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Abstract. Error correcting output codes (ECOC) represent a successful
extension of binary classifiers to address the multiclass problem. Lately,
the ECOC framework was extended from the binary to the ternary case
to allow classes to be ignored by a certain classifier, allowing in this way
to increase the number of possible dichotomies to be selected. Neverthe-
less, the effect of the zero symbol by which dichotomies exclude certain
classes from consideration has not been previously enough considered in
the definition of the decoding strategies. In this paper, we show that
by a special treatment procedure of zeros, and adjusting the weights at
the rest of coded positions, the accuracy of the system can be increased.
Besides, we extend the main state-of-art decoding strategies from the
binary to the ternary case, and we propose two novel approaches: Lapla-
cian and Pessimistic Beta Density Probability approaches. Tests on UCI
database repository (with different sparse matrices containing different
percentages of zero symbol) show that the ternary decoding techniques
proposed outperform the standard decoding strategies.

1 Introduction

Machine learning studies automatic techniques for learning to make accurate
predictions based on past observations. There are plenty of classification tech-
niques reported in literature: Support Vector Machines [1][2], decision trees [3],
nearest neighbors rules, etc. It is known that for some classification problems,
the lowest error rate is not always reliably achieved by trying to design a single
classifier. An alternative approach is to use a set of relatively simple sub-optimal
classifiers and to determine a combination strategy that pools together the re-
sults. Different types of systems of multiple classifiers have been proposed in the
literature, most of them use similar constituent classifiers, which are often called
base classifiers (dichotomies from now on). Adaboost [4], for example, uses weak
classifiers as predictions that showed to be slightly better than random guessing
and combines them in an ensemble classifier.

Although binary classification is a well-studied problem, building a highly ac-
curate multiclass prediction rule is certainly a difficult task. In those situations,
the usual way to proceed is to reduce the complexity of the problem by dividing
it into a set of multiple simpler binary classification subproblems. One-versus-
one pairwise [5] or one-versus-all techniques are some of the most frequently used



schemes. In the line of the aforementioned techniques Error Correcting Output
Codes [6] were born. ECOC is a general framework based on coding and decod-
ing (ensemble strategy) techniques to handle multiclass problems. One of the
most well-known properties of the ECOC is that it improves the generalization
performance of the base classifiers [7][5].

In this technique the multiclass to binary division is handled by a coding
matrix. Each row of the coding matrix represents a codeword assigned to each
class. On the other hand, each column of the matrix (each bit of the codeword)
defines a partition of the classes in two sets. The ECOC strategy is divided in
two parts: the coding part, where the binary problems to be solved have to be
designed, and the decoding technique, that given a test sample, looks for the
most similar codewords. For the coding strategies, the three most well-known
strategies are one-versus-all, all-pairs (one-versus-one) and random coding.

The decoding step was originally based on error-correcting principles un-
der the assumption that the learning task can be modelled as a communication
problem, in which class information is transmitted over a channel [8]. The de-
coding strategy corresponds to the problem of distance estimation between the
test codeword and the codewords of the classes. Concerning the decoding strate-
gies, two of the most standard techniques are the Euclidean distance and the
Hamming decoding distance. If the minimum Hamming distance between any
pair of class codewords is d, then any [(d — 1)/2] errors in the individual di-
chotomies result can be corrected, since the nearest codeword will be the correct
one. The original two-symbol coding matrix M was extended to the ternary
case M € {—1,0,1}e*" by Allwein et. al [5]. The new zero symbol indicates
that a particular class is not considered by a given dichotomy. This fact allows
to obtain a higher number of possible dichotomies that create different decision
boundaries, allowing more accurate results for multiclass classification problems.
Nevertheless, the effect of increasing the sparseness of the coding matrix has not
been previously analyzed enough.

The goal of this article is twofold: firstly, we extend the standard state-of-art
decoding strategies to the ternary case. We analyze the effect of the zero symbol
in the ECOC matrix M. We show how this symbol affects to the decoding
strategy, and we take into account the two main properties than define the
problem: the zero symbol may not introduce decoding errors, and the coded
positions have different relevance depending on the number of zeros contained
on each coding matrix M row. We compare the evolution results for standard
decoding strategies as Hamming (HD), inverse Hamming (IHD) or Euclidean
distance (ED) when the number of zeros is increased. Secondly, we extend the
state-of-art coding strategies to the ternary case: Attenuated Euclidean distance
(AED), and Loss-based decoding (LB). In this context, we propose two new
decoding techniques to solve the exposed problem: Laplacian decoding (LAP),
and Beta Density Distribution Pessimistic score (5-DEN).

The paper is organized as follows: section 2 explains the ECOC framework,
section 3 reviews the state-of-art decoding strategies, shows the ternary adapta-



tion and the new decoding approaches. Section 4 contains the experiments and
results, and section 5 concludes the paper.

Traditional decoding
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Fig. 1. Example of ternary matrix M for a 4-class problem. A new test codeword is
missclassified due to the confussion of using the traditional decoding strategies.

2 ECOC

The basis of the ECOC framework is to create a codeword for each of the N,
classes. Arranging the codewords as rows of a matrix, we define a ” coding matrix”
M, where M € {—1,0,1}¥<*" in the ternary case, being n the code length. From
point of view of learning, M is constructed by considering n binary problems
(dichotomies), each corresponding to a matrix column. Joining classes in sets,
each dichotomy defines a partition of classes (coded by +1, 0 or -1, according to
their class set membership). In fig. 1 we show an example of a ternary matrix M.
The matrix is coded using 7 dichotomies hq, ..., hy for a four multiclass problem
(c1, ca, c3, and ¢4). The white regions are coded by 1 (considered as positive for
its respective dichotomy, h;), the dark regions by -1 (considered as negative),
and the grey regions correspond to the zero symbol (not considered classes for
the current dichotomy). For example, the first classifier is trained to discriminate
c3 versus ¢ and c¢o, the second one classifies co versus ¢, ¢ and ¢4, and so on.
Applying the n trained binary classifiers, a code is obtained for each data point
in the test set. This code is compared to the base codewords of each class defined
in the matrix M, and the data point is assigned to the class with the ”closest”
codeword.

To design an ECOC system, we apply a coding and a decoding strategy.
The most well-known decoding strategies are Hamming and Euclidean distance.
The Hamming distance is estimated by d(z,y") = 37, | (z; —y}) | /2, where

HD(Xe3)=6  ED(Xe3) =12
HD(Xeq) =4  ED(Xe,) =14

Correct decoding- ¢z

d(z,y") is the distance of the codeword x to the class i, n is the number of
dichotomies (and thus, the components of the codeword), and x and y are the
values of the input vector codeword and the base class codeword, respectively.
For the Euclidean distance, the measure is based on minimizing the distance
d(z,y') = /21 (5 = y5)?. To classify a new input « = [~1,1,1,1,~1,1,1]
in fig. 1, the traditional Hamming or Euclidean distances are applied, obtaining
in both cases the minimum distance corresponding to class one. Note that the
correct decoding corresponds to co since both first dichotomies trained on cs
classify the new example correctly.



Most of the discrete coding strategies up to now are based on predesigned
problem-independent codewords. When the ECOC technique was first developed
it was designed to have certain properties to enable them to generalize well.
A good error-correcting output code for a k-class problem should satisfy that
rows, columns (and their complementaries) are well-separated from the rest in
terms of Hamming distance. These strategies are one-versus-all, dense and sparse
random techniques [5], and one- versus-one [9]. Crammer et. al [10] were the first
authors reporting improvement in the design of the ECOC problem-dependent
codes. However, the results were rather pessimistic since they proved that the
problem of finding the optimal discrete codes is computationally unfeasible since
it is NP-complete [10]. Specifically, they proposed a method to heuristically
find the optimal coding matrix by changing its representation from discrete to
continuous values. Recently, new improvements in the problem-dependent coding
techniques have been presented by Pujol et. al. [11]. They propose embedding
of discriminant tree structures in the ECOC framework showing high accuracy
with a very small number of binary classifiers. Escalera et. al [12][13] propose
a multiple tree structures embedding to form a Forest-ECOC and design of
a problem-dependent ECOC-ONE coding strategy. The procedure is based on
generating a code matrix by searching for the dichotomies that best split the
difficult classes in the training procedure guided by a validation subset.

Many decoding strategies have been proposed in the ECOC framework. Nev-
ertheless, very few attention has been given to the ternary case. Often techniques
add errors due to the zeros, while other approaches do not consider the effect
of this symbol for the decoding strategy. In the next chapter, we address the
ternary case of the decoding strategies in depth.

3 Ternary ECOC Decoding

The zero symbol allows to ignore some classes for a certain dichotomy. Although
the binary matrix M is extended with the zero symbol, the decoding strategies
are not adapted to the influence of that symbol. The use of standard decoding
techniques that do not consider the effect of this symbol frequently fail (as shown
in fig. 1). To understand the extension to the ternary case, first we define the
reasons why the zero symbol needs special attention. As shown in fig. 1, the error
accumulated by the zero symbol has to be non-significative in comparison with
the failures at coded positions. Another important aspect is that if a codeword
of length n has k zeros, the rest of the positions (n — k) not containing zeros
must have more importance either in case of coincidence or failure. For example,
if we consider two codewords y; and ys, we can not consider the same error
for the codeword y; if it has one fail and two coded positions than if there
are ten coded positions in yo. Therefore, the large difference in the number of
coded positions between codewords is an important issue that must be taken into
account. Allwein et. al [5] studied numerically the effect of the symbol zero and
they proposed the Loss-based decoding technique in order to take this symbol
into account.



3.1 Traditional decoding strategies

Analyzing the Hamming distance in the ternary case, we can observe that it in-
troduces a high error for the zero values (ignored classes by certain dichotomies)
and all positions obtain the same importance at the decoding step. Euclidean
distance accumulate half of the error estimated by Hamming distance. Equally,
it still assigns a considerable error to the symbol zero and does not increase
the relevance of the rest of the coded codeword positions. Another traditional
strategy for decoding is the Inverse Hamming distance.

Inverse Hamming distance Let D(z) = [d(z,y'),d(z,y?), ..., d(z,y"¢)] be
define as the set of estimated distances from a test codeword to the IV, classes
codewords. Let us define A as the matrix composed by the Hamming distances
between the codewords of M. Each position of A is defined by A(i, ) = d(y*, v?),
where d(y*,y’) defines the Hamming distance between codeword i and j. If the
set D is evaluated using the Hamming distance, A can be inverted to find the
vector @ = [q1,¢2, ..., qn,] containing the N, individual class probabilities by
means of Q = A~'DT. This approach is based on the Hamming minimization
theory, hence its properties are the same for the ternary case.

3.2 Extended decoding strategies
The following techniques are adaptations of some traditional decoding strategies
to the ternary case.

Attenuated Euclidean decoding This technique is an adaptation of the
FEuclidean distance to take into account the symbol zero. To solve the previ-
ously commented problem of the Euclidean distance, we redefine the decoding

as d(z,y’) = \/Z;»Lzl |yt | (z; —yt)?, where the factor | y} | rejects the errors
accumulated by the zero symbol at codeword of class i. Using this technique,
we consider that the relevant information is only represented by the coded posi-
tions, though the rest of coded positions still obtains the same relevance in the
decoding process. Extending this discrete idea of the importance of zeros to the
probabilistic case, we find the Loss-based decoding strategy.

Loss-based decoding The loss-based decoding method [5] requires that the
output of the binary classifier is a margin score satisfying two requirements.
First, the score should be positive if the example is classified as positive, and
negative if the example is classified as negative. Second, the magnitude of the
score should be a measure of confidence in the prediction.

Let f(¢,7) be the margin score for example ¢ predicted by the classifier cor-
responding to column j of the code matrix M. For each row i of M and for
each example ¢, we compute the distance between f(/,j) and y* = M(i,7)
Vie{l,..,n},

n

d'(t,i) =Y L(M(i,j) - f(£, 7)) (1)

j=1



where L is a loss function that depends on the nature of the binary classifier.
The two most common loss functions are L(h) = —h and L(h) = e~ ", where
h = M(,7) - f(£,7). We label each example x with the label that minimizes
dr. Note that this technique attenuates the error for the zero symbol while
maintaining the weight for all the coded positions independently of the number
of zeros from each codeword. This technique attenuates the errors introduced by
zeros in the same way that the discrete Attenuated Euclidean distance strategy
extending the measure estimation to an additive probabilistic model.

3.3 Novel decoding strategies

The previous methods attenuate the errors from the zero symbol in a discrete and
probabilistic way. The following novel approaches are based on considering the
distance and probability conditions to decode the coding matrices depending on
their structure, adding new conditions on coded positions to adjust the analysis
of the ternary case.

Laplacian strategy We propose a Laplacian decoding strategy to give to each
class a score according to the number of coincidences between the input codeword
and the class codeword, normalized by the errors without considering the zero
symbol. In this way, the coded positions of the codewords with more zero symbols
attain more importance. The decoding score is estimated by:

C;+1

(2)

where C; is the number of coincidences from the test codeword and the
codeword for class i, F; is the number of failures from the test codeword and
the codeword for class i, and K is an integer value that codifies the number of
classes considered by the classifier, in this case 2, due to the binary partitions
of the base classiers. The offset 1/K is the default value (bias) in case that the
coincidences and failures tend to zero. Note that when the number of C' and FE
are sufficiently high, the factor 1/K does not contribute:

, 1 - C
. A : AR

Beta Density Distribution Pessimistic Strategy The method is based on
estimating the probability density functions between two codewords, extending
the Laplacian ternary properties from the discrete to the probabilistic case. The
main issue of this strategy is to model at the same time the accuracy and un-
certainty based on a pessimistic score to obtain more reliable predictions. We
use an extension of the continuous binomial distribution, the Beta distribution
defined as:

Yz, 0,8) = (1 - 2)° (W



where 1); is the Beta Density Distribution between a codeword x and a class
codeword y° for class i, & and (3 are the number of coincidences and failures
respectively, and z € [0,1]. The expectation E(¢;) and the variance var(v;)of
the distribution are:

ofb
(a+0)2(a+B+1)

where the expectation tends to the Laplacian estimation when C — oo, E —
oo in (2).

Let Z; be the value defined as Z; = argmax,(1;(z)). To classify an input
codeword x given the set of functions ¢ (z) = [11(2), ¥2(2), ..., ¥n.(2)], we select
the class ¢ with the highest score (Z; — a;), where q; is defined as the pessimistic
score satisfying the following equivalency:

E(y;) = var(y;) = (5)

a+p
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Fig. 2. Pessimistic Density Probability estimations for the test codeword z and the
matrix M for the four classes of fig. 1. The probability for the second class allows a
successful classification in this case.

In fig. 2 the density functions [, 9, 13, 14] of fig. 1 for the input test code-
word x are shown. Fig. 2(b) corresponds to the correct class ¢, well-classified by
the method with the highest pessimistic score. One can observe that the Beta
Density Probability decreases faster in ¢; compared to ¢ due to the failure of
one code position for the codeword of class 1 compared to the pessimistic score
of the second codeword with five zeros and two code coincidences.

It can be shown that when a function 1); is estimated by a combination of
sets a and § of z and (1-z) respectively, the sharpness is higher than when it is
generated by a majority of one of the two types. Besides, this sharpness depends
on the number of code positions different to zero and the balance between the
number of coincidences and failures.

4 Results

To test the different decoding strategies, we used the UCI repository databases.
The characteristics of the 5 used databases are shown in table 1. As our main



goal is to analyze the effect of the ternary matrix M, we have generated a set of
matrices with different percentages of zeros. Once generated the coding matrices,
the dichotomies are trained. The generated set of experiments is composed by 6
sets of matrices for each database, each one containing 10 different random sparse
matrices of different percentage of zeros. We increase the number of zeros by 10%
starting from the previously generated matrices to obtain more realistic analysis.
Besides, each matrix from this set is evaluated with a ten-fold cross-validation.
The decoding strategies used in the comparative are: Hamming distance (HD),
Euclidean distance (ED), Inverse Hamming distance (IHD), Attenuated Euclid-
ean Distance (AED), Loss-based decoding with exponential loss-function (ELB),
Loss-based decoding with linear loss-function (LLB), Laplacian decoding (LAP),
and Beta Pessimistic Density Probability (6-DEN).

Table 1. UCI repository databases characteristics.

Problem #Train |# Test | #Attributes|#Classes
Dermathology| 366 - 34 6
Ecoli 336 - 8 8
Glass 214 - 9 7
Vowel 990 - 10 11
Yeast 1484 - 8 10

The tests for the five databases are shown graphically in fig. 3(a)-(e). The
graphics show the error evolution for all the decoding strategies at each database.
In table 2 and fig. 3(f) the ranking of each method at each percentage step
of zeros is shown. The ranking values of the table correspond to the average
performance position for each method for all runs on all databases. One can
observe that some methods obtain reasonable well-positions at the ranking in
all percentages of sparseness, as our proposed Laplacian and Beta Pessimistic
Density Probability decoding. Euclidean distance also can contribute to reduce
the error of zeros better than techniques as loss-based function, although the
last one shows the best accuracy with dense matrices (0% of zeros). However, its
performance is reduced as the number of zeros increases. Observing the global
rank of table 2, the first position is for Beta Pessimistic Density Probability
followed by Laplacian decoding.

Table 2. Mean ranking evolution for the methods on the UCI databases tests when
the number of zeros is increased.

Strategy|0% zeros|10% zeros|20% zeros|30% zeros|40% zeros|50% zeros|Global rank
HD 3.2 3.2 4.4 4.2 4.6 4.0 3.9
ED 3.2 3.2 2.4 2.2 2.6 3.2 2.8
AED 3.2 3.6 4.6 3.8 2.4 4.0 3.6
IHD 3.4 4.0 5.8 4.0 6.0 5.2 4.7
LLB 1.6 6.8 7.0 6.8 6.6 7.2 6.0
ELB 1.6 4.2 6.8 5.2 5.8 5.6 4.9
LAP 2.4 2.2 2.2 2.0 1.8 1.6 2.0

B-DEN 2.4 2.4 1.8 1.0 2.4 1.2 1.9

Table 2 shows that Loss based decoding is the best option for the dense
matrix case, and Beta Pessimistic Density Probability and Laplacian decoding
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Fig. 3. Error evolution for decoding strategies on Dermathology (a), Glass (b), Ecoli
(c), Yeast (d), and Vowel (e) UCI databases. (f) Mean ranking evolution for the methods
on the UCI databases tests. The x-axis correspond to the percentage of ceros (increased
10% by step) of 10 sparse matrices M.

are the best choices when we have an increase of the sparseness degree. If we do
not have information about the composition of the code matrix M, we can use
the general rank of table 2, being the Beta Pessimistic Density Probability and
Laplacian strategies the more suitable for each case.



5 Conclusions

The ternary ECOC when applying a decoding strategy has not been previously
enough analyzed. In this paper, we show the effect on reliability reduction when
the number of zeros (non considered class by a given dichotomy) is increased.
We analyzed the state-of-art ECOC decoding strategies, adapting them to the
ternary case, taking into account the effect of the ternary symbol and the weights
of the code positions depending on the number of containing zeros. We propose
two new decoding strategies that outperform the traditional decoding strategies
when the percentage of zeros is increased. The validation of the decoding strate-
gies at UCI repository databases gives an idea about the techniques that are
more useful depending of the sparseness of the ECOC matrix M, where our pro-
posed Pessimistic Density Probability and Laplacian strategies obtain the best
ranking in the general case. We are planning to extend the proposed decoding
strategies to the continuous case.
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