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Abstract. Error correcting output codes (ECOC) represent a successful extension
of binary classifiers to address the multiclass problem. In this paper, we propose
a novel technique called ECOC-ONE (Optimal Node Embedding) to improve an
initial ECOC configuration defining a strategy to create new dichotomies and im-
prove optimally the performance. The process of searching for new dichotomies is
guided by the confusion matrices over two exclusive training subsets. A weighted
methodology is proposed to take into account the different relevance between di-
chotomies. We validate our extension technique on well-known UCI databases. The
results show significant improvement to the traditional coding techniques with far
few extra cost.
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1. Introduction

Machine learning studies automatic techniques to make accurate predictions based on
past observations. There are several multiclass classification techniques: Support Vector
Machines [1], multiclass Adaboost [2], decision trees [3], etc. Nevertheless, building a
highly accurate multiclass prediction rule is certainly a difficult task. An alternative ap-
proach is to use a set of relatively simple sub-optimal classifiers and to determine a com-
bination strategy that pools together the results. Various systems of multiple classifiers
have been proposed in the literature, most of them use similar constituent classifiers,
which are often called base classifiers (dichotomies from now on).

The usual way to proceed is to reduce the complexity of the problem by dividing it
into a set of multiple simpler binary classification subproblems. One-versus-one (pair-
wise) [4] or one-versus-all grouping voting techniques or trees of nested dichotomies [5]
are some of the most frequently used schemes. In the line of the aforementioned tech-
niques Error Correcting Output Codes [6] were born. ECOC represents a general frame-
work based on a coding and decoding (ensemble strategy) technique to handle multiclass
problems. One of the most well-known properties of the ECOC is that it improves the
generalization performance of the base classifiers [7][4]. Moreover, the ECOC technique
has demonstrated to be able to decrease the error caused by the bias and the variance of
the base learning algorithm [8].

In the ECOC technique, the multiclass to binary division is handled by a coding ma-
trix. Each row of the coding matrix represents a codeword assigned to each class. On
the other hand, each column of the matrix (each bit of the codeword) shows a partition
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of the classes in two sets. The ECOC strategy is divided in two parts: the coding part,
where the binary problems to be solved have to be designed, and the decoding tech-
nique, that given a test sample looks for the most similar codewords. Very few attention
has been paid in the literature to the coding part of the ECOC. The most known cod-
ing strategies are one-versus-all, all-pairs (one-versus-one) and random coding. Cram-
mer et. al [9] were the first authors reporting improvement in the design of the ECOC
codes. However, the results were rather pessimistic since they proved that the problem of
finding the optimal discrete codes is computationally unfeasible since it is NP-complete.
Specifically, they proposed a method to heuristically find the optimal coding matrix by
changing its representation from discrete to continuous values. Recently, new improve-
ments in the problem-dependent coding techniques have been presented by Pujol et al.
[10]. They propose embedding of discriminant tree structures in the ECOC framework
showing high accuracy with a very small number of binary classifiers, still the maximal
number of dichotomies is bounded by the classes to be analyzed.

In this article, we introduce the ECOC Optimal Nodes Embedding (ECOC-ONE),
that can be considered as a general methodology for increasing the performance of any
given ECOC coding matrix. The ECOC-ONE is based on a selective greedy optimization
based on the confusion matrices of two exclusive training data sets. The first set is used
for standard training purposes and the second one for guiding and validation avoiding
classification overfitting. As a result, wrongly classified classes are given priority and are
used as candidate dichotomies to be included in the matrix in order to help the ECOC
convergence. Our procedure creates an ECOC code that correctly splits the classes while
keeping a reduced number of classifiers. Besides, we compare our optimal extension with
another standard state-of-art coding strategies applied as coding extensions.

2. Error Correcting Output Codes

The basis of the ECOC framework is to create a codeword for each of the Nc classes.
Arranging the codewords as rows of a matrix we define the "coding matrices" M , where
M ∈ {−1, 1}Nc×n, being n the code length. From point of view of learning, matrix M
representes n binary learning problems (dichotomies), each corresponding to a matrix
column. Joining classes in sets, each dichotomy defines a partition of classes (coded by
+1,-1 according to their class membership). Applying the n trained binary classifiers, a
code is obtained for each data point in the test set. This code is compared to the base
codewords of each class defined in the matrix M , and the data point is assigned to the
class with the "closest" codeword. The matrix values can be extended to the trinary case
M ∈ {−1, 0, 1}Nc×n, indicating that a particular class is not considered (gets 0 value)
by a given dichotomy. To design an ECOC system, we need a coding and a decoding
strategy. When the ECOC technique was first developed it was believed that the ECOC
code matrices should be designed to have certain properties to generalize well. A good
error-correcting output code for a k-class problem should satisfy that rows, columns (and
their complementaries) are well-separated from the rest in terms of Hamming distance.

Most of the discrete coding strategies up to now are based on pre-designed problem-
independent codeword construction satisfying the requirement of high separability be-
tween rows and columns. These strategies include one-versus-all that uses Nc di-
chotomies, random techniques, with estimated length of 10 log2(Nc) bits per code
for Dense random and 15 log2(Nc) for Sparse random [4], and one-versus-one with
Nc(Nc − 1)/2 dichotomies [11]. The last one mentioned has obtained high popularity
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Figure 1. Coding matrix M for a four classes one-versus-all toy problem. New test sample with codeword X
is classified to class c4 of minimal distance using the Hamming distance.

showing a better accuracy in comparison to the other commented strategies. These tradi-
tional coding strategies are based on a prior division of subsets of classes independently
of the problem to be used.

The decoding step was originally based on error-correcting principles under the as-
sumption that the learning task can be modeled as a communication problem, in which
class information is transmitted over a channel [12]. The decoding strategy corresponds
to the problem of distance estimation between the codeword of the new example and the
codewords of the trained classes. Concerning the decoding strategies, two of the most

standard techniques are the Euclidean distance dj =
√∑n

i=1(xi − yj
i )2 and the Ham-

ming decoding distance dj =
∑n

i=1 |(xi − yj
i )|/2, where dj is the distance to the row

class j, n is the number of dichotomies (and thus, the components of the codeword),
and x and y are the values of the input vector codeword and the base class codeword,
respectively. If the minimum Hamming distance between any pair of class codewords is
d, then any [(d− 1)/2] errors in the individual dichotomies result can be corrected, since
the nearest codeword will be the correct one.

In fig. 1 an example of a coding matrix M for an one-versus-all toy problem is
shown. The problem has four classes, and each column represents its associated di-
chotomy. The dark and white regions are coded by -1 and 1, respectively. The first col-
umn h1 represents the training of {c1} vs {c2, c3, c4}, and so on. A new test input is eval-
uated using dichotomies h1, ..., h4, and its codeword X is decoded using the Hamming
distance (HD) between each row of M and X . Finally, the new test input is classified by
the class of minimum distance (c4, in this case).

3. ECOC-ONE

ECOC-Optimal Node Embedding defines a general procedure capable of extending any
coding matrix by adding dichotomies based on discriminability criteria.

Given a multiclass recognition problem, our procedure starts with a given ECOC
coding matrix. The initial coding matrix can be one of the previously commented or
one generated by the user. We increase this ECOC matrix in an iterative way, adding
dichotomies that correspond to different spatial partitions of subsets of classes ℘. These
partitions are found using a greedy optimization based on the confusion matrices so that
the ECOC accuracy improves on both exclusive training subsets. Our training set is par-
titioned in 2 training subsets: a training subset of examples that guides the convergence
process, and a validation subset, that leads the optimization process in order to avoid
classification overfitting. Since not all problems require the same dichotomies, our opti-
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mal node embedding approach generates new dichotomies just for classes not well sep-
arable yet. Thus, we construct an optimal ECOC-ONE matrix dependent of the concret
domain.

To explain our procedure, we divide the ECOC-ONE algorithm into 3 steps: optimal
node estimation, weights estimation, and ECOC-ONE matrix construction. The training
process guided by the two training and validation subsets, ignores a significant amount
of data from the training set, which can be redundant or harmful to the learning process,
and avoid overfitting [13].

Let us define the notation used in the following paragraphs: given a data pair (x, l),
where x is a multidimensional data point and l is the label associated to that sample,
we define {x, l} = {xt, lt}

⋃ {xv, lv}, where {xt, lt} and {xv, lv} are the sets of data
pairs associated to training and validation sets, respectively. In the same way, e(h(x), l)
represents the empirical error over the data set x given an hypothesis h(·).

3.1. Optimal node estimation

Test accuracy of the training subsets: To introduce each network node, first, we test the
current M accuracy on the training subsets. For this step, we find the resulting codeword
x ∈ {−1, 1}n for each class sample of these subsets, and we label it as follows:

l̃ = argminj

(
d(H(M, h, x), yj)

)
(1)

where d(·) is a distance value betweenH(M, h, x) and the codeword yj .H(M, h, x)
is the strong hypothesis resulting in applying the set of learning algorithms h(·), para-
meterized with Θ on the problems defined by each column of the ECOC matrix M on a
data point x. The result of H(M,h, x) is an estimated codeword. We propose the use of
a weighed Euclidean distance in the following way:

d =

√√√√
n∑

i=1

wi(xi − yj
i )2 (2)

where the weight wi introduces the relevance of each dichotomy in the learning ensemble
technique.

The training and validation confusion matrices: Once we test the accuracy of the
strong hypothesis H on the training and validation subsets, we estimate their respective
confusion matrices ϑt and ϑv . Both confusion matrices are of size Nc ×Nc, and have at
position (i, j) the number of instances of class ci classified as class cj .

ϑ(i, j) =
∣∣{(x, l) |h(x) = ci , l = cj}

∣∣ (3)

where h(x) is the label estimation obtained using equation (2) and l is the true label
of example x. Once the matrices have been obtained, we select the pair {ci, cj} with
maximum value according to the following expression:

{ci, cj} = argmax{Ci,Cj ;i 6=j}
(
ϑt(i, j) + ϑT

t (i, j, ) + ϑv(i, j) + ϑT
v (i, j)

)
(4)

∀(i, j) ∈ [1, ..., Nc], where ϑT is the transposed matrix. The resulting pair is the set
of classes that are more easily confounded, and therefore they have the maximum partial
empirical error.
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Find the new dichotomy: Once the set of classes with maximal error has been ob-
tained, {ci, cj}, we create a new column of the ECOC matrix as follows: each candidate
column considers a possible pair of subsets of classes ℘ = {{ci

⋃
C1}, {cj

⋃
C2}} ⊆ C

so that C1 ∩ C2 ∩ ci ∩ cj = ® and Ci ⊆ C. In particular we are looking for the subset
division of classes ℘ so that the dichotomy ht associated to that division minimizes the
empirical error defined by e({x, l}).

℘̃ = argmin℘

(
e(H(M ∪mi(℘), h,x), l)

)
(5)

where mi(℘) follows the rule in equation (7). The column components associated
to the classes in the set {ci, C

1} are set to +1, the components of the set {cj , C
2} are

set to −1 and the positions of the rest of classes are set to zero. In the case that multiple
candidates obtain the same performance the one involving more classes is preferred.
Firstly, it reduces the number of uncertainty in the ECOC matrix by reducing the number
of zeros in the dichotomy. Secondly, one can see that when more classes are involved
the generalization is greater. Each dichotomy finds a more complex rule on a greater
number of classes. This fact has also been observed in the work of Torralba et al. [14].
In their work a multi-task scheme is presented that yields to an improved generalization
classifier by aids of class grouping algorithm. This work shows that this kind of learners
can increase generalization performance.

3.2. Weights estimates

It is known that when a multiclass problem is decomposed in binary problems, not all of
these base classifiers have the same importance and generate the same decision bound-
aries. Our approach uses a weight to adjust the importance of each dichotomy in the
ensemble ECOC matrix. In particular, the weight associated to each column depends on
the error obtained when applying the ECOC to the training and validation subsets in the
following way,

wi = 0.5 log(
1− ei

ei
) (6)

where wi is the weight for the ith dichotomy, and ei is the error produced by this
dichotomy at the affected classes of the two training subsets of classes. This equation is
based on the weighed scheme of the additive logistic regression [2].

Update the matrix: The column mi is added to the matrix M and the weight wi is
calculated using equation (6).

3.3. ECOC-ONE matrix construction

Once we have generated the optimal nodes, we embed each one in the following way:
consider the set of classes associated to a node Ci = {Ci1 ∪ Ci2|Ci1 ∩ Ci2 = ®}, the
element (i, r) of the ECOC-ONE matrix corresponding to class i and dichotomy r is
filled as (7). The summarized ECOC-ONE algorithm is shown in fig. 1.

M(r, i) =





0 if cr /∈ Ci

+1 if cr ∈ Ci1

−1 if cr ∈ Ci2

(7)
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Given Nc classes and a coding matrix M (see fig. 1):

for t = 1 to T iterations:

1) Compute the optimal partition ℘i of the subset of classes
2) Test accuracy on the training and validation subsets.
3) Select the pair of classes {Ci, Cj} with the highest error analyzing the
confusion matrices from the training and validation subsets.
4) Find the partition ℘i containing {Ci, Cj} that minimizes the error rate
in the training and validation subsets.
5) Compute the weight for the dichotomy of partition ℘i based on the
error.

Update the matrix M .

Table 1. ECOC-ONE extension algorithm

As mentioned before, one of the desirable properties of the ECOC matrix is to have
maximal distance between rows. In this sense, our procedure focuses on the relevant
difficult partitions, increasing the distance between the classes. This fact improves the
robustness of the method since difficult classes are likely to have a greater number of di-
chotomies focussed on them. In this sense, it creates different geometrical arrangements
of decision boundaries, and leads the dichotomies to make different bias errors.

4. Results

To test our proposed extension method, we extend the most well-known strategies used
for ECOC coding: one-versus-all ECOC (one-vs-all), one-versus-one ECOC (one-vs-
one), and Dense random ECOC. We have chosen dense random coding because it is
more robust than the sparse technique for the same number of columns [4]. The decoding
strategy for all mentioned techniques is the standard Euclidean distance because it shows
the same behavior as the Hamming decoding but it also reduces the confusion due to the
use of the zero values [10]. The number of dichotomies considered for Dense random
is based on 10 × log2n, where n is the number of classes for a given database. The
decoding strategy for our ECOC-ONE extension is the weighted euclidean distance. The
weak classifier used for all the experiments is Gentle Adaboost. Nevertheless, note that
our technique is generic in the sense that it only uses the classification score. In this sense
it is independent of the particular base classifier. All tests are calculated using ten-fold
cross-validation and a two-tailed t-test with a 95% confidence interval. In order to test
ECOC-ONE coding extension, we have used a set of very well-known databases from
UCI repository. The description of each database is shown in table 2.

To test our extension technique, we have extended the three commented coding
strategies embedding 3 new dichotomies for all cases. The new 3 dichotomies embed-
ded by dense random maximize the hamming distance between matrix rows. The results
of extending one-versus-all, Dense random, and one-versus-one matrices in 5 UCI data-
bases are shown in tables 3, 4 and 4 respectively. For each case we show the hit obtained
and the number of dichotomies used for that experiment (#D). One can observe that
adding just 3 extra dichotomies the accuracy increase considerably in comparison with
the initial coding length. Besides, our problem-dependent ECOC-ONE coding extension
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Problem #Train #Test #Attributes #Classes
Dermathology 366 - 34 6

Ecoli 336 - 8 8
Glass 214 - 9 7
Vowel 990 - 10 11
Yeast 1484 - 8 10
Table 2. UCI repository databases characteristics.

Problem one-versus-all one-versus-all-ONE one-versus-all-dense
Hit #D Hit #D Hit #D

Ecoli 77.00±1.14 8 80.60±0.75 11 77.75±1.02 11
Yeast 51.28±0.99 10 55.84±1.08 13 54.76±1.06 13
Glass 62.34±2.17 7 65.17±1.80 10 65.52±2.07 10

Dermathology 93.17±0.82 6 95.43±0.72 9 94.70±0.69 9
Vowel 73.97±1.73 11 83.63±0.81 14 78.43±1.41 14

Rank 4.00 1.00 1.40
Table 3. Results of coding extensions of one-versus-all for UCI repository database.

outperform in all cases the Dense extension strategy due to the problem-dependent opti-
mal selection of the extra dichotomies. One can observe that the confidence rates for our
proposed technique is comparable and decreased in most cases in comparison with the
results obtained by the dense extension strategy.

If we compare the initial differences between one-versus-all and one-versus-one for
the initial codes, their results are considerable different. When the one-versus-all initial
code is extended with 3 extra ECOC-ONE dichotomies, the results are comparable with
the obtained using one-versus-one with far less cost.

Problem Dense random Dense random-ONE Dense random-dense
Hit #D Hit #D Hit #D

Ecoli 80.55±0.79 30 82.90±0.84 33 80.35±0.93 33
Yeast 55.33±1.12 33 57.86±1.20 36 56.90±1.01 36
Glass 65.52±1.80 28 68.52±1.02 31 66.34±1.88 31

Dermathology 96.13±0.73 26 97.49±0.74 29 96.35±0.67 29
Vowel 79.30±1.43 35 83.53±1.29 38 78.97±1.47 38

Rank 2.20 1.00 2.00
Table 4. Results of coding extensions of Dense random for UCI repository database.

5. Conclusions

In most of the ECOC coding strategies, the ECOC matrix is pre-designed, using the same
dichotomies in any type of problem. We introduced a new coding and decoding strategy
called ECOC-ONE. The ECOC-ONE strategy can be seen as a general extension for any
initial coding matrix. The procedure shares classifiers among classes in the ECOC-ONE
matrix, and selects the best partitions weighed by their relevance. In this way, it reduces
the overall error for a given problem. Moreover, using the validation subset the general-
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Problem one-versus-one one-versus-one-ONE one-versus-one-dense
Hit #D Hit #D Hit #D

Ecoli 80.35±1.61 28 80.65±1.59 31 81.20±1.29 31
Yeast 54.58±1.10 45 56.83±0.89 48 54.48±0.94 48
Glass 67.38±1.98 21 68.97±1.99 24 67.79±1.88 24

Dermathology 95.48±0.80 15 96.95±0.67 18 95.83±0.82 18
Vowel 86.00±1.16 55 88.96±1.07 58 81.33±1.24 58

Rank 2.00 1.00 1.80
Table 5. Results of coding extensions of one-versus-one for UCI repository database.

ization performance is increased and overfitting is avoided. We show that this technique
improves in most cases the performance of any initial code with few extra cost better
than other distance maximization extensions. Besides, ECOC-ONE can generate an ini-
tial small code by itself. As a result, a compact - small number of classifiers - multiclass
recognition technique with improved accuracy is presented with very promising results.
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