
three recording sessions, each one carried out different days
and with different weather conditions. It represents a total
of 9.510 stereo-pairs road images. To avoid using different
images containing the same traffic sign in the training and
test sets, instead of using random sequences, we divide the
sessions in four subsequences of similar number of frames,
without sharing signs. The first and third parts are used to
train, and the second and fourth to test. The reason of using
a larger test set is because there are a lot of frames that
do not contain objects, and it is interesting to extract the

false alarm ratio in normal conditions, assuring to test the
system under different illuminations conditions, road types,
and traffic intensities.

A. Detection results

1) Evolutive strategy: To perform all the tests with the
evolutionary Adaboost approach, we use a Genetic Algorithm
with a population size of 100 individuals, Gaussian based
mutation probability (the Gaussian is centered at zero with
a variance of the half of the variable range, decreasing
the variance along the generations), and scattered cross-over
strategy with a cross-over fraction of 0.8. When we use a
genetic algorithm instead of an exhaustive search, different
initializations of the algorithm with the same training data give
rise to different weak classifiers. Since the dissociated dipoles
can not be learned by the classical approach, in this experiment
we use the Haar-like features. An one-stage detector is learnt
using fixed training and test sets, comparing the error evolution
for both strategies, and the variance in the evolutive approach
over different runs.
We run the learning process over the same training and test
sets 50 times, using 50 iterations of the evolutive Adaboost. In
the case of the classic Adaboost, as the Weak Learner does an
exhaustive search over the features, at each round the selected
features are the same. In the case of the Genetic Algorithm,
we calculate the mean error value over all the rounds for each
iteration.
In Fig. 9 the train and test mean error values at each iteration
are shown. Note that both methods converge with the same
number of iterations. To analyze the error variability, in Fig. 10
we show the mean and standard deviation for the error at
each iteration. The confidence interval shows that the variance
is very closed. Therefore, though the evolutive Adaboost has
a random component, the goodness of the given solution is
similar.

Fig. 9. Error evolution using the classic Adaboost approach and the genetic
WeakLearner

2) Detector performance: To evaluate the detector perfor-
mance, we train a cascade of detectors using the evolutive
method with ordinal dissociated dipoles. In Fig. 11 we show
the most relevant features selected by the evolutive method
at the first stage of the cascade. Note that only few of them
correspond to Haar-like features.
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Fig. 10. Genetic approach. Error variability on the training process.

Fig. 11. Selected dipoles obtained over the danger signs.

Due to the different appearance frequency of each type of
sign and the high intra-class variability, we trained a detection
cascade for each group of similar signs. In table I we show
the groups of signs and the number of positive samples used
to train each cascade. The number of negative samples on the
train process is automatically selected at each stage with a
proportion of 3 : 1 (three negative examples for each positive
example). Most part of the captured images are from main
roads, and consequently, some types of signs do not appear
enough times to train a detector. Due to this reason, we only
trained the four detectors shown in table I.

Sign Danger Yield Command Prohibition
#Samples 545 425 256 993

TABLE I
NUMBER OF POSITIVE SAMPLES USED TO TRAIN THE CASCADE FOR EACH

CONSIDERED SIGN.

The results are analyzed using two configurations. The
first uses the stereo association to take advantage of the
stereo information. The second considers each stereo-pair of
images as two independent images. For each configuration, the
obtained results with and without using sequential information
are extracted. When the sequential information is used, differ-
ent instances of the same real traffic sign are considered as
the same object. In case of not using this information, each
instance is considered as an independent object. In Fig. 12,
we show the hit ratio of the detector trained for each type of
sign. In general, we can see that the accuracy of the detectors

depends on the variability of sign appearance and the size of
the training set. The First and the third columns correspond
to the results considering each appearance of a traffic sign as
a different sign. And the second and the fourth columns only
take into account the real traffic signs, considering that a sign
is detected if we can detect it in one or more frames where it
appears. The first two columns do not take into account stereo
redundancy, whereas the two last columns take it into account.

Fig. 12. Hit ratio for each sign type, using dissociated dipoles.

The other measure to evaluate the performance of the system
is the false alarm rate. As we work with a mobile mapping
system, an important point is which percentage of the detected
objects corresponds to traffic signs. Therefore, our false alarm
value is referred to the detected signs instead of the number of
analyzed windows, which is of order of 5.000.000 per stereo-
pair. Nevertheless, the number of false positives with respect
to the number of stereo-pairs images has been included to
make easier the analysis of the results. Both false alarm rates
for each type of sign are detailed in table II. Some samples of
detected objects and false alarms are shown in Fig. 13. One
can see that the system is able to detect the signs in a very
extreme lighting conditions. In the false positive images, one
can see that frequently, other road elements look similar to
traffic signs.

Sign Danger Yield Command Prohibition
FA/Sign 2.140 4.549 8.551 0.696
FA/Frame 0, 045 0, 056 0, 073 0, 019

TABLE II
FALSE ALARM RATES FOR EACH SIGN TYPE.

Fig. 13. Some samples of detected objects and false positives.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 9

B. Classification results

Four types of experiments are performed to evaluate the
classification scheme: traffic sign classification using differ-
ent state-of-the-art classifiers, tree embedding analysis using
Forest-ECOC, public UCI Machine Learning Repository clas-
sification, and model fitting classification. First of all, we
comment the generation of the database to train the classifiers
and to perform the experiments.

1) Classification Database: The database used to train
the classifiers was designed using the regions of interest
obtained from the detection step and the model fitting methods
presented in the previous sections. We defined three groups of
classes using the most common types of signs. The consid-
ered classes are shown in Fig. 14. Speed signs need special
attention. These types of signs are less discriminative, being
some of them only differentiated by a few pixels. With this
type of signs it is better to work on binary images to avoid the
errors that can be accumulated because of the grey levels of
the signs. For the twelve classes of circular signs and twelve of
triangular signs we have 750 training images in both cases. For
the seven speed classes we use 500 training samples. Finally,
the resolution of each database is: 35×35 pixels for the circular
group, 44 × 39 pixels for the triangular group, and 41 × 41
pixels for the speed group, respectively.

(a)

(b)

(c)
Fig. 14. Set of classes considered in the classification module. (a) Speed
classes, (b) circular classes, and (c) triangular classes.

2) State-of-the-art comparison: To evaluate the Forest-
ECOC performance, we compare it with the state-of-the-
art classifiers. The details for each strategy are: 3-Euclidean
distance Nearest neighbors (K-NN), Tangent Distance (TD)
[39] with invariant tangent vector with respect to translation,
rotation, and scaling, 99.98% of Principal Components Analy-
sis followed by 3-Nearest neighbors (PCA K-NN) [40], Fisher
Linear Discriminant Analysis with a previous 99.98% PCA
(FLDA) [40], Support Vector Machine with projection kernel
Radial Basis Function and the parameter γ = 1 (SVM) [41],
Gentle Adaboost with decision stumps using the Haar-like
features (BR) [22][42], multiclass Joint Boosting with decision

stumps (JB) [43], Gentle Adaboost [44] Sampling with FLDA
(BS), statistical Gentle Naive Boosting with decision stumps
(NB) [42], and our Forest-ECOC (F-ECOC) with 3-embedded
optimal trees. In the different variants of boosting we apply
50 iterations. We use Gentle Adaboost since it shown to
outperform the other Adaboost variants in real applications
[44]. Concerning the Forest-ECOC base classifier, we apply
FLDA in the experiments classifying traffic signs and 50 runs
of Gentle Adaboost with Decision Stumps on the UCI data
sets. This last choice was selected so that all strategies share
the same base classifier.

Table III shows the characteristics of the data used for the
classification experiments, where #Training, #Test, #Features,
and #Classes correspond to the number of training and test
samples, number of features, and number of classes, respec-
tively.

#Training #Test
Dataset examples examples #Features #Classes
Circular 750 200 1225 12
Speed 500 200 1681 7

Triangular 750 200 1716 12

TABLE III
CHARACTERISTICS OF THE DATABASES USED FOR CLASSIFICATION. THE

TRAINING AND TEST EXAMPLES ARE EQUALLY DISTRIBUTED AMONG THE
GROUP CLASSES.

The classification results and confidence intervals are shown
graphically in Fig. 15 for the different groups. One can see that
the Forest-ECOC using FLDA as a base classifier attains the
highest accuracy in all cases. Nevertheless, for the circular
and triangular signs the differences among classifiers are
significatively different because of the high discriminability
of these two groups. The speed group is a more difficult
classification problem. In this case, the Forest-ECOC strategy
obtains an accuracy upon 90%, outperforming the rest of
classifiers.

3) Tree embedding analysis: The training evolution of the
Forest-ECOC at the previous experiment is shown in Fig. 16
for the speed group. Each iteration of the figure shows the
classification accuracy by embedding a new node (binary
classifier) from each optimal tree in the Forest-ECOC matrix
M . The three optimal trees are split by the dark vertical
lines. The respective trees are shown in Fig. 17. In the first
generated tree of Fig. 17, one can see that the most difficult
partitions are reserved to the final classifiers of the tree. The
next trees select the following best partitions of classifiers to
avoid repeating classifiers. These classifiers learn sub-groups
of classes from the same data, improving the classification
results (Fig. 16) by sharing their knowledge among classes.

4) UCI Evaluation: In order to validate the accuracy of
the Forest-ECOC strategy, we tested it on the public UCI
Machine Learning Repository [45]. The characteristics of the
UCI datasets considered are shown in table IV. In this case,
to observe the benefits of using multiple trees embedding,
we compared the performance of the Forest-ECOC strategy
with the DECOC approach [24]. Both methods use 50 runs of
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(a) (b) (c)

Fig. 15. Classification results for the (a) Speed, (b) Circular, and (c) Triangular problems.

Fig. 17. Three optimal trees generated by the Forest-ECOC for the speed group.

Fig. 16. Training process of Forest-ECOC embedding the first three optimal
trees for the speed group.

Gentle Adaboost with decision stumps as the base classifier,
using 2-optimal trees for the Forest-ECOC strategy.

Problem #Train #Attributes #Classes Data types Attribute types Year

Dermathology 366 34 6 Multivariate Categorical, Integer 1998
Ecoli 336 8 8 Multivariate Real 1996
Vowel 990 10 11 Multivariate Real -
Yeast 1484 8 10 Multivariate Real 1996

Satimage 6435 36 7 Multivariate Integer 1993
Pendigits 10992 16 10 Multivariate Integer 1998

Segmentation 2310 19 7 Multivariate Real 1990

TABLE IV
UCI REPOSITORY DATA SETS CHARACTERISTICS.

The classification results of the two strategies over the UCI
datasets are shown in table V. One can observe that the Forest-
ECOC strategy outperforms in most cases the results obtained
by the DECOC strategy for a same base classifier. Moreover,
in the worst case, the Forest-ECOC methodology obtains the
same results than the DECOC technique.

5) Model fitting classification: Finally, to test the perfor-
mance of the classification step of the system, model fitting
and Forest-ECOC classification are applied in a set of 200
regions of interests for each group. The regions of interest
are obtained from the detection step. The results are shown
in table VI. One can see that for circular and speed signs the
results are practically maintained from the previous experi-
ments. For triangular signs, the accuracy is slightly decreased

UCI Forest ECOC DECOC
Yeast 53.85±1.64 51.15±2.14

Dermathology 95.32±1.31 93.10±1.81
Ecoli 83.98±1.13 78.15±1.42

Segmentation 94.98±0.66 92.30±0.89
Satimage 73.91±1.11 73.91±1.11

Vowel 77.67±1.81 73.84±1.90
Pendigits 81.42±1.93 81.42±1.93

TABLE V
CLASSIFICATION RESULTS ON THE UCI DATA SETS.

because of the effect of noise, variability of sign appearance,
and resolution, that makes the Hough transform lose some
sides of the triangular signs. Nevertheless, the final results are
upon 90% in all cases.

Recognition problem Accuracy
Circular 98.00
Speed 91.50

Triangular 92.50

TABLE VI
MODEL FITTING AND CLASSIFICATION RESULTS.

6) System results: We calculate the performance of the
whole system over a test set of 10.000 stereo-pairs of images,
which correspond to 100Km of road. The accuracy of the
real traffic sign recognition system applying the detection and
classification approaches jointly obtains a mean triangular sign
reliability of 90.87± 0.87%, and a circular sign reliability of
90.16 ± 1.01%. In the detection stage, recognition fails are
caused because of the background confusion (see Fig. 13) and
the high inter-class variability, whereas in the classification
stage the errors are produced because of the poor resolution
of the images.

7) Discussions: Classical approaches to traffic sign de-
tection are based on a segmentation of the image using
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thresholding over a color space. It is useful by the fact that
traffic signs use a color code to be easily identifiable by
humans. These colors are used to be distinguished in natural
scenes. However, some objects, such as vehicles, buildings, or
advertising near the road, share similar colors. In addition, the
acquired color information is related to the used camera, and
it is far away from the real object color. Although in some
works this problem is attenuated using some heuristics as the
size and position of the segmented regions or shape, it can be
a source of false positives that can interfere on the recognition
of the signs.

Our work avoids these problems using appearance infor-
mation instead of directly using the gray-scale information.
The presented system uses relations between gray values
inside the image, and thus, the changes produced by different
acquisitions systems are smoothed2. However, the appearance
based methods improve the results at not free cost. The
presented methods introduces an extra computationally cost
to the detection stage, which disable them to be used in driver
support applications, where the real-time requirement is harder
than in the case of the mobile mapping problem. To face
those restrictions, the detection stage must be optimized. There
are promising works focused on cascade optimizations [46]
and multiple detectors organization [47], which can be used
to improve not only the results, but also the computational
time. In addition, the original detection scheme of Viola &
Jones [21] was successfully embedded in Hardware devices,
allowing high detection frame rates. Similar strategies can be
adopted for our method.

The performed experiments for the Forest-ECOC classifica-
tion technique used a Greedy search to look for the optimal
sub-groups of classes that form the tree structures. In our
case, the exhaustive search was computationally feasible with
the number of classes. If necessary, different strategies can
be applied instead. In case of having a huge number of
classes to learn, sub-optimal solutions can be found using
faster approaches, such as the Sequential Forward Floating
Search [48], in order to speed up the method.

In the same way, after a preliminary set of experiments,
we fixed FLDA as the base classifier for the Forest-ECOC
strategy in order to learn the binary problems. It shown to be
a suitable choice for traffic sign classification. In other type
of classification problems, the Forest-ECOC approach can be
applied with other base classifier that better adapts to learn a
particular distribution of the data.

The detection and recognition system has been implemented
to automatically process hundreds of video sequences obtained
from the Mobile Mapping Process of [25]. This data is
processed by the Institut Cartogràfic de Catalunya to extract
cartographic information. Before the system was implemented,
the labeling of the traffic signs in image sequences was
done manually by an user. With the automatic system, the
recompilation of the information is about three times faster.
Furthermore, comparing the results of labeling with the auto-
matic and manual processes, we can argue that the automatic

2Note that thought color is not required in any stage of the present system,
all the feature sets used on the detection stage can be extended to any color
space.

performance obtains better results. It is done by the fact that
the performance of the manual labeling is affected by the
eyestrain of the user that processes thousand of frames and
the extreme illumination conditions of the video sequences.

Concerning the computational cost of the system, the final
cascade of detectors learnt with the evolutionary Adaboost
is comparable in complexity to the Viola & Jones [21]
face detector. Moreover, the same optimization technique to
calculate the Haar-like features by means of the integral
image can be used in the case of the dissociated dipoles.
Using ordinal features, the comparison with a float value
has been replaced with the use of the sign, which reduces
the computational cost compared to the Viola & Jones real-
time detector. Regarding the classification stage, whereas the
training time could be expensive depending on the number
of classes, training examples, and number of features per
data sample, once the Forest-ECOC hypotheses are learnt, the
classification time depends on the nature of the applied base
classifier. In particular, considering FLDA or Adaboost, the
classification decision only requires a simple matrix product
or an additive model estimation, which can be computed in
real-time. Nevertheless, though the detection and classification
techniques can be optimized to be real-time approaches, the
use of correlation on the stereo-association stage, the model
fitting, and normalization methodologies prevent the whole
system to be real-time.

Concerning to the memory usage, the final detection system
needs eight integers per feature to represent the dissociated
dipoles. During the detection process, at least the integral
image of the processed image must be in memory. Finally, the
classification parameters and the ECOC matrix must also be
available in memory. Summarizing, the stronger restriction in
memory usage is the size of processed images, not the system
itself.”

V. CONCLUSIONS

We presented a mobile mapping detection and classification
system to deal with the traffic sign recognition problem. We
introduced a computationally feasible method for feature se-
lection based on an evolutionary strategy. Since the exhaustive
search over all the combinations between feature and thresh-
old are replaced with the evolutionary approach and ordinal
features, the final approach has two main advantages: it speeds
up the learning process and allows to work with large feature
sets to distinguish between object and background, which is
computationally unfeasible using traditional methods because
of the huge number of features. Moreover, we proposed the
Forest-ECOC classification strategy to lead with the multi-
class categorization problem. The method is based on the
embedding of multiple optimal trees structures in the Error
Correcting Output Codes framework, sharing their knowledge
among classes, and constructing an ensemble of trees until the
necessary performance is achieved. A wide set of traffic signs
are recognized under high variance of appearance, such as
noise, affine deformation, partial occlusions, or reduced visi-
bility. The validation of the mobile mapping system shows that
the presented methodology offers high robustness and better
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performance than the state-of-the-art strategies in uncontrolled
environments.
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