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Abstract

In this paper, we propose a Compact design of
Error Correcting Output Codes (ECOC) in terms
of the number of dichotomizers. Evolutionary
computation is used for tuning the parameters of
the classifiers and looking for the best Compact
ECOC code configuration. The results over several
challenging multi-class Computer Vision problems
show comparable and even better results than state-
of-the-art ECOC methodologies with far less cost.

Keywords: Ensemble Learning, Error Correct-
ing Output Codes, Evolutionary Optimization,
Multi-class Object Categorization.

1 Introduction
A common way to deal with Multi-class Object
Categorization problems is by means of a divide-
and-conquer approach. In this scope, ECOC have
been applied with successful results. ECOC en-
codes different partitions of the problem in a ma-
trix of codewords1(a)(one codeword per class) and
the final decision is obtained by looking at the

most similar codeword at the test step. Given N
different classes classical ECOC designs require
between N and N2 classifiers, being prohibitive
when the number of classes becomes large. The
proposal of this work relies on the ECOC frame-
work, reducing the number of binary classifiers of
the ensemble. We propose a Compact ECOC de-
sign of size log2(N) in terms of the number of
classifiers. An evolutionary approximation is pro-
posed for tuning the parameters of the classifiers
and looking for a Compact design with high gen-
eralization capability. The novel Compact ECOC
is compared with the state-of-the-art ECOC ap-
proaches, obtaining comparable and even better re-
sults with far less cost. The paper is organized as
follows: Section 2 presents the Compact ECOC
design. Section 3 evaluates the novel methodol-
ogy on different Computer Vision datasets. Fi-
nally, Section 4 concludes the paper.

2 Compact ECOC
2.1 Error-Correcting Output Codes
Given a set of N classes to be learnt in an ECOC
framework, n different bi-partitions (two groups of
classes) are formed, and n binary problems (di-



(a) (b)

Figure 1: Example for Hamming Decoding (a) and
Compact Coding (b)

chotomizers) over the partitions are trained. As
a result, a codeword of length n is obtained for
each class, where each position (bit) of the code
corresponds to a response of a given dichotomizer
(coded by +1 or -1 according to their class set
membership). Arranging the codewords as rows
of a matrix, we define a coding matrix M , where
M ∈ {−1,+1}N×n in the binary case. In the
case of the ternary symbol-based ECOC, the cod-
ing matrix becomes M ∈ {−1, 0,+1}N×n where
the symbol zero means that a particular class is not
considered for a given classifier. Details of classi-
cal binary and ternary designs can be found in [2].
During the decoding process, applying n binary
classifiers, a code x is obtained for each data sam-
ple ρ in the test set. This code is compared to the
base codewords (yi, i ∈ [1, .., N ]) of each class de-
fined in the matrix M , and the data sample is as-
signed to the class with the closest codeword.

2.2 Compact ECOC Coding
The one-versus-all ECOC coding has been widely
applied in the binary ECOC framework (see Fig-
ure 1(a)). Given N classes to be coded, the one-
versus-all codification is of length N . Recently,
several problem-dependent designs have been also
proposed [7]. Those new techniques are based on
exploiting the problem domain by selecting the
representative binary problems that increase the

generalization performance while keeping the code
length ”relatively” small. All previous designs
consider a large number of dichotomizers.

However, we can take advantage of the infor-
mation theory principles to obtain a more compact
definition of the codewords. Having a N -class
problem, the minimum number of bits necessary
to codify and univocally distinguish N codes is
B = dlog2Ne, where d.e rounds to the upper inte-
ger, an example can be seen in figure 1(b).

Moreover, instead of using a predefined Com-
pact coding matrix, we also propose the design of
a different compact codification ofM based on the
distribution of the data and the characteristics of
the applied base classifier, which can increase the
discrimination capabilities of the system. How-
ever, finding a suitable Compact ECOC matrix for
a N−class problem requires to explore all the pos-
sible N × B binary matrices, where B is the min-
imum codeword length in order to define a valid
ECOC matrix. Because of this reason, we also pro-
pose an evolutionary parametrization of the Com-
pact ECOC design.

2.2.1 Evolutionary Compact Parametrization

Given N classes, the number of ECOC matrices

that we can build is ]M =
V N
2B

2 = 2B !
2∗(2B−N)!

. In
these type of scenarios, where the search space is
huge, evolutionary approaches, in special Genetic
Algorithms, are often introduced with good results
[1].

Problem encoding: The first step in order to
use an evolutionary algorithm is to define the prob-
lem encoding, which consists of the representa-
tion of a certain solution or point in the search
space by means of a genotype or alternatively a
chromosome. In binary encoding, every chromo-
some is a string of bits 0 or 1. Although this
encoding is often not natural for many problems
and sometimes corrections must be performed af-
ter crossover and/or mutation, in our case, the chro-
mosomes represent binary ECOC matrices, and
therefore, this encoding perfectly adapts to the



problem. Each ECOC is encoded as a binary
chromosome ζ =< hc11 , . . . , h

c1
B , h

c2
1 , . . . , h

cN
B >,

where hcji ∈ {0, 1} is the expected value of the
i− th classifier for the class cj , which corresponds
to the i− th bit of the class cj codeword.

Adaptation function: Once the encoding is de-
fined, we need to define the adaptation function,
which associates to each individual its adaptation
value to the environment. In the case of the ECOC
framework, the adaptation value must be related
to the classification error. Given a chromosome
ζ =< ζ0, ζ1, . . . , ζL > with ζi ∈ {0, 1}, the first
step is to recover the ECOC matrix M codified in
this chromosome. The values of M allows to cre-
ate binary classification problems from the orig-
inal multi-class problem, following the partitions
defined by the ECOC columns. Each binary prob-
lem is addressed by means of a binary classifier,
which is trained in order to separate both partitions
of classes.

Evolutionary process: We use the standard Ge-
netic Algorithm in order to evolve the Compact
ECOC matrices. During the evolutionary process,
we use a scattered crossover operator, in which,
we generate a random binary vector, with a bi-
nary value assigned to each gene. The first child is
created using all the genes from the first parent in
those positions with a value of one, and the genes
of the second parent with positions with the value
zero. The second child is created as the comple-
mentary of the first one. In order to introduce vari-
ations to the individuals, we use mutation operator
that adds a unit Gaussian distributed random value
to the chosen gene.

Finally, we adopt an Island Model evolution
scheme in order to exploit a more coarse grain par-
allel model. The main idea is to split a population
of K individuals into S sub-populations of K/S
individuals. By introducing migration, the Island
Model is able to exploit differences in the various
sub-populations.

Learning the binary classifiers: In this paper
we adopt the Support Vector Machines with Gaus-
sian Radial Basis Functions as kernel (SVM-RBF).

In the specific case of Gaussian RBF kernels, we
need to learn the kernel parametersC and γ, which
have a close relation to the data distribution. In our
case, for each binary problem, we use Genetic Al-
gorithms in order to find good values for C and γ
parameters.

3 Results

In order to present the results, first, we discuss the
data, methods, and evaluation measurements of the
experiments.

• Data: We apply the methodology in five chal-
lenging computer vision categorization prob-
lems. Labeled Faces in the Wild [5] (184 face
categories). We use a real traffic sign catego-
rization problem [3] (36 traffic sign classes).
Third, the ARFaces dataset [6] (20 classes).
Fourth, we classify old scanned music scores
[4] (7 score categories), and fifth, we classify
the MPEG7 dataset 1 (70 object categories).

• Methods: We compare the one-versus-one
and one-versus-all ECOC approaches with
the binary and evolutionary compact ap-
proaches. The Hamming decoding is applied
at the decoding step. The ECOC base classi-
fier is the OSU implementation of SVM with
Radial Basis Function kernel. The SVM C
and γ parameters are tuned via Genetic Al-
gorithms for all the methods, minimizing the
classification error of a two-fold evaluation
over the training sub-set.

The results are shown in Table 1.
Analyzing globally the results of the Computer

Vision classification problems, which ranks are
shown in the last row of Table 1, one can see that
globally, the one-versus-one is the first choice, fol-
lowed by the evolutionary proposal. The last two
positions are for the binary and one-versus-all cod-
ing designs. This result encourages the use of

1http://www.cis.temple.edu/latecki/research.html



Figure 2: Examples of the 5 Computer Vision datasets

Binary Compact ECOC Evol. Compact ECOC one-vs-all ECOC one-vs-one ECOC
Data set Perf. Classifiers Perf. Classifiers Perf. Classifiers Perf. Classifiers

FacesWild 26.4±2.1 10 30.7±2.3 10 25.0±3.1 184 - 16836
Traffic 90.8±4.1 6 90.6±3.4 6 91.8±4.6 36 90.6±4.1 630

ARFaces 76.0±7.2 5 85.84±5.2 5 84.0±6.3 20 96.0±2.5 190
Clefs 81.2±4.2 3 81.8±9.3 3 80.8±11.2 7 84.2±6.8 21

MPEG7 89.29±5.1 7 90.4±4.5 7 87.8±6.4 6.170 92.8±3.7 2415
Rank & # Classifiers 3.0 5.2 2.2 5.2 3.0 33.2 1.5 814.0

Table 1: Computer Vision data sets classification results.

the Compact approach since there is no eviden-
tial significance in using any of the four methods.
Moreover, note the reduced number of dichotomiz-
ers required by Compact approaches diminishing
in some cases a 400% the number of classifiers
needed by classical approaches.

4 Conclusions
We presented a general methodology for the classi-
fication of several object categories which only re-
quires dlog2Ne classifiers for a N -class problem.
The methodology is defined in the ECOC frame-
work, designing a Compact coding matrix which
univocally distinguish N codes. Moreover, in or-
der to speed up the design of the coding matrix and
the tuning of the classifiers, evolutionary computa-
tion is also applied.

Results over different Computer Vision prob-
lems show comparable ever better results than tra-
ditional ECOC designs with far less number of di-
chotomizers.
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