Compact Evolutive Design of

Error-Correcting Output Codes

Miguel Angel Bautista, Xavier
Baro, Oriol Pujol, Petia
Radeva, Jordi Vitria, and
Sergio Escalera

@ li"'
_ UNIVERSITAT DE BARCELONA l. V q
3
B C C

Ll gt ik pied Cammpaladin




Outline

* Error Correcting Output Codes
* SVMs with Gaussian-RBF kernel
* Genetic optimization

* Experiments & results

* Conclusions



Error Correcting Output Codes (ECOC)

* ECOCs are an ensemble learning methodology which
allow to combine dichotomizers to treat multiclass

problems.
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ECOC coding

* ECOCs can be represented as matrices, which
columns represent the different sub-problems to
treat.

* Each column has values that distinguish categories in
two groups.

* One-versus-All and One-versus-One are the standard
codings.
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ECOC decoding

°* Each sub-problem is trained and the set of
predictions are compared to the codewords.

* Various types of decoding based on Euclidean and
Hamming distances (only binary codings).
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Base classifier: SVM with an RBF kernel

* Each binary problem is learned by a base classifier.

* SVM with RBF kernels have shown a good
performance on those kind of problem:s.

* This type of SVM needs the parameters (C &
Gamma) to be optimized.




Global overview

Minimal Joint Genetic
optimization of ECOC
& Base classifier

ECOC coding




Minimal coding

Define the minimal number of base classifiers
needed to discriminate N categories.

Taking profit of Information theory only log, N bits
are needed to discriminate N categories.
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Global overview

Minimal Joint Genetic

optimization of ECOC

ECOC coding & Base classifier
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Optimization algorithms based on the evolution
theory of Darwin.

Recommendable method when the space is not
continuous neither differentiable.
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Evolutionary optimization for SVMs

* An optimization process is carried out to tune the
parameters of the SVMs.

* SVM-RBF classifiers have mainly 2 parameters (C &
Gamma).

A
C =(h1CI’h2CI’hJC2’ h2C2’ hIC'i”hZC3)

C =(0,0,1,1,1,0)




Evolutionary optimization for ECOCs

* Each ECOC individual is seen as a binary vector and
evaluated by means of its classification error.

1110 1011 A) Optimize the SVMs looking
for suitable parameters.

B) Optimize the coding matrix
and return to step A.
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» Standard genetic operators are used, scattered
crossover and gaussian add unit mutation.
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| Problem | #Training samples | #Features | # Classes |

Dermathology 366 34 6
Iris 150 4 3
Ecoli 336 8 8
Vehicle 846 18 4
Wine 178 13 3
Segmentation 2310 19 7
Glass 214 9 7
Thyroid 215 5 3
Vowel 990 10 11
Balance 625 4 3
Shuttle 14500 9 7
Yeast 1484 8 10
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Results on UCI problems

* As we can see the evolutive minimal performs better
than the standard codings.

Binary Minimal ECOC|Evol. Minimal ECOC| one-vs-all ECOC | one-vs-one ECOC

Data set Perf. Classif. Pert. Classif. Perf. Classif. Perf. Classif.
Derma | 96.0+2.9 3 06.3+2.1 3 05.1+£3.3 6 04.7+4.3 15
Iris 096.41+6.3 2 08.2+1.9 2 96.91+6.0 3 06.3+3.1 3
Ecoli 80.5+10.9 3 81.4710.8 3 79.5+12.2 8 79.21+13.8 28
Vehicle |[72.51+14.3 2 76.99-12.4 2 74.24+13.4 4 83.6110.5 6
Wine | 05.544.3 2 97.212.3 2 95.51+4.3 3 07.21+2.4 3
Segment | 96.6+2.3 3 06.6+1.5 3 96.1+1.8 7 97.18+1.3| 21
Glass 56.7+£23.5 3 50.0=29.7 3 53.85+25.8 6 60.5+26.9 15
Thyroid |96.4+5.3 2 93.8x5.1 2 05.6+7.4 3 06.1+5.4 3
Vowel |57.7129.4 3 81.78+11.1 3 80.7+11.9 8 78.91+14.2 28
Balance |80.9t11.2 2 87.1x9.2 2 80.91+8.4 3 02.816.4 3
Shuttle [80.9420.1 3 83.4£15.9 3 90.6+11.3 7 86.3+18.1| 21
Yeast 50.2+18.2 4 54.7TT11.8 4 51.1+18.0 10 52.44+20.8 45

[Rank & #[ 2.9 | 2.7 20 | 27 F 27 | 57 | 22 ] 159 |




Results on LFW dataset

* In this experiment we can see how evolutionary
approaches outperform standard ECOC codings
while decreasing the number of classifiers
dramatically.

Binary M. ECOC|GA M. ECOC| one-vs-all | one-vs-one
Data set | Perf. # Perf, # | Perf. | # |Perf.| #

FacesWild|26.4£2.1] 10 [30.7+2.3] 10]25.0£3.1[184] - [16836




Conclusions

* The minimal ECOC represents the lower-bound
INn terms of number of classifiers.

* The evolutive ECOC optimization obtains
comparable results to the standard coding
designs (sometimes better ) while using far less
number of dichotomizers.

 This design is suitable when classifying
problems with large number of classes.
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