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Abstract

The goal of interest point detectors is to find, in an unsu-
pervised way, keypoints easy to extract and at the same time
robust to image transformations. We present a novel set
of saliency features based on image singularities that takes
into account the region content in terms of intensity and lo-
cal structure. The region complexity is estimated by means
of the entropy of the grey-level information; shape infor-
mation is obtained by measuring the entropy of significant
orientations. The regions are located in their representative
scale and categorized by their complexity level. Thus, the
regions are highly discriminable and less sensitive to con-
fusion and false alarm than the traditional approaches. We
compare the novel complex salient regions with the state-
of-the-art keypoint detectors. The presented interest points
show robustness to a wide set of image transformations and
high repeatability, as well as allows matching from different
camera points of view. Besides, we show the temporal ro-
bustness of the novel salient regions in real video sequences,
being potentially useful for matching, image retrieval, and
object categorization problems.

1. Introduction

Visual saliency [9] is a broad term that refers to the
idea that certain parts of a scene are pre-attentively distinc-
tive and create some form of immediate significant visual
arousal within the early stages of the Human Vision Sys-
tem. The term ’salient feature’ has previously been used by
many other researchers [17][9]. Although definitions vary,
intuitively, saliency corresponds to the ’rarity’ of a feature
[5]- In the framework of keypoint detectors, special atten-
tion has been paid to biologically inspired landmarks. One
of the main models for early vision in humans, attributed to
Neisser [ 14], is that consisting of pre-attentive and attentive
stages. In the pre-attentive stage, only ’pop-out’ features are
detected. These are the salient local regions of the image
which present some form of discontinuity. In the attentive
stages, relationships between these features are found, and
grouping takes place in order to model object classes.
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Interest point detectors have been used in multiple appli-
cations: baseline matching for stereo pairs, image retrieval
from large databases, object retrieval in video, shot location,
and object categorization [3][ 16], to mention just a few. One
of the most well-known keypoint detector is the Harris de-
tector [12]. The method is based on searching for edges
that are maintained at different scales to detect interest im-
age points. Several variants and applications based on the
Harris point detector have been used in the literature, such
as Harris-Laplacian [6], Affine variants [12], DoG [10], etc.
In [11], the authors proposed a novel region detector based
on the homogeneity of the parts of the image. Moreover,
the definition of the detected regions makes the description
of the parts ambiguous when considered in object recogni-
tion frameworks. Schmid and Mohr [12] proposed the use
of corners as interest points in image retrieval. They com-
pared different corner detectors and showed that the best re-
sults were provided by the Harris corner detector [6]. In [4],
a method for introducing the cornerness of the Harris detec-
tor in the method of [9] is proposed. Nevertheless, the ro-
bustness of the method is directly dependent on the corner-
ness performance. Kadir et al [9] estimate the entropy of the
grey levels of a region to measure its magnitude and scale
of saliency. The detected regions are shown to be highly
discriminable, avoiding the exponential temporal cost of an-
alyzing dictionaries when used in object recognition mod-
els, as in [17]. However, using the grey level information,
one can obtain regions with different complexity and with
the same entropy values. Recently, the authors of [2] pro-
posed the oriented-based SIFT descriptor such as a stability
criterion to obtain stable scales for multi-scale Harris and
Laplacian points, with great success.

In this paper, we propose a model that allows to detect
the most relevant image features based on their complexity.
We use the entropy measure based on the color or grey level
information and shape complexity (defined by means of a
novel normalized pseudo-histogram of orientations) to cat-
egorize the saliency levels. In literature, orientations have
been previously used for saliency definition with very few
success [9]. Our approach defines a normalized procedure



that makes this measure very relevant and robust.

The paper is organized as follows: chapter ?? explains
our Complex Salient Regions. In section 3, we perform a
set of experiments comparing the state-of-the-art region de-
tectors. The validation is done over public image databases
[8] and video sequences [1][7] in order to test the repeata-
bility, false alarm rate, and matching score of the detectors.
Finally, section 4 concludes the paper.

2. CSR: Complex Salient Regions

In [9], Kadir et. al. introduce the grey-level saliency
regions. The key principle behind their approach is that
salient image regions exhibit unpredictability in their local
attributes and over spatial scale. This section is divided in
two parts: firstly, we describe the background formulation,
inspired by [9]. And, secondly, we introduce the new met-
rics to estimate the saliency complexity.

2.1. Detection of salient regions

The approach to detect the position and scale of the
salient regions uses a saliency estimation defined by the
Shannon entropy at different scales at a given point. In this
way, we obtain the entropy as a function in the space of
scales. We consider significant saliency regions those that
correspond to the maxima of this function, where the max-
imal entropy value is used to estimate the complex salient
magnitude. Now, we define the notation and description of
the stages of the process.

Let H be the entropy of a given region, S, the space of
significant scales, and W the relevance factor (weight). In
the continuous case, the saliency measure v is defined as a
function of scale s and position x, as follows:

Y(Sp,z) = W (Sp,z)H(S,,x) (1)
for each point z and the set of scales at which en-
tropy peaks are obtained (Sp). Then, the saliency is de-
termined by weighting the entropy at those scales by W.
The entropy H(s;,z), where s; € S, is defined as
H(s,z) = — [ p(I,s,z)logy (I, s,z)dI, where p(I, s, )
is the probability density function of the intensity I as a
function of scale s and position x. In the discrete case, for
aregion R, of n pixels, the Shannon entropy is defined as
follows: "
H(R,) =~ _ Pr,(i)logsPr, (i) )
i=1

where Pg_(d;) is the probability of taking the value d;
in the local region R,. The set of scales S}, is defined by the
maxima of the function H in the space of scales S, = {s :

OH(s,x) __ 8%H (s,x)
s =0, 0s> < 0} .
The entropy as a function of the scale space S is shown

in fig. 1. In the figure, a point x is evaluated in the space
of scales, obtaining two local maxima. These peaks of the
entropy estimation correspond to the representative scales
for the analyzed image point.
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Figure 1. Local maxima of function Hp in the scale space S

The relevance of each position of the saliency at its rep-
resentative scales is defined by the inter-scale saliency mea-
sure W(s,z) = S%H(s,x).

Considering each scale s € S that are local maxima (s €
Sp) and pixel x, we estimate W in the discrete case as a
function of the change in magnitude of the entropy over the
scales:
|H(s —1,2) — H(s,z)| + |H(s+ 1,z) — H(s,z)|

2

Wi(s,z) =s 3)
Using the previous weighting factor, we assume that the
significant salient regions correspond to that locations with
high distortion in terms of the Shannon entropy and its peak
magnitude.

2.2. Traditional grey-level and orientation saliency

Kadir et. al. [9] used the grey-level entropy to define
the saliency complexity of a given region. However, this
approach falls short in front of clear cases of different com-
plexities. In fig. 2 one can observe different regions with
the same amount of pixels for each grey level and differ-
ent visual complexity. Note that the approach based on the
grey-level entropy proposed by [9] gives the same entropy
value, thus the same ’rarity’ level for all of them.

Figure 2. Regions of different complexity with the same grey level
entropy.

A natural and well founded measure to solve this pathol-
ogy is the use of complementary orientation information.
In the same work [9], Kadir et. al. shows preliminary
results applying the orientation information in fingerprint
images. However, the use of orientations as a measure of
complexity involves several problems. In order to exem-
plify those problems, suppose that we have the regions (a)
and (b) of fig. 3. Both regions have the same pdf (fig. 3(c)),
but they contain different number of significant orientations
(histograms of fig. 3(d) and (e)). In a regular histogram, low
magnitude gradient is mostly due to noise, and it is distrib-
uted uniformly over all bins. Nevertheless, the pdf obtained
in those cases remains the same because of the histogram
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Figure 3. (a)(b) Two circular regions with the same content at different resolutions. (¢) Same pdf for the regions (a) and (b). (d) Orientations

histogram for (a), and (e) orientations histogram for (b).

normalization. We take into account these issues and we in-
corporate a novel orientations normalization procedure that
evaluate properly the complexity level of each image region.

2.3. Normalized orientation entropy measure

The normalized orientation entropy measure is based on
computing the entropy using a pseudo-histogram of orien-
tations. The usual way to estimate the histogram of orien-
tations of a region is to use a range from 0 to 27 radians.
Considering orientation independent from gradient magni-
tude hide the danger to mix signal with noise (usually, cor-
responding to low gradient magnitudes). In the limit case,
when the gradient is zero, we have a singularity of the ori-
entation function. On the other hand, these pixels normally
correspond to homogeneous regions that can be useful to
describe parts of the objects. To overcome this problem,
we propose to introduce an additional bin that corresponds
to the pixels with undetermined orientation that is called
null-orientation bin. In this case, signal is not mixed with
noise and at the same time, homogeneous regions are taken
into account. Our proposed orientation metric consists of
computing the saliency including the null-orientations in
the modified orientation pdf.

First of all, we compute the relevant gradient magnitudes
of an image to obtain the significant orientations. Instead of
using an experimental threshold, we use an adaptive ori-
entation threshold for each particular image. For a given
image, our method computes and normalized the gradient
module |V(I)] in the range [0..1]. Then, we estimate its
histogram, and the Otsu method [15] is applied to obtain the
adaptive threshold for orientations. The significant orienta-
tion locations obtained for two image samples are shown in
fig. 4.

Considering the £ < K most significant orientations us-
ing the adaptive threshold, where K is the total number of
locations in a given region, we compute the orientations his-
togram ho for n orientation bins. In this case, the number
of null — ortentation locations is fixed to K — k, and they
are added to the histogram ho as ho(n + 1) = K — k.

The position n + 1 of the histogram ho is the null —
orientation bin, and the modified pdf is obtained by means
of:

ho(t)

PRFOW = vt )
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Figure 4. Relevant orientations estimation.

Finally, the pdf PDFp is used to estimate the ori-
entation entropy value of a given region. Note that the
null — orientation bin n + 1 is not included in the en-
tropy evaluation, since its goal is to normalize the first n
bins according to the patch complexity'.

2.4. Combining the saliency

In our particular case, the grey-level histogram is com-
bined with the pseudo-histogram of orientations. We exper-
imentally tested that the performance of both information
offers better performance that only using the orientations
or the grey-level entropy criterion. In this way, once esti-
mated the two corresponding pdf, we apply equations (1),
(2), and (3) to each one in the same way. The final measure
is obtained by means of the simple addition’ v = 75 + Yo,
where v and 7o are estimated by equation (1) for the grey
and orientation saliency, and +y is the result, which contains
the final significant saliency positions, magnitudes (level of
complexity), and scales. This new saliency measure gives
a high complexity value when the region contains different
grey levels information (non-homogeneous region), and the
shape complexity is high (high number of gradient magni-
tudes at multiple orientations). The complexity to estimate
the regions saliency is O(nl), where n is the number of im-
age pixels, and [ is the number of scales searched for each
pixel. The complexity of the second step is O(e), where e is
the number of extrema detected at the previous step. Note
that an exhaustive search is not always required, and not all

1Observe that the entropy measure of the null-orientation bin usually
makes the first n bins non-significative.

2We experimentally observed that this simple combination obtains the
most relevant results in comparison with other kinds of combinations.



pixels and possible scales have to be estimated. Neverthe-
less, the exhaustive search is relatively fast to compute (less
than 1 second in a 800x 640 medium resolution image).

To illustrate the effect of the combined saliency measure,
we designed the toy problem of fig. 6. Figure 5 has 3 rep-
resentative objects of different complexities. We applied
the grey-level entropy, the orientation entropy, and the com-
bined saliency. One can observe that the combined saliency
measure selects the region with higher visual complexity
(fig. 6(c).
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Figure 6. First maximal complexity region for grey-level entropy
(a), orientations entropy (b), and combined entropy (c).

An example of CSR responses for an image sample un-
der different transformations is shown in fig. 5. Rotation,
white noise addition, and affine distortion transformations
are shown. Observe that the CSR regions are maintained in
the set of transformations.

The mean number of detected regions and the mean av-
erage region size for the traditional grey-level saliency and
the novel salient criterion using the Caltech database sam-
ples [8] of fig. 7 are shown in fig. 8. All images are of
medium resolution (approximately 600x600 pixels). The
size of the regions correspond to the radius of the detected
circular regions in 20 bins between radius of length 5 and
100 pixels. Note that the number of detected regions con-
siderably increase using the new metric, in particular it is
about three times more. At same time, the preferred regions
for the novel salient regions are of reasonable sizes, which
tipically implies have a higher discriminable power [13].

Figure 7. Caltech database samples.

As our orientations strategy normalize the input image it
offers invariance to scalar changes in image contrast. The
use of gradients is also invariant to an additive contrast
change in brightness, which makes the technique invariant
to illumination changes. Invariance to scale is obtained by
the scale search of local maximums, and the use of circular
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Figure 8. Histograms of mean region size and number of detected
regions for the samples of fig. 7.

regions takes into account the global complexity of the in-
ner of the regions, which also makes the strategy invariant
to rotation.

3. Results

To validate the presented methodology, we should deter-
mine: data, measurements for the experiments, state-of-the-
art methods to compare, and applications.

a) Data: Images are obtained from the public Caltech repos-
itory [8], and the video sequences from [1] and [7].

b) Measurements: To analyze the performance of the pro-
posed CSR, we perform a set of experiments to show the
robustness to image transformations of the novel regions in
terms of repeatability, false alarm rate, and matching score.
The repeatability and matching score criteria are based on
the evaluation framework of [13]. Besides, we include the
false alarm rate measurement.

¢) State-of-the-art methods: We compare the presented CSR
with the Harris-Laplacian, Hessian-Laplacian, and the grey-
level saliency. The parameters used for the region detectors
are the default parameters given by the authors [11][9][12].
For the salient criteria of [9] and our CSR we use 16 bins
for the grey-level and orientations histograms. The number
of regions obtained by each method strongly depends on the
image since each one can contain different type of features.
d) Applications: To show the wide applicability of the pro-
posed CSR, we designed a broad set of experiments. First,
we compare the performance of the presented CSR with the
traditional approach of [9]. Second, we show the robust-
ness to image transformations of the novel regions. Third,
we match the detected regions of images taken from differ-
ent camera points of view. And finally, we apply the tech-
nique on video sequences to analyze the temporal behavior
by matching the detected regions in different frames.
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3.1. Grey-level Saliency versus CSR

We selected a set of 250 random motorbike samples from
the motorbike Caltech database [8]° and we estimated the
highest saliency responses for each image using the grey-
level saliency and the CSR regions. The mean volume im-
age V of detected regions is shown in fig. 9. The volume
image V is defined as:

1 N
V==->In, )
=1

where I, is the binary image with value 1 at those posi-
tions that fall into the detected circular regions in image I;,
and N is the total number of image samples. One can ob-
serve that the CSR responses recover better the motorbike,
and the probability to detect each object part is higher. In
fig. 10, two examples of detected CSR for the motorbike
database are shown.

(b)
Figure 9. Mean volume image for the most relevant detected land-
marks on the set of Caltech Motorbike database for grey Saliency

(a) and our proposed CSR (b).

(a) (b)

Figure 10. Detected CSR from Caltech motorbike images.

3Note that the motorbike database was chosen to compare the salient
responses of both detectors in a visual distinctive problem, and do not to
try to solve a difficult problem.

(d)
Figure 5. Image transformation tests for CSR responses: (a) input image, (b) initial CSR region detection, (c) 60 degree rotation, (d) white
noise, and (e) affine transformation.

3.2. Repeatability and False Alarm

In order to validate our results, we selected the samples
showed in fig. 7 from the public Caltech repository data-
base [8]. In this set of samples, we applied a set of trans-
formations: rotation (10 degrees per step up to 100), white
noise addition (0.1 of the variance per step up to 1.0), scale
changes (15% per step up to 150), affine distortions (5 pix-
els z-axis distortion per step up to 50), and light decreas-
ing (-0.05 per step of 3 down to -0.5, where the brightness
of the new image is raised to the power of v, where 7 is
1/(1 + 3)). Some examples of image transformations ap-
plied on the samples are shown in fig. 11.

(©) (d)
Figure 11. Image transformations examples: (a) white noise addi-
tion, (b) affine distortion, (c) decreasing light, and (d) image rota-
tion.

Over the set of transformations we apply the evaluation
framework of [13] for the repeatability criterion. The re-
peatability rate measures how well the detector selects the
same scene region under various image transformations. As
we have a reference image for each sequence of transfor-
mations, we know the homographies from each transformed
image to the reference image. Then, the accuracy is mea-
sured by the amount of overlap between the detected re-
gion and the corresponding region projected from the refer-
ence image with the known homography. Two regions are
matched if they satisfy:

Rﬂa ﬂ RHTNbH

1—
R,,URygr, u

< e€o (6)



where R, is the circular region obtained by the detector
and H is the homography between the two images. We set
the maximum overlap error € to 40%, as in [13]. Then, the
repeatability becomes the ratio between the correct matches
and the smaller number of detected regions in the two im-
ages. Besides, to take into account the amount of regions
from the two images that do not produces matches, we in-
troduce the false alarm rate criterion, defined as the ratio
between the number of regions from the two images that
do not match and the total number of regions from the two
images. This measure is desirable to be as small as possible.

The mean results for all images checking the repeatabil-
ity and false alarm ratios for gradually increasing transfor-
mations are shown in fig. 12. Observing the figures, one can
see that Harris and Hessian Laplace normally obtain similar
results, and Hessian Laplace tends to outperform the Harris
Laplace detector. Grey-based salient regions give relatively
low repeatability and high false alarm rate, and it is dra-
matically improved with the the CSR regions, which obtain
better performance than the rest of detectors in terms of re-
peatability, obtaining the highest percentage of correspon-
dences for all types of image distortions. For the case of
false alarm ratio, the CSR and the Hessian Laplace meth-
ods offer the best results, obtaining lower false alarm rate
than the Harris Laplace and grey level salient detectors.

3.3. Matching under different camera points of
view

In this experiment, we considered different points of
view of a camera on the same object. We used a set of
30 real samples from a vehicle. The set of images has been
taken with a digital camera of 4 mega pixels from different
points of views. Some used samples are shown in figure 13.

The matching evaluation is based on the criterion of [13].
A region match is deemed correct if the overlap error €p
is less than a given threshold. This provides the ground
truth for correct matches. Only a single match is allowed
for each region. The matching score is computed as the ra-
tio between the number of correct matches and the smaller
number of detected regions in the pair of images. Instead of
fixing the €p value, we compute the matching score for a set
of €p values, from 0.65 up to 0.2 decreasing by 0.05. The
regions are described using the SIFT descriptor [10] and
compared with the Euclidean distance. The overlap value
is estimated using a warping technique to align manually
the different samples. In fig. 14, the matching score for the
region detectors for different o thresholds are shown. One
can see the low matching percentage of the Hessian-Laplace
due to the locality of the detected regions. The grey-level
entropy and Hessian-Laplace detectors obtain better match-
ing results. Nevertheless, the CSR regions obtain the high-
est percentage of matching for all overlap errors values.
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Figure 14. Matching percentage of the region detectors for the set
of 30 car samples of different points of views in terms of regions
intersection percentage.

3.4. Temporal Robustness

The next experiment is to apply the CSR regions to video
sequences to show their temporal robustness. The temporal
robustness of the algorithm is determined by a high score
of matching salient features in a sequence of images. This
matching is used in order to approximate the optical flow,
and thus, perform the tracking of the object features. We
used the video images from the Ladybug? spherical digital
camera from Point Grey Research group [1]. The car system
has six cameras that enable the system to collect video from
more than 75% of the full sphere [1]. Furthermore, we also
tested the method with road video sequences from the Geo-
van Mobile Mapping process from the Institut Cartografic
de Catalunya [7], that has a stereo pair of calibrated cam-
eras, which are synchronized with a GPS/INS system. For
both experiments we analyzed 100 frames using the SIFT
descriptor [10] to describe the regions. The matching is
done by similar regions descriptors in terms of the Euclid-
ean distance in a neighborhood two times the diameter of
the detected CSRs. The smoothed oriented maps from CSR
matchings are shown in fig. 15 and fig. 16. The smoothed
oriented maps are obtained by filtering with a gaussian of
size 5 x 5 and o = 3 over the map of vectors obtained from
the distances of matching each pair of regions. Fig. 15(a)
shows the oriented map in the first analyzed frame of [1].
Fig. 15(b) focuses on the right region of (a). One can see
that the matched complex regions correspond to singulari-
ties in the video sequence and they approximates roughly
the video movement. From the road experiment of fig. 15,
the oriented map is shown in fig. 15(c). In this video se-
quence cars and traffic signs appear (fig. 15(a) and (b)). The
amplified right region is shown in fig. 15(d). One can ob-
serve the correct movement trajectory of the road video se-
quences.
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(a)

Figure 15. (a) Smoothed oriented CSR matches, (b) Zoomed right region.

(a) (b)

4. Conclusions

We presented a novel set of salient features, the Complex
Salient Regions. These features are based on complex im-
age regions estimated using an entropy measure. The pre-
sented CSR analyzes the complexity of the regions using
the grey-level and orientations information. We introduced
a novel procedure to consider the anisotropic features of
image pixels that makes the image orientations useful and
highly discriminable in object recognition frameworks. The
novel set of features is highly invariant to a great variety of
image transformations, and leads to a better repeatability
and lower false alarm rate than the state-of-the-art keypoint
detectors. These novel salient regions show robust tempo-
ral behavior on real video sequences, and can be potentially
applied to matching under different camera points of view
and image retrieval problems.

We are now evaluating the methodology to design a
multi-class object recognition approach. We want to cat-
egorize the CSR by complexity and group regions to model
a recognition framework.
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