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1 Centre de Visió per Computador, Campus UAB, 08193 Bellaterra (Barcelona), Spain
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Abstract Error correcting output codes (ECOC)
represent a successful extension of binary classi-
fiers to address the multiclass problem. In this pa-
per, we propose a novel technique called ECOC-
ONE (Optimal Node Embedding) to improve an
initial ECOC configuration defining a strategy to
create new dichotomies and improve optimally the
performance. The process of searching for new
dichotomies is guided by the confusion matrices
over two exclusive training subsets. A weighted
methodology is proposed to take into account the
different relevance between dichotomies. We val-
idate our extension technique on well-known UCI
databases. The results show significant improve-
ment to the traditional coding techniques with far
few extra cost.

Keywords: Error Correcting Output Codes, Multi-
class classification.

1 Introduction

Machine learning studies automatic techniques to
make accurate predictions based on past observa-
tions. There are several multiclass classification
techniques: Support Vector Machines [1], multiclass
Adaboost [2], decision trees [3], etc. Nevertheless,
building a highly accurate multiclass prediction rule
is certainly a difficult task. An alternative approach
is to use a set of relatively simple sub-optimal clas-
sifiers and to determine a combination strategy that
pools together the results. Various systems of mul-
tiple classifiers have been proposed in the litera-
ture, most of them use similar constituent classifiers,
which are often called base classifiers (dichotomies
from now on).

In the ECOC technique, the multiclass to binary
division is handled by a coding matrix. Each row of
the coding matrix represents a codeword assigned to
each class. On the other hand, each column of the
matrix (each bit of the codeword) shows a partition

of the classes in two sets. The ECOC strategy is di-
vided in two parts: the coding part, where the binary
problems to be solved have to be designed, and the
decoding technique, that given a test sample looks
for the most similar codewords. Very few attention
has been paid in the literature to the coding part of
the ECOC. The most known coding strategies are
one-versus-all, all-pairs (one-versus-one) and ran-
dom coding. Crammer et. al [4] were the first authors
reporting improvement in the design of the ECOC
codes. However, the results were rather pessimistic
since they proved that the problem of finding the
optimal discrete codes is computationally unfeasible
since it is NP-complete. Specifically, they proposed
a method to heuristically find the optimal coding ma-
trix by changing its representation from discrete to
continuous values. Recently, new improvements in
the problem-dependent coding techniques have been
presented by Pujol et al. [5]. They propose em-
bedding of discriminant tree structures in the ECOC
framework showing high accuracy with a very small
number of binary classifiers, still the maximal num-
ber of dichotomies is bounded by the classes to be
analyzed.

In this article, we introduce the ECOC Optimal
Nodes Embedding (ECOC-ONE), that can be con-
sidered as a general methodology for increasing the
performance of any given ECOC coding matrix. The
ECOC-ONE is based on a selective greedy optimiza-
tion based on the confusion matrices of two exclusive
training data sets. The first set is used for standard
training purposes and the second one for guiding and
validation avoiding classification overfitting. As a re-
sult, wrongly classified classes are given priority and
are used as candidate dichotomies to be included in
the matrix in order to help the ECOC convergence.
Our procedure creates an ECOC code that correctly
splits the classes while keeping a reduced number of
classifiers. Besides, we compare our optimal exten-



sion with another standard state-of-art coding strate-
gies applied as coding extensions.

2 Background on Error Correcting
Output Codes

The basis of the ECOC framework is to create a code-
word for each of the Nc classes. Arranging the code-
words as rows of a matrix, we define a ”coding ma-
trix” M , where M ∈ {−1, 0, 1}Nc×n in the ternary
case, being n the code length. From point of view
of learning, M is constructed by considering n bi-
nary problems (dichotomies), each corresponding to
a matrix column. Joining classes in sets, each di-
chotomy defines a partition of classes (coded by +1,
-1, according to their class set membership, or 0 if the
class is not considered by the dichotomy). In fig. 1
we show an example of a ternary matrix M . The
matrix is coded using 7 dichotomies {h1, ..., h7} for
a four multiclass problem (c1, c2, c3, and c4). The
white regions are coded by 1 (considered as positive
for its respective dichotomy, hi), the dark regions by
-1 (considered as negative), and the grey regions cor-
respond to the zero symbol (not considered classes
for the current dichotomy). For example, the first
classifier is trained to discriminate c3 versus c1 and
c2, the second one classifies c2 versus c1, c3 and c4,
and so on. Applying the n trained binary classifiers,
a code is obtained for each data point in the test set.
This code is compared to the base codewords of each
class defined in the matrix M , and the data point is
assigned to the class with the ”closest” codeword [6].

Figure 1: Example of ternary matrix M for a 4-class
problem. A new test codeword is misclassified when
using the traditional decoding strategies.

3 ECOC-ONE

ECOC-Optimal Node Embedding defines a general
procedure capable of extending any coding matrix by
adding dichotomies based on discriminability crite-
ria.

Given a multiclass recognition problem, our pro-
cedure starts with a given ECOC coding matrix. The
initial coding matrix can be one of the previously
commented or one generated by the user. We in-
crease this ECOC matrix in an iterative way, adding
dichotomies that correspond to different spatial par-
titions of subsets of classes ℘. These partitions are
found using a greedy optimization based on the con-
fusion matrices so that the ECOC accuracy improves
on both exclusive training subsets. Our training set
is partitioned in 2 training subsets: a training sub-
set of examples that guides the convergence process,
and a validation subset, that leads the optimization
process in order to avoid classification overfitting.
Since not all problems require the same dichotomies,
our optimal node embedding approach generates new
dichotomies just for classes not well separable yet.
Thus, we construct an optimal ECOC-ONE matrix
dependent of the concret domain. To explain our pro-
cedure, we divide the ECOC-ONE algorithm into 3
steps: optimal node estimation, weights estimation,
and ECOC-ONE matrix construction. The training
process guided by the two training and validation
subsets, ignores a significant amount of data from the
training set, which can be redundant or harmful to the
learning process, and avoid overfitting [7].

Let us define the notation used in the follow-
ing paragraphs: given a data pair (x, l), where x
is a multidimensional data point and l is the la-
bel associated to that sample, we define {x, l} =
{xt, lt}

⋃ {xv, lv}, where {xt, lt} and {xv, lv} are
the sets of data pairs associated to training and vali-
dation sets, respectively. In the same way, e(h(x), l)
represents the empirical error over the data set x
given an hypothesis h(·).

3.1 Optimal node estimation

Test accuracy of the training subsets: To intro-
duce each network node, first, we test the current
M accuracy on the training subsets. For this step,
we find the resulting codeword x ∈ {−1, 1}n for
each class sample of these subsets, and we label it as
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l̃ = argminj (d(H(M,h, x), yj)), where d(·) is
a distance value between H(M, h, x) and the code-
word yj . H(M,h, x) is the strong hypothesis result-
ing in applying the set of learning algorithms h(·),
parameterized with Θ on the problems defined by
each column of the ECOC matrix M on a data point
x. The result of H(M,h, x) is an estimated code-
word. We propose the use of a weighed Euclidean
distance in the following way:

d =

√√√√
n∑

i=1

wi(xi − yj
i )2 (1)

where the weight wi introduces the relevance of each
dichotomy in the learning ensemble technique.

The training and validation confusion ma-
trices: Once we test the accuracy of the strong
hypothesis H on the training and validation subsets,
we estimate their respective confusion matrices
ϑt and ϑv. Both confusion matrices are of size
Nc × Nc, and have at position (i, j) the num-
ber of instances of class ci classified as class cj :
ϑ(i, j) = |{(x, l) |h(x) = ci , l = cj}|, where
h(x) is the label estimation obtained using equation
(1) and l is the true label of example x. Once the
matrices have been obtained, we select the pair
{ci, cj} with maximum value according to the
following expression:

{ci, cj} = argmax{Ci,Cj ;i6=j}
(ϑt(i, j) + ϑT

t (i, j, ) + ϑv(i, j) + ϑT
v (i, j))

∀(i, j) ∈ [1, ..., Nc], where ϑT is the transposed
matrix. The resulting pair is the set of classes that
are more easily confounded, and therefore they have
the maximum partial empirical error.

Find the new dichotomy: Once the set of classes
with maximal error has been obtained, {ci, cj}, we
create a new column of the ECOC matrix as follows:
each candidate column considers a possible pair of
subsets of classes ℘ = {{ci

⋃
C1}, {cj

⋃
C2}} ⊆ C

so that C1∩C2∩ci∩cj = ® and Ci ⊆ C. In partic-
ular we are looking for the subset division of classes
℘ so that the dichotomy ht associated to that division
minimizes the empirical error defined by e({x, l}):
℘̃ = argmin℘ (e(H(M ∪mi(℘), h,x), l)), where
mi(℘) follows the rule in equation (3). The col-
umn components associated to the classes in the set
{ci, C

1} are set to +1, the components of the set

{cj , C
2} are set to−1 and the positions of the rest of

classes are set to zero. In the case that multiple candi-
dates obtain the same performance the one involving
more classes is preferred. Firstly, it reduces the num-
ber of uncertainty in the ECOC matrix by reducing
the number of zeros in the dichotomy. Secondly, one
can see that when more classes are involved the gen-
eralization is greater. Each dichotomy finds a more
complex rule on a greater number of classes. This
fact has also been observed in the work of Torralba
et al. [8]. In their work a multi-task scheme is pre-
sented that yields to an improved generalization clas-
sifier by aids of class grouping algorithm. This work
shows that this kind of learners can increase general-
ization performance.

3.2 Weights estimates

It is known that when a multiclass problem is decom-
posed in binary problems, not all of these base classi-
fiers have the same importance and generate the same
decision boundaries. Our approach uses a weight to
adjust the importance of each dichotomy in the en-
semble ECOC matrix. In particular, the weight asso-
ciated to each column depends on the error obtained
when applying the ECOC to the training and valida-
tion subsets in the following way,

wi = 0.5 log(
1− ei

ei
) (2)

where wi is the weight for the ith dichotomy, and
ei is the error produced by this dichotomy at the af-
fected classes of the two training subsets of classes.
This equation is based on the weighed scheme of the
additive logistic regression [2].

Update the matrix: The column mi is added to
the matrix M and the weight wi is calculated using
equation (2).

3.3 ECOC-ONE matrix construction

Once we have generated the optimal nodes, we em-
bed each one in the following way: consider the set
of classes associated to a node Ci = {Ci1∪Ci2|Ci1∩
Ci2 = ®}, the element (i, r) of the ECOC-ONE ma-
trix corresponding to class i and dichotomy r is filled
as (3). The summarized ECOC-ONE algorithm is
shown in table 1.
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Given Nc classes and a coding matrix M ,

for t = 1 to T iterations:

1) Compute the optimal partition ℘i

of the subset of classes
2) Test accuracy on the training and
validation subsets.
3) Select the pair of classes {Ci, Cj}
with the highest error analyzing the
confusion matrices from the training
and validation subsets.
4) Find the partition ℘i containing
{Ci, Cj} that minimizes the error rate
in the training and validation subsets.
5) Compute the weight for the di-
chotomy of partition ℘i based on the
error.

Update the matrix M .

Table 1: ECOC-ONE extension algorithm

M(r, i) =





0 if cr /∈ Ci

+1 if cr ∈ Ci1

−1 if cr ∈ Ci2

(3)

As mentioned before, one of the desirable proper-
ties of the ECOC matrix is to have maximal distance
between rows. In this sense, our procedure focuses
on the relevant difficult partitions, increasing the dis-
tance between the classes. This fact improves the
robustness of the method since difficult classes are
likely to have a greater number of dichotomies fo-
cussed on them. In this sense, it creates different geo-
metrical arrangements of decision boundaries, and
leads the dichotomies to make different bias errors.

4 Results

To test our proposed extension method, we ex-
tend the most well-known strategies used for ECOC
coding: one-versus-all ECOC (one-vs-all) and one-
versus-one ECOC. The decoding strategy for all
mentioned techniques is the standard Euclidean dis-
tance because it shows the same behavior as the
Hamming decoding but it also reduces the confu-
sion due to the use of the zero values [5]. The
decoding strategy for our ECOC-ONE extension is

the Weighted Euclidean distance. The weak classi-
fier used for all the experiments is Gentle Adaboost.
Nevertheless, note that our technique is generic in the
sense that it only uses the classification score. In this
sense it is independent of the particular base clas-
sifier. All tests are calculated using stratified ten-
fold cross-validation and a two-tailed t-test with a
95% confidence interval. In order to test ECOC-
ONE coding extension, we have used a set of very
well-known databases from UCI repository. To test
our extension technique, we have extended the two
commented coding strategies embedding 3 new di-
chotomies for all cases. The results of extending
one-versus-all, and one-versus-one matrices in 5 UCI
databases are shown in tables 2 and ?? respectively.
For each case we show the hit obtained and the num-
ber of dichotomies used for that experiment (#D).
One can observe that adding just 3 extra dichotomies
the accuracy increase considerably in comparison
with the initial coding length. Besides, our problem-
dependent ECOC-ONE coding extension outperform
in all cases the Dense extension strategy due to the
problem-dependent optimal selection of the extra di-
chotomies. One can observe that the confidence rates
for our proposed technique is comparable and de-
creased in most cases in comparison with the results
obtained by the dense extension strategy.

Problem one-versus-all one-versus-all-ONE one-versus-all-dense
Hit #D Hit #D Hit #D

Ecoli 77.00±1.14 8 80.60±0.75 11 77.75±1.02 11
Yeast 51.28±0.99 10 55.84±1.08 13 54.76±1.06 13
Glass 62.34±2.17 7 65.17±1.80 10 65.52±2.07 10

Dermathology 93.17±0.82 6 95.43±0.72 9 94.70±0.69 9
Vowel 73.97±1.73 11 83.63±0.81 14 78.43±1.41 14

Rank 4.00 1.00 1.40

Table 2: Results of coding extensions of one-versus-
all for UCI repository database.

If we compare the initial differences between one-
versus-all and one-versus-one for the initial codes,
their results are considerable different. When the
one-versus-all initial code is extended with 3 extra
ECOC-ONE dichotomies, the results are comparable
with the obtained using one-versus-one with far less
cost.

5 Conclusions

In most of the ECOC coding strategies, the ECOC
matrix is pre-designed, using the same dichotomies
in any type of problem. We introduced a new cod-

4



Problem one-versus-one one-versus-one-ONE one-versus-one-dense
Hit #D Hit #D Hit #D

Ecoli 80.35±1.61 28 80.65±1.59 31 81.20±1.29 31
Yeast 54.58±1.10 45 56.83±0.89 48 54.48±0.94 48
Glass 67.38±1.98 21 68.97±1.99 24 67.79±1.88 24

Dermathology 95.48±0.80 15 96.95±0.67 18 95.83±0.82 18
Vowel 86.00±1.16 55 88.96±1.07 58 81.33±1.24 58

Rank 2.00 1.00 1.80

Table 3: Results of coding extensions of one-versus-
one for UCI repository database.

ing and decoding strategy called ECOC-ONE. The
ECOC-ONE strategy can be seen as a general ex-
tension for any initial coding matrix. The procedure
shares classifiers among classes in the ECOC-ONE
matrix, and selects the best partitions weighed by
their relevance. In this way, it reduces the overall
error for a given problem. Moreover, using the val-
idation subset the generalization performance is in-
creased and overfitting is avoided. We show that this
technique improves in most cases the performance of
any initial code with few extra cost better than other
distance maximization extensions. Besides, ECOC-
ONE can generate an initial small code by itself. As a
result, a compact - small number of classifiers - mul-
ticlass recognition technique with improved accuracy
is presented with very promising results.
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