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ABSTRACT

Social network analysis became a common technique used
to model and quantify the properties of social interactions.
In this paper, we propose an integrated framework to ex-
plore the characteristics of a social network extracted from
multimodal dyadic interactions. First, speech detection is
performed through an audio/visual fusion scheme based on
stacked sequential learning. In the audio domain, speech
is detected through clusterization of audio features. Clus-
ters are modelled by means of an One-state Hidden Markov
Model containing a diagonal covariance Gaussian Mixture
Model. In the visual domain, speech detection is performed
through differential-based feature extraction from the seg-
mented mouth region, and a dynamic programming match-
ing procedure. Second, in order to model the dyadic in-
teractions, we employed the Influence Model whose states
encode the previous integrated audio/visual data. Third,
the social network is extracted based on the estimated in-
fluences. For our study, we used a set of videos belonging to
New York Times’ Blogging Heads opinion blog. The results
are reported both in terms of accuracy of the audio/visual
data fusion and centrality measures used to characterize the
social network.
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1. INTRODUCTION

Social interactions play an important role in people’s daily
lives. Either if they are face-to-face or electronic (via e-
mails, SMS, online communities, etc.), they represent the
main communication channel people use to strengthen their
inter-personal ties. As stated in [16], social interactions can
be applicable in two main fields. One of them comes from
linguistics and addresses the problem of social interactions
from the perspective of dialog understanding. The other
one comes from nonverbal communication. Within this lat-
ter framework, nonverbal communication is used in order to
get hints about personal behavior. Facial expression, gaze,
voice prosody, or body gestures provide powerful cues to
display and perceive engagement, persuasion, mirroring, or
status, just to mention a few. At the same time, social sig-
nals provide powerful hints regarding the human behavior,
personality, hierarchical position in a group and to predict
the outcome of the interaction process.

Social Network Analysis (SNA) [18] has its roots in social
psychology and has been developed as a tool to model the so-
cial interactions in terms of a graph-based structure. "Nodes’
represent the ’actors’ who make the subject of the analy-
sis (persons, communities, institutions, corporate data) and
the ’links’ represent the specific type of interdependencies
(friendship, familiarity, knowledge exchange, financial trans-
actions) that exist between 'nodes’. SNA uncovers the im-
plicit relationships between ’actors’ and provides understand-
ing of the underlying social processes and behaviors. For in-
stance, we can identify central nodes, which can have roles
such as leaders or serving as hubs.

In [6], authors used SNA for the purpose of analyzing the
structure of online hate group blogs. In order to build the so-
cial network, a rule-based algorithm was applied. In [7], au-
thors examine how communities can be discovered through
interconnected blogs as a form of social hypertext. From
the model created, they measure community in the blogs
by aligning centrality measures from SNA with measures



of sense of community obtained using behavioral surveys.
Regarding the application of SNA to workgroups, some re-
sults are reported in [3]. The model proposed allowed not
only the study of direct effects of functional role, status, and
communication role on individual performance, but also in-
direct effects through individual centrality. In [17], authors
offer a different application of SNA to workgroups: speaker
role recognition in meetings. The study of SNA-based role
identification has also been reported in [19]. In this work,
the authors build a social network by manually annotating
the interactions between different players in a movie. The
objective is to identify those actors holding a leading role
and the groups created around them. Based on the network
topology, they could infer the movie’s storyline.

Our current paper presents an integrated framework for
extraction and analysis of a social network from multimodal
dyadic interactions:

e First, speech detection is performed through an au-
dio/visual fusion scheme. Audio cues are the primary source
of information that can provide useful evidence for speech
production. However, they cannot easily distinguish a user
who is speaking from the others in a noisy environment,
where several speakers talk simultaneously. Alternatively,
visual cues can be useful in deciding whether somebody is
the active talking person by analyzing his/her lips move-
ment. However, visual cues alone cannot easily distinguish
a speaker from an active listener, who may be just smiling or
nodding without saying anything. For this reason, by com-
bining both audio and visual cues, we expect to obtain an
increased robustness in the speaker diarization process. In
the audio domain, speech is detected through clusterization
of audio features. Clusters are modelled by means of an One-
state Hidden Markov Model (HMM) containing a diagonal
covariance Gaussian Mixture Model (GMM). In the visual
domain, speech detection is performed through differential-
based feature extraction from the segmented mouth region,
and a dynamic programming matching procedure. Finally,
both cues are fused based on stacked sequential learning [9].
The basic idea of stacked sequential learning is to create an
extended data set that joins the original training data fea-
tures with the predicted labels considering a neighborhood
around the example.

e Second, in order to model the relationship in the dyadic
interactions, we employed the Influence Model [5] whose
states encode the integrated audio/visual data.

e Third, the social network is represented as a directed
graph, whose links are estimated based on the influence one
person has over the other. The dyadic interactions which
are the object of our study belong to publicly available New
York Times’ Blogging Heads opinion blog [1]. The whole
process is depicted in figure 1.

An important remark needs to be made at this point. The
use of the term ’influence’ in the context of the present pa-
per was inspired by previous work. Choudhury [8] was able
to show how turn-taking in face-to-face conversation could
be a measure of ’influence’, which was shown to have an
extremely high correlation with one measure of the social
novelty (and thus presumably the interestingness) of the in-
formation being presented.

The paper is structured as follows. Section 2 presents
our approach for audio/visual feature extraction and fu-
sion, based on the particularities of our problem. Section
3 presents the extraction of the social network, including a

Audio features
Hidden Markov Model

Coupled Hidden
Markov Model

Audiospeech
detection

Audio-visual

fusion for Influence
Visual speech SPEE‘_*‘ model
detection

detection

Stacked sequential
learning

Multimedia
Dyadlic interaction

Visualfeatures
Dynamic programming

SNEdge influence
orientation and
magnitude

Figure 1: Block diagram of our integrated frame-
work for Social Network extraction and analysis.

brief recall of the Influence Model. In section 4, we present
the experimental results both in terms of accuracy of the
audio/visual data fusion and centrality measures used to
characterize the social network. Finally, section 5 concludes
the paper.

2. AUDIO-VISUAL CUES EXTRACTION AND

FUSION

In this section, we describe the audio/video feature ex-
traction and fusion methodologies.

2.1 Audio Cue

In order to obtain the audio structure, we use a diarization
scheme based on the approach presented in [11]. According
to this, the mono audio input channel is segmented into a set
of different blocks according to their speech characteristics.
In this section, we introduce the audio processing and the
diarization methodology.

Classical diarization approaches in the literature are only
based on acoustic features [15], and no prior information of
the number of speakers or their voices is necessary. The fi-
nal result of the diarization process is a segmentation of the
input audio in several clusters where the speaker character-
istics are homogeneous. Those clusters must be assigned
later using the visual cue to each one of the speakers.

2.1.1 Speech Feature extraction

The speech signal in the audio domain consists of tones
with different frequencies. The first step in order to process
an audio stream is to create a good representation of this
signal. Classical state-of-the-art representation for audio
is based on Mel Frequency Cepstrum Coefficients (MFCC),
which used to outperform other feature representation tech-
niques. In addition to the MFCC coefficients, the dynamic
features delta and delta-delta, which correspond to the first
and second time-derivatives of cepstral coefficients are added
to enrich the descriptor.

MFCC extraction: The input audio is analyzed using a
sliding-window of 25ms, with an overlap of 10ms be-
tween two consecutive windows, and each window is
processed using a short-time Discrete Fourier Trans-
form. As common in speech recognition, frequencies
are mapped to the mel scale, using the classical corre-



spondence:
_ ! _ f
mel(f) = 2595 logy, ( oo +1) =1127log, (== +1) (1)

where f is a frequency in Hz. Finally, the log mel fre-
quency is converted back to time using the Discrete
Cosine Transform (DCT), obtaining as many MFCC
coefficients as necessary. We extract the first 12 com-
ponents C;:

C = é(log i) {z (k - %) % 2)

for i = 1,...,12, excluding the Cy coefficient, which
corresponds to the mean value of the input signal. The
value Si corresponds to the k component of the FF'T
mapped to the mel scale.

Energy Computation: In the literature, it is common to
complement the MFCC with the normalized log of the
raw signal energy, used as the energy coefficient. The
energy is computed as the logarithm of the signal en-
ergy:

E=log) S%(n) (3)

A MFCC and A? MFCC computation: Finally, in or-
der to improve the audio description, the speech spec-
trum is extended by the temporal cepstral derivative.
The first derivative (A MFCC) is computed by the
equation:

Wonll) <) S Cntt k) (@)

k=—K

AC(t) =

where p and K are proper normalization constants.
The approximation of the second derivative is com-
puted as:

A?Cr(t) = ACm(t+1) — AC,(2) (5)

2.1.2  Speaker segmentation

Once the audio data is properly codified by means of
the extended feature set, an audio-segmentation procedure
based on Bayesian Information Criterion (BIC), following
the steps proposed in [11], is performed.

First, a coarse segmentation is generated according to a
Generalized Likelihood Ratio, computed over two consec-
utive windows of 2.5s. Each block is represented using a
full covariance Gaussian over the extracted features. This
process produces an over segmentation of the audio into ho-
mogeneous small blocks.

The second step consists of a hierarchical clustering over
the segments. Initially, each segment is considered a cluster
and at each iteration of the clustering process, the two most
similar clusters are merged, until the BIC stopping criterion
is met. As in the previous step, each cluster is modelled by
means of a full covariance Gaussian. A first pass of clus-
tering is performed only over adjacent windows in order to
minimize the clustering time.

Finally, a Viterbi decoding is performed in order to adjust
the segments boundaries. Clusters are modelled by means of
an One-state HMM containing a diagonal covariance GMM
of 8 components.

2.2 Visual Cue

Visual cue extraction refers to the segmentation of the
mouth region and classification of the mouth-area appear-
ance in speaking and non-speaking patterns.

2.2.1 Feature extraction

The data we are working with consists of dyadic conversa-
tions in which the speakers are in near-frontal view with re-
spect to the camera. For this kind of scenarios, we first apply
a face detector (as the one proposed by Viola & Jones [14])
in order to limit the search area for the mouth. Once we
have localized the face, we search for the mouth region in
the lower part of the segmented image. An example of a de-
tected face, together with its corresponding mouth region,
is shown in Figure 2(a) and Figure 2(b), respectively.

The next step consists in the extraction of discriminative
features from the mouth region. In this case, the Histogram
of Oriented Gradients (HOG) [10] is one of the preferred
descriptors because of its tolerance to illumination changes
and noise.

(b)

Figure 2: (a) Face and mouth detection and (b) segmented
mouth regions.

2.2.2 Speech classification

Once we have segmented and described the mouth regions
over time, we define the visual speaker diarization as an
one-class classification problem. In other words, we are in-
terested in modelling the non-speaking patterns, since they
present a smaller intra-class variability, and then classify
those temporal patterns that are far away in terms of dis-
tance as speaking patterns. For this purpose we take advan-
tage of the dynamic programming paradigm to match tem-
poral series, and in particular, we use the Dynamic Time
Warping (DTW) technique [4].

The goal of DTW is to find an warping path that aligns
two time series @ = {qi,.,¢n} and C = {c1,..,cm}.
In order to align these two sequences, a n X m matrix is
designed, where the position (4,5) of the matrix contains
the distance between g¢; and c¢;. The Euclidean distance is
the most frequently applied. Then, a warping path W =
{w1,..,wr},max(m,n) < T < m+n + 1 is defined as a
set of ”contiguous” matrix elements that defines a mapping
between @ and C. This warping path is typically subjected
to several constraints:

Boundary conditions: w1 = (1,1) and wr = (m,n).

Continuity: Given w;_1 = (a’,b’), then w; = (a,b), a —
¢ <land b—b <1.

Monotonicity: Given wi—1 = (a’,b'), we = (a,b), a —
a’ < 1and b— b < 1, this forces the points in W to be
monotonically spaced in time.



We are interested in the final warping path, which, satis-
fying these conditions, minimizes the warping cost:

DTW(Q,C) = min ¢ —

where T compensates for the different lengths of the warp-
ing paths. This path can be found very efficiently using
dynamic programming to evaluate the following recurrence
which defines the cumulative distance (%, j) as the distance
d(i,j) found in the current cell and the minimum of the
cumulative distance of the adjacent elements: *

(i, §) = d(i, §) + min{y(i — 1,5 — 1),7( — 1,5),(i,j - 1()%

In our case, the set of model sequences {C} is computed
using the HOG descriptors of non-speaking mouth regions
in m consecutive frames. The set {C} is obtained by su-
pervised labelling using a reduced set of training samples.
Afterwards, the classification of samples as speaking/non-
speaking patterns is performed by the extraction of the set of
queries {Q} (each query fixed to length m in our case) from
the test samples with some overlapping percentage among
consecutive queries, and their alignment to all non-speaking
time series {C'}. If a minimum of k samples from {C} has a
warping cost inferior to a given cost threshold T for a given
query @, then we classify @) as a non-speaking pattern, oth-
erwise, @ is classified as speaking pattern. Once the vector
of label prediction is obtained, we filter the output vector
using a median filtering in order to correct isolated miss-
classifications.

In our case, the selection of a good value of T is criti-
cal for the good performance of the classification task. In
order to look for the optimal choice of T', we perform cross-
validation over the training sequences, selecting the value
that maximizes the classification task over a validation sub-
set. Figure 3 shows an example of the data sequences {Q}
classification for a speaker within a conversation. The square
points are the true labels corresponding to the speaking pat-
terns, and the triangle points to the non-speaking ones. A
threshold near 0.01 in the training step correctly splits both
patterns in the testing step.

2.3 Audio-Visual Data Fusion: Stacked Sequen-

tial Learning

Once we have performed the classification of audio and
video sequences in speaking and non-speaking patterns, we
want to integrate both cues in order to improve the perfor-
mance of the speaker diarization process. Since our data
is characterized by temporal coherence, we use sequential
learning, which can deal with the fusion of audio-video fea-
tures at the same time that includes temporal knowledge in
the classification process. This is done by considering the
predicted labels of the neighborhood samples as new fea-
tures for a second learning procedure. In this way, useful
temporal relations help the audio-visual fusion to improve
final speech classification process.

Sequential learning deals with temporal coherence among
data samples. In literature, sequential learning was ad-
dressed from different perspectives. From the point of view

'Note that though different adjacency elements can be con-
sidered varying the warping normalization factor T, here we
follow the present adjacency rule as the most extended one.
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Figure 3: Result of an one-class classification process for
an excerpt of five minutes conversation. The legend shows
the true label of the samples. Samples are linearly separable

using the DTW-based one-classifier.

of meta-learning, by means of sliding window techniques,
recurrent sliding windows [12], or stacked sequential learn-
ing (SSL) [9] were proposed. From the point of view of
graphical models, HMM and Conditional Random Fields
(CRF) were used to infer the joint or conditional probabil-
ity of the sequence. Recently, Cohen et al. [9] showed that
Stacked Sequential Learning performs better than CRF and
HMM on a subset of problems called "sequential partitioning
problems”. These problems are characterized by long runs
of identical labels. Figure 4 shows a block diagram of the
SSL method. The basic SSL method uses a five-fold cross-
validation on the training set to obtain the predicted set Y’
and considers a sliding window of length w with origin in
the prediction of the current example to extend its features.
That is, for each example in the training set z; € X, the
predicted values y; € Y’ are obtained and joined creating
an extended example 25! = (z;, Yi s - - ,y§+wb) € Xt
where the number of added features is w = wq + wp + 1.
The extended training set is used to train a second classifier
that is expected to capture the sequentiality of the data.

X
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u

ext ’ /
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Figure 4: Stacked Sequential Learning scheme.

In our case, we resize the vector of visual features to the
audio sampling size. Once the vectors fit in size, the com-
bined feature vector is used to train the first classifier h;.
From the output of this classifier over the training data, a
neighborhood w of predicted labels is included as extra fea-
ture for each data point, and a second classifier hg is trained.
As a result of this procedure, we take into account both au-
dio and visual features together and their temporal relations
in the training stage.

3. SOCIAL NETWORKEXTRACTION AND
ANALYSIS

The social network is represented as a directed graph
whose links are estimated by the influence model, based on
the integrated audio/visual features. Afterwards, the prop-
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Figure 5: The Influence Model architecture.

erties of the social network are studied using several central-
ity measures.

3.1 Network Extraction: The Influence Model

The Influence Model (InfModel) [5] is a tool developed
to quantitatively analyze a group of interacting agents. In
particular, it can be used to model human behavior in a
conversational setting. In this context, the participants and
their corresponding interactions are modelled through a cou-
pled HMM. In figure 5, we offer a visual representation of
this architecture.

The model is completely defined by a parametrization
scheme that represent the influence of one chain over the oth-
ers. More concrete, given N participants, the multi-process
transition probability P(S:|S{_1,..., S 1) is approximated
only by the transition probability P(S;|S7_,), where t rep-
resents the time stamp. With this convention, the multi-
process transition could be expressed now as:

P(S{|St-1,.,ST1) = ai; P(SHS]_y) (8)
J

In other words, the state of chain 4 at time ¢ is conditioned
only by the state of chain j at time t—1. The «;; parameters
that appear in the equation above are referred as 'influences’,
because they are constant factors that tell us how much the
state transitions of a given chain depend on a given neighbor.
A more intuitive interpretation could be the following: the
amount of influence from a neighbor is constant, but how
this influence is reflected, depends on its state.

In its current implementation, the InfModel is able to
model interactions between pairs of participants, but it is not
able to model the joint effect of several chains together. The
learning algorithm for the InfModel is based on constrained
gradient descent. For our experiment, we estimated the Inf-
Model based on voicing features (i.e. speaking-non speak-
ing segments), resulted from the integration of audio/video
modalities. Thus, our social network will be created by esti-
mating the influence one person has over the other from the
dyadic interactions.

3.2 Network Analysis

In social network analysis, a common measure to assess a
person’s position in a group is centrality [18]. Several cen-
trality measures exist, which are used to quantify different
aspects of a network. Some of them take into account only
if there is a link between two nodes. Others are based on
the links’ weight (as a way to quantify the ’distance’ between
two nodes). In our case, the weight values are given by the «
coefficients from eq.(8). The most common centrality mea-
sures are: degree, closeness, betweenness, and eigenvector.

Degree centrality: refers to which person is more active
by counting the number of connections to other persons. In
other words, this means which person is able to communicate
directly with the others. In directed graphs, this centrality
measure has two components: in-degree centrality (num-
ber of incoming connections) and out-degree centrality
(number of outgoing connections). A high in-degree value
reflects a person’s availability to receive more information
(to be influenced) by others. On the other hand, a high
out-degree value reflects a person’s ability to influence the
others.

Closeness centrality: is based on the geodesic distance
between one person and the other in the network. It shows
the facility of one person to communicate with the other.
Nodes with small centrality values mean that they are ’close’
to each other. In other words, we expect that the smaller
the centrality value is, the higher the influence of the node
in the network is.

Betweenness centrality: measures how important a per-
son is in bridging two different parts of a network. The re-
moval of such a person (node) could create a breach in the
network, which will ultimately lead to a loss of network co-
hesion. This kind of nodes are very influential in the network
topology.

FEigenvector centrality: is a measure of the importance
of a node in a network. A person’s position in the network
is influenced by the other persons position. In other words,
a person’s position (influence) in the network increases due
to people with high position (influence).

4. EXPERIMENTAL RESULTS

In this section we report some experimental results for the
integrated framework previously described. We first assess
the performance of our proposed scheme for audio/visual
feature fusion. Afterwards, we present some centrality mea-
sures computed for the social network extracted using the
InfModel based on audio/visual features.

Before presenting the results, we make a brief description
of the data, methods, and validation protocol used in the
experiments.

Data: The data used consists of dyadic interactions from
the publicly available New York Times’ Blogging Head opin-
ion blog [1]. The videos show close-ups of two persons
talking in front of a webcam about a given topic (most com-
mon, politics). One of the persons is the ’anchor’ and the
other one the 'guest’. The character of the conversation is
totally informal, so the audio signal is somehow monotonic
and there are no significant variations in voice energy and
speaking rate. In a limited number of videos, we could see
that speakers interrupt each other quite often. In most of the
cases, however, the conversations are characterized by long
turn-takings and almost the absence of overlapping speech
fragments. The average duration of the analyzed conversa-
tions is 30 minutes.



From the whole set of dyadic conversations in the blog,
we collected a subset of 17 videos from 15 different people.
It is important to remark that this selection has been done
taking into account the most active people of the blog. More-
over, the number of conversations selected for each speaker
is proportional to his/her activity in the blog. The people
featuring in the videos also are somehow connected. This se-
lection criteria is important since it shows the general struc-
ture of the most active people in the blog. The remain-
ing participants who do not appear in our selection have
a very sporadic participation, and form small isolated non-
connected sub-graphs in the social network. This selection
criteria is important in order to apply the centrality mea-
sures described in the previous section.

Methods:

- Audio parameters: The size of the sliding window is fixed
to 25ms, with an overlap of 10ms. Each window is repre-
sented by means of 13 (12MFCC+E) ceptral features and
complemented with the A and A?, using only frequencies in
the band (130Hz - 6800Hz). The minimum considered audio
segment is fixed to 2.5s.

- Video parameters: 32 orientation features are computed us-
ing the HOG descriptor over the segmented mouth regions.
The length of the DTW sequences is fixed to 18 region de-
scriptions, which correspond to 1.5 seconds with an overlap-
ping of 0.5 seconds among regions. 10% of the video samples
are used for extracting the ground truth of non-speaking pat-
terns and computing the non-speaking cost threshold, and
the remaining 90% of the samples are used for testing the
visual speaking methodology.

- Fusion parameters: Adaboost with 50 iterations of decision
stumps is used as the classifier for stacked sequential learn-
ing [13]. For the second classifier of the stacked methodology,
the same classifier is used extending the feature space for
each point in a neighborhood of 10 label predictions before
and after each prediction. These values have been experi-
mentally tested to be suitable for our application.

Validation protocol: We used 90% of the data for train-
ing and the remaining for test. For each video, we show
the speaker diarization performance by comparing the vi-
sual cue alone with the audio/visual feature fusion process.
The comparison is done taking into account the ground truth
segmented from the audio data. Centrality measures are also
computed over the extracted social network.

4.1 Audio-video fusion results

The audio clustering methodology returns a vector of la-
bels, where each label corresponds to a possible speaking
cluster, including the non-speaking cluster, and thus ob-
taining different number of clusters for each conversation.
For this reason, we can not obtain a direct performance for
speech segmentation in the audio domain. However, the fu-
sion scheme using the stacked sequential learning associates
the audio cluster labels to the corresponding speakers or
non-speaking patterns based on the information provided
by visual features.

Table 1 shows the visual and audio-visual speaker diariza-
tion results by comparison with the ground truth data. Each
row of the table corresponds to a conversation. The first
column identifies the subjects that participate in each con-
versation (see figure 6). The labels identifying the subjects
and the conversations are graphically shown in the social
network of Figure 6. The best performance of both speakers

in each conversation is marked in bold. Note that in most
of the cases the fusion methodology considerably improves
the video classification, obtaining high accurate predictions.
Only in three of the 34 speakers classification, the fusion is
not able to improve the video results.

In the case of conversation (1-3), though the fusion is not
improved for the second speaker, the final performances are
very similar. In the case of conversation (13-14), the vi-
sual features for the first speaker do not split speech and
non-speech patterns properly. In this case, the 61.99 of ac-
curacy is obtained because of a high number of non-speech
classifications (near 80%), meanwhile the speech detection
is near 40%. These unbalanced results make the fusion a
hard task even with the combination of audio cluster labels.
On the other hand, the case of conversation (7-14) has the
opposite problem. In this case, the audio methodology as-
signed similar labels to clusters of different speakers, which
makes difficult the fusion with visual features. Finally, sig-
nificant performance improvements are obtained with the
fusion methodology in more of the 90% of the cases (31
of 34 subjects). An interesting point is that those people
who appear in different conversations used to maintain their
speech/non-speed discriminability, since they used to act in
a similar way.

Table 1: Visual and Audio-Visual Speaker Diarization Ac-

curacy

Conversation Video A-V

Left Right Left Right

1-2 66.58 58.36 81.90 78.87
1-3 58.01 | 75.82 | 72.90 | 72.52
1-4 68.37 78.50 | 85.48 | 79.16
1-5 88.99 72.50 89.02 84.02
1-6 69.51 61.86 | 91.47 | 90.72
9-3 82.63 61.95 | 97.88 | 80.75
9 -10 65.01 63.71 | 96.92 | 65.44
3-11 65.77 74.91 92.40 93.58
4-3 75.35 64.09 | 80.05 | 91.73
4-12 94.13 75.36 | 94.21 | 93.36
13 - 15 70.96 71.95 97.36 95.18
13- 14 61.99 | 65.11 56.56 | 95.24
12 - 14 86.20 64.02 | 90.25 | 88.31
12 -7 97.75 85.26 | 97.82 | 98.51
8-10 61.44 55.93 92.56 95.09
9-11 67.09 66.88 | 97.80 | 94.98
7-14 55.88 | 63.54 | 96.09 | 60.12

4.2 Centrality measures results

As a result of the audio/visual fusion scheme previously
introduced, we obtained a binary vector whose values rep-
resent the speaking/non-speaking states for each person.
These vectors are fed into the InfModel in order to get the «
coefficients (from equation (8)) which encode the influence
values for each person. We used the InfModel implementa-
tion which comes with the MIT library for speech process-
ing [2]. Based on the «a coefficients, we extracted the graph
of inter-personal relations: the direction of links reflects the
influence of one person over the other. In other words, the
links are weighted by the « coefficients. An ’A—B’ link
can be interpreted as 'A has influence over B’. The resulting
graph is depicted in figure 6.

Note that in this graph only the links with the highest
weights (« coefficients) are represented. The lack of a link



Figure 6: Social Network showing participant’s labels and
influence directions.

between two persons means that these persons do not inter-
act at all. The number which appears on the upper-right
part of each node (face circle) represents person’s number.

Based on the a coefficients, we constructed the associ-
ated sociomatrix which has been subsequently used in the
computation of several centrality measures: degree (with
its two versions, in-degree and out-degree), closeness, be-
tweenness, and eigencentrality. The computed measures are
summarized in table 2. We represented in bold characters
the highest values of these measures.

The conclusions we can extract from this table, in some
cases, are straightforward. If we are interested, for instance,
in the most important node (person) in the network, this
is by far the node 1. This is confirmed by out-degree, in-
degree, and eigenvector centrality measures. At the same
time, we could say that the person designated by node 1 is
the most influential person in the group: he influences up to
four persons, but nobody else is able to influence him.

If we are interested in the person acting as a cohesion
factor for the group (or a hub), this is represented by node
4. This fact is confirmed by the betweenness centrality. We
can identify up to 3 subgroups that are bridged by this node:
(1,2,5,6), (7,12,13,14,15) and (3,8,9,10,11). For this reason,
the role of node 4 in this network is crucial, but his relevance
is different from the node 1. For instance, if he is removed
from the group, the network structure is severely damaged,
practically being split in 3 parts. On the other hand, if we
remove node 1, indeed, we face obviously a loss, but the
network structure is not affected too much.

From the same table, we can also deduce that node 8 is
the most irrelevant component of the group, fact confirmed
by all centrality measures we used. If we remove it from the
network, the effect is null. On the other hand, nodes 9 and
12 are the weakest, in the sense that they are influenced by
all the surrounding neighbors (in-degree centrality measure).

Based on the closeness centrality measures, we can infer
that person 9 is the most influenced. On the other hand,
person 15 has the most influencing potential.

In all the other cases, some aspects might not be that ob-
vious and a disagreement between measures might happen.
This can be explained due to the unsupervised nature of the
network extraction process. As we have mentioned before,
the dyadic interaction takes place in an informal manner.
For this reason, it is impossible to establish, even using hu-
man annotators, an absolute ground truth of the interac-
tional process (who has more influence over whom), because
in our approach we take into account only the non-verbal
analysis, making total abstraction of the conversation con-

tent.

As a final remark it is important to discuss the general
applicability and usefulness of the proposed methodology.
A potential application of our approach is its use in collab-
orative working environments. They could offer very useful
insights of the actual role each person is playing in the group
(based on their activity level or involvement degree) and the
group structure per se (is it a coherent group or not). On the
other hand, social networks can be used to study how the
informational flow propagates in a group or small commu-
nities. This will allow distant users to become better inte-
grated into ongoing discussions, and thus improve distance-
separated social interaction, teamwork, and social network-
ing. In this context, it is more difficult to quantify these
aspects based on explicit input (exchange of messages) due
to privacy concerns. But an implicit input analysis would
offer a more clear perspective of the interactional patterns.

S. CONCLUSIONS

In this paper, we presented an integrated framework for
automatic extraction and analysis of a social network from
implicit input (multimodal dyadic interactions), based on
the integration of audio/visual features.

After the extraction of audio and visual cues, we per-
formed a fusion of audio/video data, based on Stacked Se-
quential Learning, in order to increase the robustness of
the speaker segmentation process. Subsequently, the fea-
ture vector consisting of the audio/video data has been fed
into InfModel in order to determine the influence between
persons in the dyadic interaction. Based on the resulting
relationships, we built the structure of the social network.
Finally, we applied some SNA specific measures (different
types of centrality) in order to extract some characteristics
of the discovered network.

In the future, we plan to extend the current approach and
study the problem of social interactions to a larger scale and
in different scenarios. Starting from the premise that peo-
ple’s lives are more structured than it might seem a priori, we
plan to study long-term interactions between persons, with
the aim to discover underlying behavioral patterns present
in our day-to-day existence. For this purpose, we plan to
use some wearable, sophisticated sociometric devices, able
to record audio, video, and location of the subjects.
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