
OpenCL based machine learning labeling of biomedical datasets

Oscar Amorós, Anna Puig, and Sergio Escalera

Dept. Matemàtica Aplicada i Anàlisis, UB, Gran Via de les Corts Catalanes 585, Barcelona
Computer Vision Center, Campus UAB, Edifici O, 08193, Bellaterra, Barcelona

E-mail: oamorohu7@alumnes.ub.edu,{anna,sergio}@maia.ub.es

Abstract

In this paper, we propose a two-stage labeling
method of large biomedical datasets through a
parallel approach in a single GPU. Diagnostic
methods, structures volume measurements, and
visualization systems are of major importance
for surgery planning, intra-operative imaging and
image-guided surgery. In all cases, to provide an
automatic and interactive method to label or to
tag different structures contained into input data
becomes imperative. Several approaches to label
or segment biomedical datasets has been proposed
to discriminate different anatomical structures in
an output tagged dataset. Among existing meth-
ods, supervised learning methods for segmentation
have been devised to easily analyze biomedical
datasets by a non-expert user. However, they still
have some problems concerning practical applica-
tion, such as slow learning and testing speeds. In
addition, recent technological developments have
led to widespread availability of multi-core CPUs
and GPUs, as well as new software languages, such
as NVIDIA’s CUDA, and OpenCL, allowing to
apply parallel programming paradigms in conven-
tional personal computers.

Adaboost[1] classifier is one of the most widely
applied methods for labeling in the Machine
Learning community. In a first stage, Adaboost
trains a binary classifier from a set of pre-labeled
samples described by a set of features. This bi-
nary classifier is defined as a weighted combina-

tion of weak classifiers. Each weak classifier is a
simple decision function estimated on a single fea-
ture value. Then, at the testing stage, each weak
classifier is independently applied on the features
of a set of unlabeled samples.

In this work, we propose an alternative repre-
sentation of the Adaboost binary classifier. We use
this proposed representation to define a new GPU-
based parallelized Adaboost testing stage using the
OpenCL architecture.

We provide numerical experiments based on
large available data sets and we compare our re-
sults to CPU-based strategies in terms of time and
labeling speeds.

1 Description of purpose

There are several biomedical applications that
need to extract different objects of interest, such
as tissues and organs, contained into a volume
dataset from MRI, CT, fMRI and PET input cap-
tions. Diagnostic methods, structures volume
measurements, and visualization systems require
to specify to which anatomical structure each
sample/voxel[3][4] belongs. In the bibliography,
Transfer Functions has been used in order to di-
rectly associate optical properties or labels to the
different data samples according their belonging to
a particular structure in the underlying data. How-
ever, in general, the anatomical structures are com-
plex, and relationships between them do not allow

to separate sufficiently the different structures. In
these cases, Transfer Functions alone do not suf-
fice in order to separate different objects and it be-
comes necessary to use labeling, or segmentation
methods. In this sense, several approaches to la-
bel biomedical datasets has been proposed to dis-
criminate different anatomical structures in an out-
put tagged dataset depending on the used imag-
ing modality. Among existing methods, supervised
learning methods for segmentation have been de-
vised to easily analyze biomedical datasets by a
non-expert user. In a pre-process, an expert user,
such a radiologist, should to identify a subset of
samples of each anatomical structure. Then, dur-
ing the learning step, the supervised method de-
fines a classifier to be automatically used in the
testing or classification stage. Since learning phase
is carried on a pre-process, before labeling, the
classifier can be used in different classifications
several times by an inexpert users. Thus, to op-
timize the classification stage becomes imperative.

Thanks to the recent emerging technologies of
multi-core CPUs and GPUs, as well as new soft-
ware languages, such as NVIDIA’s CUDA, and
OpenCL[2], we propose to parallelize the classi-
fication step of a well-know supervised method,
called Adaboost, in the GPU.

2 Method(s)

First of all, we revise of the state-of-the-art of
the published methods on classification and their
GPU-based implementations and we justify our
proposed approach, that is three-fold:

• We propose an alternative representation of
the Adaboost binary classifier.

• We use this proposed representation to define
a new GPU-based parallelized Adaboost test-
ing stage using the OpenCL architecture.

• We provide numerical experiments based on
large available data sets and we compare our

results to CPU-based strategies in terms of
time and labeling speeds.

2.1 Adaboost binary classifier

Adaboost classifier is one of the most widely ap-
plied methods for labeling in the Machine Learn-
ing community. In this paper, we focus on the Dis-
crete version of Adaboost, which has shown robust
results in real applications. Given a set of N train-
ing samples (x1, y1), .., (xN , yN), with xi a vec-
tor valued feature and yi = −1 or 1. We define
F (x) =

∑M
1 cffm(x) where each fm(x) is a clas-

sifier producing values ±1 and cm are constants;
the corresponding prediction is sign(F (x)). The
Adaboost procedure trains the classifiers fm(x) on
weighed versions of the training sample, giving
higher weights to cases that are currently misclas-
sified. This is done for a sequence of weighted
samples, and then the final classifier is defined to
be a linear combination of the classifiers from each
stage. Ew represents expectation over the training
data with weights w = (w1, w2, .., wN), and 1(S)
is the indicator of the set S. For a good general-
ization of F (x), each fm(x) is required to obtain
a classification prediction just better than random.
Thus, the most common ”weak classifier” fm is the
”decision stump”. For each fm(x) we just need to
compute a threshold value and a polarity to take a
binary decision, selecting that one that minimizes
the error based on the assigned weights. This sim-
ple combination of classifiers has demonstrated to
reduce the variance error term of the final classifier
F (x).

In Algorithm 1, we show the testing of the final
decision function F (x) =

∑M
1 cffm(x) using the

Discrete Adaboost algorithm with Decision Stump
”weak classifier”. Each Decision Stump fm fits a
threshold Tm and a polarity Pm over the selected
m-th feature. In testing time, xm corresponds to
the value of the feature selected by fm(x) on a test
sample x. Note that cm value is subtracted from
F (x) if the hypothesis fm(x) is not satisfied on
the test sample. Otherwise, positive values of cm

are accumulated. Finally decision on x is obtained
by sign(F (x)).

1: Given a test sample x
2: F (x) = 0
3: Repeat for m = 1, 2, ..,M :

(a) F (x) = F (x) + cm(Pm · xm < Pm · Tm);
4: Output sign(F (x))

Algorithm 1: Discrete Adaboost testing algo-
rithm.

We propose to define a new and equivalent rep-
resentation of cm and |x| that facilitate the par-
allelization of the testing. We define the matrix
Vfm(x) of size 3× (|x| ·M), where |x| corresponds
to the dimensionality of the feature space. First
row of Vfm(x) codifies the values cm for the corre-
sponding features that have been considered during
training. In this sense, each position i of the first
row of Vfm(x) contains the value cm for the feature
mod(i, |x|) if mod(i, |x|) 6= 0 or |x|, otherwise.
The next value of cm for that feature is found in
position i + |x|. The positions corresponding to
features not considered during training are set to
zero. The second and third rows of Vfm(x) for col-
umn i contains the values of Pm and Tm for the
corresponding Decision Stump.

Note that in the representation of Vfm(x) we loss
the information of the order in which the Decision
Stumps were fitted during the training step. How-
ever, though in different order, all trained ”weak
classifiers” are codified, and thus, the final additive
decision model F (x) is equivalent.

2.2 OpenCL architecture

Our proposed OpenCL’s architecture is based pri-
marily on the GPU-PCIe accelerator concept, tak-
ing into account the PCIe bottleneck and the
GPU’s main memory or Global Memory. As we
deal with large datasets of voxels, we use out-of-
core techniques to subdivide the initial dataset into
subset which can fit into GPU main memory. Thus,
PCIe bandwidth becomes an essential factor in the
overall execution.

We overview our proposed parallel architecture
of OpenCL kernels in Figure 2. The eight features
considered at each sample by our binary classifier
are: the spatial location (x, y, z), the sampled value
(v), and its associated gradient value (gx, gy, gz,
|g|). Our binary classifier, for each feature, has
N = 3 ∗ |numberofweigths|

We create a matrix of Work-Groups that cov-
ers the x and y size of the dataset fitted into GPU
global memory, whereas the component z is com-
puted in a inner loop at eack kernel. Each Work-
Group classifies one voxel. Insides each Work-
group, we define N ∗ 8 threads, or WorkItems.
Each thread compute a single operation with the
3 channels or weights of the weak classifier. These
N ∗ 8 values will be reduced at the end of the ex-
ecution and compared to a reduced addition. The
final label at each voxel is directly computed by
this comparison.

3 Results

In order to present the results, we considerate dif-
ferent three-dimensional data from CT and MRI
image modalities with different sizes. For each
data set we trained a Discrete Adaboost classi-
fiers with 32 Decision Stumps. For each voxel
we considered eight features: three spatial coordi-
nates, voxel value, three spatial derivates, and gra-
dient magnitude. Finally, we codified the Discrete
Adaboost testing classifier as described in previ-
ous sections in Matlab, C++, OpenMP, GSGL, and
OpenCL codes. Our preliminary results confirm
our expectations of time consuming and interactiv-
ity of the classification stage.

We achieved PCIe transfers 64 times faster than
the previous GSGL version. The introduction of
gradient calculation into the GPU added also a
speedup having 0,0005 seconds of execution time
for 1283 voxel models in a NVIDIA Geforce GTX
470.

The execution times for the classification ker-
nel are near half that of the GSGL version. In a

Figure 1: The proposed OpenCL classifier implementation.

future iteration, we will improve global memory
reads by reading 64 times the amount of data read
in each global memory transfer. That is preserv-
ing the work-group design, but using a for loop to
make each work-group to classify more voxels.

Figure 2: A 3D classified voxel model.

4 Conclusions

We presented an optimization of Adaboost test
classifier based on OpenCL using the GPU capa-
bilities. The performed experiments on large avail-
able data sets show significant improvements in
terms of computational time.

References
[1] Yoav Freund, Robert E. Schapire. ”Decision-

Theoretic Generalization of on-Line Learning and
an Application to Boosting”, 1995.

[2] http://www.khronos.org/opencl/

[3] Cohen, D. and Kaufman, A., ”Scan Conversion Al-
gorithms for Linear and Quadratic Objects”, in Vol-
ume Visualization, pp. 280-301, 1990.

[4] Kaufman, A. and Shimony, E., ’3D Scan-
Conversion Algorithms for Voxel-Based Graphics’,
Interactive 3D Graphics, 1986.

