
ADABOOST GPU-BASED CLASSIFIER FOR DIRECT VOLUME
RENDERING

Oscar Amoros1, Sergio Escalera2, and Anna Puig3

1Barcelona Supercomputing Center - CNS, K2M Building, c/ Jordi Girona, 29 08034 Barcelona, Spain
2UB-Computer Vision Center, Campus UAB, Edifici O, 08193, Bellaterra, Barcelona, Spain

3WAI-MOBIBIO Research Groups, University of Barcelona, Avda.Corts Catalanes, 585, 08007 Barcelona, Spain
oamorohu7@alumnes.ub.edu, {sergio,anna}maia.ub.es

Keywords: Volume Rendering, High-Performance Computing and Parallel Rendering, Rendering Hardware

Abstract: In volume visualization, the voxel visibitity and materials are carried out through an interactive editing of
Transfer Function. In this paper, we present a two-level GPU-based labeling method that computes in times
of rendering a set of labeled structures using the Adaboost machine learning classifier. In a pre-processing
step, Adaboost trains a binary classifier from a pre-labeled dataset and, in each sample, takes into account a
set of features. This binary classifier is a weighted combination of weak classifiers, which can be expressed as
simple decision functions estimated on a single feature values. Then, at the testing stage, each weak classifier
is independently applied on the features of a set of unlabeled samples. We propose an alternative represen-
tation of these classifiers that allow a GPU-based parallelizated testing stage embedded into the visualization
pipeline. The empirical results confirm the OpenCL-based classification of biomedical datasets as a tough
problem where an opportunity for further research emerges.

1 INTRODUCTION

The definition of the visibility and the optical proper-
ties at each volume sample is a tough and non intuitive
user guided process. It is often performed through
the user definition of Transfer Functions (TF). Selec-
tion of regions is defined indirectly by assigning to
zero the opacity since totally transparent samples do
not contribute to the final image. The use of TFs al-
lows to store them as look-up tables (LUT), directly
indexed by the intensity data values during the vi-
sualization, which significantly speeds up rendering
and it is easy to implement in GPUs. In previous
works, the transfer function is broken into two sepa-
rated steps (Cerquides et al., 2006): the Classification
Function (CF) and the optical properties assignment.
The Classification Function determines at each point
inside the voxel model at which specific structure the
point belongs. Next, the optical properties assignment
is a simple mapping that assigns to each structure a
set of optical properties. In this approach, we focus
on the definition and the improvement of the Classifi-
cation Function and its integration into the rendering
process. The main advantage of the classification ap-

proach is that, since a part of the classification can be
carried on a pre-process, before rendering, it can use
more accurate and computationally expensive classi-
fication methods than transfer functions mappings.

Specifically, we use a learning-based classifica-
tion method that splits into two steps: learning and
testing. In the learning step, given a set of train-
ing examples, each marked by an end-user as belong-
ing to one of the set of the labels or categories, the
Adaboost-based Machine Learning training algorithm
builds a model, or classifier, that predicts whether a
new voxel falls into one category or the other. In the
testing stage, the classifier is used to classify a new
voxel description. Thus, the learning step is done in
a pre-process stage, though the testing step is inte-
grated on-the-fly into the GPU-based rendering. In
the rendering step, at each voxel value, the classifier
is applied to obtain a label. We propose a GPGPU
strategy to apply the classifier, interpret the voxels as
the set of objects to classify, and their property values,
derivatives and positions as the attributes or features
to evaluate. We apply a well-known learning method
to a sub-sampled set of already classified voxels and
next we classify a set of voxel models in a GPU-based

testing step. Our goal is three-fold:
• to define a voxel classification method based on a pow-

erful machine learning approach,

• to define a GPGPU-based testing stage of the proposed
classification method integrated to the final rendering,

• to analyze the performance of our method compar-
ing five different implementations with different public
data sets on different hardware.

2 ADABOOST CLASSIFIER
In this paper, we focus on the Discrete version of Ad-
aboost, which has shown robust results in real ap-
plications (Friedman et al., 1998). Given a set of N
training samples (x1,y1), ..,(xN ,yN), with xi a vector
valued feature and yi = −1 or 1, we define F(x) =
∑

M
1 c f fm(x) where each fm(x) is a classifier produc-

ing values ±1 and cm are constants; the correspond-
ing prediction is sign(F(x)). The Adaboost procedure
trains the classifiers fm(x) on weighted versions of
the training sample, giving higher weights to cases
that are currently misclassified. This is done for a se-
quence of weighted samples, and then the final clas-
sifier is defined to be a linear combination of the clas-
sifiers from each stage. For a good generalization of
F(x), each fm(x) is required to obtain a classification
prediction just better than random (Friedman et al.,
1998). Thus, the most common ”weak classifier” fm
is the ”decision stump”. Stumps are single-split trees
with only two terminal nodes. If the decision of the
stump obtains a performance inferior to 0.5 over 1, we
just need to change the polarity of the stump, assur-
ing a performance greater (or equal) to 0.5. Then, for
each fm(x) we just need to compute a threshold value
and a polarity to take a binary decision, selecting that
one that minimizes the error based on the assigned
weights.

In Algorithm 1, we show the testing of the final de-
cision function F(x) = ∑

M
1 c f fm(x) using the Discrete

Adaboost algorithm with Decision Stump ”weak clas-
sifier”. Each Decision Stump fm fits a threshold Tm
and a polarity Pm over the selected m-th feature. In
testing time, xm corresponds to the value of the fea-
ture selected by fm(x) on a test sample x. Note that cm
value is subtracted from F(x) if the hypothesis fm(x)
is not satisfied on the test sample. Otherwise, positive
values of cm are accumulated. Finally decision on x is
obtained by sign(F(x)).

1: Given a test sample x
2: F(x) = 0
3: Repeat for m = 1,2, ..,M:

(a) F(x) = F(x)+ cm(Pm · xm < Pm ·Tm);
4: Output sign(F(x))

Algorithm 1: Discrete Adaboost testing algorithm.

We propose to define a new and equivalent repre-
sentation of cm and |x| that facilitate the paralleliza-
tion of the testing. We define the matrix Vfm(x) of size
3× (|x| ·M), where |x| corresponds to the dimension-
ality of the feature space. First row of Vfm(x) codifies
the values cm for the corresponding features that have
been considered during training. In this sense, each
position i of the first row of Vfm(x) contains the value
cm for the feature mod(i, |x|) if mod(i, |x|) 6= 0 or |x|,
otherwise. The next value of cm for that feature is
found in position i+ |x|. The positions corresponding
to features not considered during training are set to
zero. The second and third rows of Vfm(x) for column
i contains the values of Pm and Tm for the correspond-
ing Decision Stump. Thus, each “weak classifier” is
codified in a channel of a 1D-Texture, respectively.
As our main goal is to have real time test-
ing, we deal with two main possibilities: a
GLSL-programmed method on the fragment shader
and an OpenCL/CUDA implementation using the
OpenCL/CUDA-GL integration. We choose OpenCL
for portability reasons. Using GLSL, the gradient cal-
culation habitually is computed on CPU because it’s
faster. Then the results are send to the GPU as shown
in Figure 1. The testing and visualization stages can
be computed into the fragment shader to obtain good
speedups. Through OpenCL, in contrast to GLSL,
we can control almost all the hardware so we can
solve the gradient problem faster in the GPU using
an adaptation of the Micikevicius algorithm (Micike-
vicius, 2009). Thus, the gradient calculation and the
classification steps can be computed into the GPU re-
ducing the PCIe transfers and computing each step
faster. In the OpenGL side we use a 3D Texture Map
to visualize the models. The integration of OpenCL
and OpenGL allows to avoid sending the OpenCL la-
beled voxel model back to the Host and visualize it di-
rectly. The OpenGL layer loads the data to the graph-
ics card and then OpenCL obtains the ownership of
the data from the global memory, processes it and re-
turns ownership to OpenGL when finished.

3 GPGPU IMPLEMENTATION:
INTRODUCING WORK GROUP
SHARING

As shown in Figure 1, we propose two OpenCL
kernels: the gradient and the classification or testing
kernel.

Next, we overview our proposed OpenCL classi-
fication kernel algorithm. The eight features consid-
ered for each sample by our binary classifier are: the
spatial location (x, y,z), the sampled value (v), and its
associated gradient value and magnitude (gx, gy, gz,
|g|). Our binary classifier has a total of N possible cm

Figure 1: GPGPU implementation overview: GLSL and OpenCL approaches.

values, with N = 3 ·M. We create a matrix of Work-
Groups (WG) that covers the x and y dimensions of
the dataset, whereas the component z is computed in a
loop. Each WG classifies one voxel. Inside each WG,
we define N · 8 threads or WorkItems (WI) where N
is a multiple of two. Each WI computes a single step
with the three weights weak classifiers and produces
a value. These N ·8 values will be reduced at the end
of the execution. This process parallelizes the step
3 of the Discrete Adaboost testing algorithm defined
in Algorithm 1. Finally, the sign of this computed
value (sign(F(x))) is used to obtain the label of the
processed voxels.

The way we are using threads and Global Memory
transfers follows what we call Work Group Sharing
(WGS), a short form of Work Group global memory
transfer sharing. Our WGS method is characterized
by:

• Counter intuitive global memory use. A work group
reads minimum global memory data and produces the
result for a single voxel. Classifying different voxels al-
lows the work group to read at maximum global mem-
ory bandwidth. It is as to say that several work groups
share a single global memory transaction, but in fact we
are using only one WG.

• To process n voxels we can use 240 threads serializing
n steps instead of using n threads serializing 240 steps
each one. That gives a greater number of threads and so
forth better performance (latency hiding) and scalabil-
ity.

• Local memory gets alleviated. We store n half voxels
instead of 240 for each workgroup.

In summary, finer grain parallelization, more local
memory and more registers available allow to extra
tune the code for faster execution.

4 SIMULATIONS AND RESULTS
In order to present the results, first, we define the

data, methods, hardware platform, and validation pro-
tocol.

• Data: We used three datasets: the Thorax data set rep-
resents a phantom human body; Foot and Hand are CT
scan of a human foot and a human hand, respectively.

• Methods: We use a Discrete Adaboost classifier with
30 Decision Stumps and codified the testing classifier
in Matlab, C++, OpenMP, GSGL, and OpenCL codes.

• Hardware platform: We used a Pentium Dual Core 3.2
GHz with 3GB of RAM and equipped with a NVIDIA
Geforce 8800 GTX with 1 GB of memory running a
64-bit Ubuntu Linux distribution, a PC with a quad core
Phenom2 x4 955 processor with 4GB of DDR3 mem-
ory equipped with an NVDIA Geforce GTX470 with
1,28 GB of memory. The viewport size is 700×650.

• Validation protocol: We compute the mean execution
time from 500 code runs. For accuracy analysis, we
performed stratified ten-fold cross-validation.

The classification performance of the Adaboost-
GPU classifier on each individual dataset is analyzed
in Table 1. We defined different binary classification
problems of different complexity for the three medi-
cal volume datasets. Last column of the table shows
the number of weak classifiers required by the clas-
sifier in order to achieve the corresponding perfor-
mance. For the different binary problems we achieve
performances between 80% and 100% of accuracy.
These performances depend on the feature space and
its inter-class variability. Binary problems which con-
tain classes with a higher variability of appearance re-
quire more weak classifiers in order to achieve good
performance. This increment of weak classifiers also
implies an additional learning time. However, the
testing time of the GSGL approach basically depends
on the size of the data set and on the number of weak
classifiers learned in the training stage. We can con-
clude that there also exists a constant time in the load-
ing of data into GPU, and that the variability in the
testing times is non-significant.

In Table 2, we analyze the testing performance
for the different CPU-GPU implementations and
hardware. First of all, we have compared the time per-

Dataset Size Features Weak classifiers Accuracy Learning Testing (GPU)
Foot 128x128x128 Bones and Soft tissue 1 99.95% 2.3s 0.0461s
Foot 128x128x128 Finger’s bone 8 99.89% 11.45s 0.1567s
Foot 128x128x128 Ankle’s muscle 7 99.21% 10.01s 0.1611s

Thorax 400x400x400 Vertebra and Column 3 99.01 3.2s 0.7157s
Thorax 400x400x400 Bone and lungs 30 84.15% 33.14s 1.9253s
Thorax 400x400x400 Bone and liver 30 78.28% 32.8s 1.9154s
Hand 244x124x257 Bone 1 100% 2.8s 0.1653s

Table 1: Testing step times in seconds of the different datasets. The different labellings to learn increases the number of weak
classifiers needed to test them. Testing times has been obtained running our OpenCL implementation on a GTX470 graphic
card.

Foot Hand Thorax

0.1256s 0.1653s 1.9253s
Table 2: Results and times in seconds of the integrated OpenCL GPU-based renderings in the GTX470 graphic card.

formance of our GPU parallelized testing step in rela-
tion to the CPU-based implementations and the GLSL
approach. We show the averaged times of the five im-
plementations with the different sized datasets. Our
proposed OpenCL-based optimization has a speed up
of 89.91x over a C++ CPU-based algorithm and a
speed up of 8.01x over the GLSL GPU-based algo-
rithm. Finally, Table 3 shows the visualization of
the three datasets and the corresponding timings of
their visualizations, with the integrated in the render-
ing pipeline.

Dataset Size Matlab CPU OMP GLSL OpenCL

Foot 128x128x128 18.32s 9.63s 8s 1.32s 0.12s
Hand 244x124x257 67.29s 26s 20s. 2.86s 0.16s

Thorax 400x400x400 114.28s 33.76s 25s 4.41s 1.92s

Table 3: Testing step times in seconds of the different
datasets with the five implementations. GLSL and OpenCL
times has been obtained using the GTX470 graphic card.

5 CONCLUSIONS
In this paper, we presented an alternative approach in
medical classification that allows a new representa-
tion of the Adaboost binary classifier. We also defined
a new GPU-based parallelized Adaboost testing stage
using a OpenCL implementation integrated to the ren-
dering pipeline. We used state-of-the-art features for
training and testing different datasets. The numerical
experiments based on large available data sets and the
performed comparisons with CPU-implementations
show promising results.

ACKNOWLEDGMENTS
This work has been partially funded by the

projects TIN2008-02903, TIN2009-14404-C02,
CONSOLIDER INGENIO CSD 2007-00018, by the
research centers CREB of the UPC and the IBEC
and under the grant SGR-2009-362 of the Generalitat
de Catalunya, and the CASE and Computer Science
departments of Barcelona Supercomputing Center.

REFERENCES

Cerquides, J., Lpez-Snchez, M., Ontan, S., Puertas, E.,
Puig, A., Pujol, O., and Tost, D. (2006). Classifica-
tion algorithms for biomedical volume datasets. LNAI
4177 Springer, pages 143–152.

Friedman, J., Hastie, T., and Tibshirani, R. (1998). Additive
logistic regression: a statistical view of boosting. In
The annals of statistics, volume 38, pages 337–374.

Micikevicius, P. (2009). 3d finite difference computation on
gpus using cuda. In General Purpose Processing on
Graphics Processing Units, GPGPU-2, pages 79–84,
New York, NY, USA. ACM.

