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Abstract Intravascular ultrasound (IVUS) represents
a powerful imaging technique to explore coronary
vessels and to study their morphology and histologic
properties. In this paper, we characterize different
tissues based on radial frequency, texture-based, and
combined features. To deal with the classification of
multiple tissues, we require the use of robust multi-
class learning techniques. In this sense, error-correcting
output codes (ECOC) show to robustly combine bi-
nary classifiers to solve multi-class problems. In this
context, we propose a strategy to model multi-class
classification tasks using sub-classes information in the
ECOC framework. The new strategy splits the classes
into different sub-sets according to the applied base
classifier. Complex IVUS data sets containing over-
lapping data are learnt by splitting the original set
of classes into sub-classes, and embedding the binary
problems in a problem-dependent ECOC design. The
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method automatically characterizes different tissues,
showing performance improvements over the state-of-
the-art ECOC techniques for different base classifiers.
Furthermore, the combination of RF and texture-based
features also shows improvements over the state-of-
the-art approaches.
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1 Introduction

Cardiovascular diseases represents the first cause of
sudden death in the occidental world [1]. Plaque rup-
ture is one of the most frequent antecedent of coronary
pathologies. Depending on the propensity to collapse,
coronary plaque can be divided into stable and vulner-
able plaque [2]. According to pathological studies, the
main features of a stable plaque are characterized by
the presence of a large lipid core with a thin fibrous
cap. This last type of plaque can rupture generating
thrombi followed by an intimal hyperplasia. There-
fore, an accurate detection and quantification of plaque
types represents an important subject in the diagnosis
in order to study the nature and the plaque evolution
to predict its final effect.

One of the most widely used diagnostic procedures
consists of screening the coronary vessels employing in-
travascular ultrasound imaging (IVUS). This technique
yields a detailed cross-sectional image of the vessel
allowing coronary arteries and their morphology to be
extensively explored. This image modality has become
one of the principal tools to detect coronary plaque.
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An IVUS study consists of introducing a catheter which
shots a given number of ultrasound beams and collect
their echoes to form an image. According with these
echoes, three distinguishable plaques are considered in
this type of images: calcified tissue (characterized by a
very high echo-reflectivity and absorbtion of the ultra-
sound signal), fibrous plaque (medium echo-reflectivity
and good transmission coefficient), and lipidic or soft
plaque (characterized with very low reflectance of the
ultrasound signal).

Despite the high importance of studying the whole
coronary vessel, in clinical practice, this plaque char-
acterization is performed manually in isolated images.
Moreover, due to the variability among different ob-
servers, a precise manual characterization becomes
very difficult to perform. Therefore, automatic analysis
of IVUS images represents a feasible way to predict
and quantify the plaque composition, avoiding the sub-
jectivity of manual region classification and diminishing
the characterization time in large sequences of images.

One of the main problems of the automatic tissue
classification is the high variability in appearance of
the same plaque in the images. This is mainly caused
by the different image acquisition conditions of IVUS
sequences. In order to enhance different IVUS regions,
physicians typically change the image parameter set
such as depth or region-based contrast of the imaging
equipment. Furthermore, once the IVUS images are
recorded, normalizing them with a unique parameter
set (gain and offset) becomes impossible due to the
loss of information and the non-linear transformation
of the data in the image formation process. This lack
of normalization hinders the automatic classification
making coronary tissues from different case studies
non comparable.

Given its clinical importance, automatic plaque clas-
sification in IVUS images has been considered in sev-
eral research studies. The process can be divided in
two stages, plaque characterization step which consist
in extracting characteristic features in order to describe
each tissue, and a classification step where a learn-
ing technique is used to train a classifier. In the first
stage there are mainly two basic strategies: image-based
approaches [19–21], and radio frequency (RF) signal
analysis [22–24]. The main advantage of image-based
methods is the availability of the images since they are
the standard data source of the equipment. Addition-
ally there is a high variety of descriptors which capture
the spatial information of gray level values of a pixel
together with its neighborhood in the image. How-
ever, this source suffers from a loss of information and
the introduction of artifacts due to the reconstruction
process. In Pujol et al. [19], authors propose to compute

texture measurements such as local binary patterns to
characterize the image, followed by the classification
based on the AdaBoost learning technique with deci-
sion stumps. Korte et al. [21] use the difference of gray
scale densities in the image with the k-means to classify
fibrous and lipid plaque. Zhang et al. [20] use the gray
scale values by means of co-occurrence matrices in or-
der to segment and classify regions of different plaques,
with the nearest neighbor learning technique. One of
the main problems of these techniques is that they do
not take into account the plaque size variation and
they suffer from high variability among non-normalized
DICOM sequences.

Characterization of RF signal has been proposed in
[23] and [22] to take advantage of the of the raw IVUS
signals. This data source represents a better the ultra-
sound data avoiding the introduction of artifacts from
the pixel interpolation in the process of image forma-
tion. Due to the higher resolution of the unprocessed
data, small regions of plaque could be distinguished.
The approaches using this technique are: Kawasaki
et al. [23] calculate the power of the acquired RF signal
in decibels. On the other hand, Nair et al. in [22] obtain
the power spectrum of a signal window using AR mod-
els and extract 8 measures from it (as maximum power,
positive and negative slope, among others). However,
this kind of data is not easily available and its processing
is usually restricted to local spots [23]. In addition, the
spatial information is lost when spectral measurements
are calculated [22]. The preferred learning strategy for
the plaque recognition is based on classification trees of
the extracted features [22, 23].

In this paper, we base on texture-based features,
RF signals, and combined features to characterize the
different types of tissues. For the learning step, we
focus on error-correcting output codes as a general
framework to combine binary classifiers to deal with
multi-class categorization problems. ECOC were born
as a general framework to combine binary problems
to address the multi-class problem. The strategy was
introduced by Dietterich and Bakiri [3] in 1995. Based
on the error correcting principles [3], ECOC has been
successfully applied to a wide range of applications,
such as face recognition [4], face verification [5], text
recognition [6] or manuscript digit classification [7]. In
this context, we propose a novel technique to address
multi-class classification problems by means of error-
correcting output codes. The new methodology is based
on the splitting of the original set of tissue classes into
different sub-tissues so that the base classifier applied
is able to learn the data. In this sense, complex data
sets containing overlapping data can be modelled by
splitting the original set of classes into sub-classes and
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embedding the binary problems in a problem-
dependent ECOC design. The method shows to auto-
matically characterize different tissues using different
feature sets with high performance, obtaining signif-
icant performance improvements compared to previous
state-of-the-art ECOC strategies for different base
classifiers, such as discriminant analysis, AdaBoost, or
support vector machines.

The paper is organized as follows: Section 2
overviews the ECOC framework and presents the new
sub-class approach. Section 3 explains the acquisition
of tissue features, and Section 4 shows the experimental
results. Finally, Section 5 concludes the paper.

2 Problem-Dependent ECOC Sub-class

The ECOC technique can be broken down into two
distinct stages: encoding and decoding. Given a set of
classes, the coding stage designs a codeword1 for each
class based on different binary problems. The decoding
stage makes a classification decision for a given test
sample based on the value of the output code.

2.1 Error-Correcting Output Codes

Given a set of Nc classes to be learned, at the coding
step of the ECOC framework, n different bi-partitions
(groups of classes) are formed, and n binary problems
(dichotomies) are trained. As a result, a codeword of
length n is obtained for each class, where each bin of the
code corresponds to a response of a given dichotomy.
Arranging the codewords as rows of a matrix, we define
a “coding matrix” M, where M ∈ {−1, 0, 1}Nc×n in the
ternary case. Joining classes in sets, each dichotomy is
coded by {+1, −1} according to their class set mem-
bership, or 0 if the class is not considered by the
dichotomy. In Fig. 1 we show an example of a one-
versus-one coding matrix M, where each dichotomy
learns to split a pair of classes. The matrix is coded
using 6 dichotomies {h1, ..., h6} for a four-class problem
(c1, c2, c3, and c4). The white regions are coded by 1
(considered as positive for its respective dichotomy, hi),
the dark regions by −1 (considered as negative), and
the grey regions correspond to the zero symbol (not
considered classes by the current dichotomy). For ex-
ample, the first classifier (h1) is trained to discriminate
c1 versus c2 ignoring c3 and c4, the second one classifies
c1 versus c3 ignoring c2 and c4, etc.

1The codeword is a sequence of bits of a code representing each
class, where each bit identifies the membership of the class for a
given binary classifier.

Figure 1 Example of ternary matrix M for a four-class problem.
A new test codeword is classified using a decoding strategy.

During the decoding process, applying the n trained
binary classifiers, a code x is obtained for each data
point in the test set. This code is compared with the
base codewords of each class {y1, ..., y4} defined in the
matrix M. And the data point is assigned to the class
with the “closest” codeword [8, 9]. Although different
distances can be applied, the Hamming (HD) and the
Euclidean distances (ED) are the most frequently used.
In Fig. 1, a new test input x is evaluated by all the
classifiers and the method assigns label ci with the
closest decoding measure.

2.2 ECOC Sub-class

From an initial set of classes C of a given multi-class
problem, the objective of the Sub-class ECOC strategy
is to define a new set of classes C′, where |C′| > |C|, so
that the new set of binary problems is easier to learn
for a given base classifier. For this purpose, we use a
guided procedure that, in a problem-dependent way,
groups classes and splits them into sub-sets if necessary.

Recently, the authors of [10] proposed a ternary
problem-dependent design of ECOC, called discrimi-
nant ECOC (DECOC), where given N classes, a high
classification performance is achieved with only N − 1
binary problems. The method is based on the embed-
ding of discriminant tree structures derived from the
problem domain. The binary trees are built by looking
for the partition that maximizes the mutual information
(MI) between the data and their respective class labels.
Look at the three-class problem shown on the top of
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Fig. 2a. The standard DECOC algorithm considers the
whole set of classes to split it into two sub-sets of classes
℘+ and ℘− maximizing the MI criterion on a sequen-
tial forward floating search procedure (SFFS). In the
example, the first sub-sets found correspond to ℘+ =
{C1, C2} and ℘− = {C3}. Then, a base classifier is used
to train its corresponding dichotomizer h1. This classi-
fier is shown in the node h1 of the tree structure shown
in Fig. 2d. The procedure is repeated until all classes
are split into separate sub-sets ℘. In the example, the
second classifier is trained to split the sub-sets of classes
℘+ = C1 from ℘− = C2 because the classes C1 and C2

were still contained in a single sub-set after the first
step. This second classifier is codified by the node h2

of Fig. 2d. When the tree is constructed, the coding

(a) (b)

(d) (e)

(c)

Figure 2 a Top original three-class problem. Bottom four sub-
classes found. b Sub-class ECOC encoding using the four sub-
classes using discrete AdaBoost with 40 runs of decision stumps.
c Learning evolution of the sub-class matrix M. d Original tree
structure without applying sub-class. e New tree-based configu-
ration using sub-classes.

matrix M is obtained by codifying each internal node of
the tree as a column of the coding matrix (see Fig. 2c).

In our case, sequential forward floating search
(SFFS) is also applied to look for the sub-sets ℘+ and
℘− that maximizes the mutual information between the
data and their respective class labels [10]. The encoding
algorithm is shown in Table 1. Given a N-class problem,
the whole set of classes is used to initialize the set
L containing the sets of labels for the classes to be
learned. At the beginning of each iteration k of the
algorithm (Step 1), the first element of L is assigned
to Sk in the first step of the algorithm. Next, SF FS
is used to find the optimal binary partition BP of Sk

that maximizes the mutual information I between the
data and their respective class labels (Step 2). The SFFS
algorithm used is the one presented in [11], and the
implementation details of the fast quadratic mutual
information can be found in [10].

To illustrate our procedure, let us return to the
example of the top of Fig. 2a. On the first iteration of
the sub-class ECOC algorithm, SF FS finds the sub-
set ℘+ = {C1, C2} against ℘− = {C3}. The encoding of
this problem is shown in the first matrix of Fig. 2c. The
positions of the column corresponding to the classes of
the first partition are coded by +1 and the classes cor-
responding to the second partition to −1, respectively.
In our procedure, the base classifier is used to test if
the performance obtained by the trained dichotomizers
is sufficient. Observe the decision boundaries of the
picture next to the first column of the matrix in Fig. 2b.
One can see that the base classifier finds a good solution
for this first problem.

Then, the second classifier is trained to split ℘+ =
C1 against ℘− = C2, and its performance is computed.
The separation of the current sub-sets is not a trivial
problem, and the classification performance is poor.
Therefore, our procedure tries to split the data J℘+ and
J℘− from the current sub-sets ℘+ and ℘− into more
simple sub-sets. At Step 3 of the algorithm, the splitting
criteria SC takes as input a data set J℘+ or J℘− from a
sub-set ℘+ or ℘−, and splits it into two sub-sets J+

℘+ and

J−
℘+ or J+

℘− and J−
℘− . On the experimental results chapter

we discuss the selection of the splitting criterion. The
splitting algorithm is shown in Table 2.

When two data sub-sets {J+
℘+ , J−

℘+} and {J+
℘− , J−

℘−} are
obtained, only one of both split sub-sets is used. We se-
lect the sub-sets that have the highest distance between
the means of each cluster. Suppose that the distance
between J+

℘− and J−
℘− is larger than between J+

℘+ and

J−
℘+ . Then, only J℘+ , J+

℘− , and J−
℘− are used. If the new

sub-sets improve the classification performance, new
sub-classes are formed, and the process is repeated.
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Table 1 Problem-dependent
Sub-class ECOC algorithm.

aUse SF FS of [11] as the
maximization procedure and
MI of [10] to estimate I.
bUsing the splitting algorithm
of Table 2.

In the example of Fig. 2, applying the splitting crite-
ria SC over the two sub-sets, two clusters are found for
℘+ = C1 and for ℘− = C2. Then, the original encoding
of the problem C1 vs C2 (corresponding to the second
column of the matrix in the center of Fig. 2c) is split
into two columns marked with the solid lines in the
matrix on the right. In this way, the original C1 vs C2

problem is transformed to two more simple problems
{C11} against {C2} and {C12} against {C2}. Here the first
subindex of the class corresponds to the original class,
and the second subindex to the number of sub-class.
It implies that the class C1 is split into two sub-classes
(look at the bottom of Fig. 2a), and the original three-
class problem C = {C1, C2, C3} becomes the four-sub-
class problem C′ = {C11, C12, C2, C3}. As the class C1

has been decomposed by the splitting of the second
problem, we need to save the information of the cur-
rent sub-sets and the previous sub-sets affected by the
new splitting. The steps to update this information are
summarized in the Step 4 of the splitting algorithm. We
use the object labels to define the set of sub-classes of
the current partition ℘c. If new sub-classes are created,
the set of sub-classes C′ and the data for sub-classes J′

have to be updated. Note that when a class or a sub-
class previously considered for a given binary problem
is split in a future iteration of the procedure, the labels
from the previous sub-sets {℘+, ℘−} need to be updated
with the new information. Finally, the set of labels
for the binary problems ℘ ′ is updated with the labels
of the current sub-set ℘ ′ = ℘ ′ ∪ ℘c. In the example
of Fig. 2, the dichotomizer h1 considers the sub-sets
℘+

1 = {C1, C2} and ℘−
1 = {C3}. Then, those positions

containing class C1 are replaced with C11 and C12. The
process is repeated until the desired performance is
achieved or the stopping conditions are full-filled.

The conditions that guide the learning and split-
ting process are defined by the set of parameters θ =
{θsize, θperf, θimpr}, where θsize corresponds to the mini-
mum size of a sub-set to be clustered, θperf contains
the minimum error desired for each binary problem,
and θimpr looks for the improvement of the split sub-
sets regarding the previous ones. The function T EST_
PARAMET ERS in Table 2 is responsible for testing
the constraints based on the parameters {θsize, θperf,

θimpr}. If the constraints are satisfied, the new sub-sets
are selected and used to recursively call the splitting
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Table 2 Sub-class SPLIT
algorithm.

a SC corresponds to the
splitting method of the input
data into two main clusters.

Inputs: J℘1 , J℘2 , C′, J′, J, ℘′, θ // C′ is the final set of classes, J′ the data for the final set of
classes, and ℘′ is the labels for all the partitions of classes of the final set.

Outputs: C′, J′, ℘′

Step 1 Split problems:
{J+

℘+ , J−
℘+} = SC(J℘+ )a

{J+
℘− , J−

℘−} = SC(J℘− )

Step 2 Select sub-classes:
if |J+

℘+ , J−
℘+ | > |J+

℘− , J−
℘− | // find the largest distance between the means of each sub-set.

{J++ , J−+} = {J+
℘+ , J℘−}; {J+− , J−−} = {J−

℘+ , J℘−}
else

{J++ , J−+} = {J+
℘− , J℘+}; {J+− , J−−} = {J−

℘− , J℘+}
end

Step 3 Test parameters to continue splitting:
if T EST_PARAMET ERS(J℘1 , J℘2 , J1

1 , J2
1 , J1

2 , J2
2, θ)// call the function with the new

sub-sets
{C′, J′, ℘′} = SPLIT(J1

1 , J2
1 , C′, J′, J, ℘′, θ)

{C′, J′, ℘′} = SPLIT(J1
2 , J2

2 , C′, J′, J, ℘′, θ)

end

Step 4 Save the current partition:
Update the data for the new sub-classes and previous sub-classes if intersections exists J′.
Update the final number of sub-classes C′.
Create ℘c = {℘c1 , ℘c2 } the set of labels of the current partition.
Update the labels of the previous partitions ℘.
Update the set of partitions labels with the new partition ℘′ = ℘′ ∪ ℘c.

function (Step 3 of the algorithm in Table 2). The
constraints of the function T EST_PARAMET ERS
are fixed by default as follows:

• The number of objects in J℘+ has to be larger than
θsize.

• The number of objects in J℘− has to be larger than
θsize.

• The error ξ(h(J℘− , J℘+)) obtained from the di-
chomomizer h using a particular base classifier ap-
plied on the sets {℘+, ℘−} has to be larger than θperf.

• The sum of the well-classified objects from the two
new problems (based on the confusion matrices)
divided by the total number of objects has to be
greater than 1 − θimpr.

θsize avoids the learning of very unbalanced prob-
lems. θperf determines when the performance of a
partition of classes is insufficient and sub-classes are
required. And finally, when a partition does not obtain
the desired performance θperf, the splitting of the data
stops, preventing overtraining.

In the example of Fig. 2, the three dichotomizers h1,
h2, and h3 find a solution for the problem (look the
trained boundaries shown in Fig. 2b), obtaining a clas-
sification error under θperf, so, the process stops. Now,
the original tree encoding of the DECOC design shown

in Fig. 2d can be represented by the tree structure of
Fig. 2e, where the original class associated to each sub-
class is shown in the leaves.

When the final set of binary problems is obtained, its
respective set of labels ℘ ′ is used to create the coding
matrix M (Eq. 1). The outputs C′ and J′ contain the
final set of sub-classes and the new data for each sub-
class, respectively. Finally, to decode the new sub-class
problem-dependent design of ECOC, we take advan-
tage of the recently proposed Loss-Weighted decoding
design [12]. The decoding strategy uses a set of normal-
ized probabilities based on the performance of the base
classifier and the ternary ECOC constraints [12]. The
decoding algorithm is described in [12].

2.3 Illustration Over Toy Problems

To show the effect of the sub-class ECOC strategy
for different base classifiers, we used the previous toy
problem of the top of Fig. 2a. Five different base clas-
sifiers are applied: Fisher linear discriminant analysis
(FLDA), discrete AdaBoost, nearest mean classifier,
linear SVM, and SVM with radial basis function ker-
nel.2 Using these base classifiers on the toy problem,

2The parameters of the base classifiers are explained in the
experimental results section.
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Figure 3 Sub-class ECOC
without sub-classes (top) and
including sub-classes
(bottom): for FLDA (a),
discrete AdaBoost (b), NMC
(c), linear SVM (d), and RBF
SVM (e).

(a) (b) (c) (d) (e)

the original DECOC strategy with the loss-weighted
algorithm obtains the decision boundaries shown on
the top row of Fig. 3. The new learned boundaries are
shown on the bottom row of Fig. 3 for fixed parameters
θ . Depending on the flexibility of the base classifier
more sub-classes are required, and thus, more binary
problems. Observe that all base classifiers are able to
find a solution for the problem, although with different
types of decision boundaries.

3 Feature Extraction

In this paper, we consider three types of features, the
first ones obtained from RF signals, the second ones
based on texture-based features from reconstructed
images, and finally, the slope-based features proposed
in [22].

3.1 RF Features

In order to analyze ultrasound images, the RF signals
are acquired from the IVUS equipment with a sampling
rate of at least two times the transducer frequency, and
filtered using a band-pass filter with 50% gain centered
at the transducer frequency [13]. Then, an exponential
time gain compensation (TGC) is applied [13]. Once
the RF signals have been acquired, filtered and expo-
nentially compensated by the TGC, the power spec-
trum is obtained. Nair et al. in [22] show the modelling
of the power spectrum using autoregressive models
(ARM) as one of the most suitable and stable methods
to analyze ultrasound signals [22]. It also represents an
alternative to the Fourier transform since the ARM
have been proved to be more stable when small signal
windows are considered.

The ARM are defined as a linear prediction equation
where the output x at a certain point t for each A-line is

equal to a linear combination of its p previous outputs
weighted by a set of parameters ap [25]:

x(t) =
p∑

k=1

ap(k)x(t − k),

where p is the ARM degree and the coefficients ap

are calculated minimizing the error of the modelled
spectrum with respect to the original using the Akaike’s
error prediction criterium [25].

A sliding window is formed by n samples and m con-
tiguous A-lines with a displacement of n/4 samples and
m/3 A-lines in order to obtain an average AR model of
a region. Only one side of the obtained spectrum is used
because of its symmetrical properties. This spectrum is
composed of h sampled frequencies ranging from 0 to
fs/2 [25].

In addition to the spectrum, two global measures are
computed: the energy of the A-line and the energy of
the window spectrum. All these features are compiled
into a unique vector of h + 2 dimensions which is used
as a feature vector in the classification process.

3.2 Texture Features Extraction

Given that different plaques can be discriminated as
regions with different grey-level distributions, it is a
natural decision to use texture descriptors. In the bib-
liography, one can find a wide set of texture descriptors
and up to our knowledge there are no optimal texture
descriptors for image analysis in the general case. Our
strategy is instead of trying to find out the optimal
texture descriptor for our problem to gather several
families of descriptors and apply multiple classifiers
able to learn and extract the optimal features for the
concrete problem.

Therefore, we employ three different texture de-
scriptors: co-occurrence Matrix [26], local binary pat-
terns [27] and Gabor filters [28, 29]. Additionally,
taking into account that highly non-echogenic plaques
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produce significant shade in the radial direction of the
vessel, we include in the feature set the presence of
shading in the image as a complementary feature.

The co-occurrence matrix is defined as the estima-
tion of the joint probability density function of gray
level pairs in an image [26]. The sum of all element
values is:

P(i, j, D, θ) = P(I(l, m)

= i ⊗ I(l + Dcos(θ), m + Dsin(θ)) = j),

where I(l, m) is the gray value at pixel (l, m), D is
the distance among pixels and θ is the angle be-
tween neighbors. We have established the orientation
θ to be [0o, 45o, 90o, 135o] [26, 31]. After computing
this matrix, energy, entropy, inverse difference mo-
ment, shade, inertia and prominence measures are ex-
tracted [26].

Local binary patterns (LBP) are used to detect uni-
form texture patterns in circular neighborhoods with
any quantization of angular space and spatial resolution
[27]. LBP are based on a circular symmetric neighbor-
hood of P members with radius R. To achieve gray
level invariance, the central pixel gc is subtracted to
each neighbor gp, assigning the value 1 to the result
if the difference is positive and 0, otherwise. LBPs are
defined as follows:

LBPR,P =
∑P

p=0
a(gp − gc) · 2p

A Gabor filter is a special case of wavelets [28]
which is essentially a Gaussian modulated by a complex
sinusoid s. In 2D, it has the following form in the spatial
domain:

h(x, y) = 1

2πσ 2
exp

{
−1

2

[(
x2 + y2

σ 2

)]}
· s(x, y)

s(x, y) = exp[−i2π(Ux + Vy)] φ = arctan V/U

where σ is the standard deviation, U and V represent
the 2D frequency of the complex sinusoid, and φ is the
angle of the frequency.

According to [30], one of the main differences in
the appearance of calcified tissue compared to the rest
of tissue types is the shadow which is appreciated be-
hind it. In order to detect this shadow, we perform
an accumulative mean of the pixels gray values on the
polar image from a pixel to the end of the column (the
maximal depth considered). As a result of extracting
the texture descriptors, we construct an n-dimensional
feature vector where n = k + l + m + 1, k is the
number of co-occurrence matrix measurements, l is
the number of Gabor filters, m is the number of LPB

and the last feature is the measure of the “shadow” in
the image.

3.3 Data Set

To generate the data sets we used the RF signals and
their reconstructed images from a set of 10 different
patients with left descent artery pullbacks acquired
in Hospital “German Trias i Pujol” from Barcelona,
Spain. All these pullbacks contain the three classes of
plaque. For each one, 10 to 15 different vessel sections
were selected to be analyzed. Two physicians indepen-
dently segmented 50 areas of interest per pullback.
From these segmentations we took 15 regions of in-
terest (ROI) of tissue per study randomly making a
total of 5,000 evaluation ROIs. To build the data set,
these selections were mapped in both RF signals and
reconstructed images. In order to reduce the variability
among different observers, the regions where both car-
diologist agreed have been taken under consideration.
Some samples from the data set are shown on the left
of Fig. 4.

To generate the data set on texture features, the
intersection between segmented images is mapped into
a feature vector. Then, all the features collected are
categorized by patient and each of the three possible
plaques type. The image features are extracted by using
the previous texture descriptors: co-occurrence matrix,
local binary patterns, and Gabor filters. Those features
are calculated for each pixel and gathered in a feature
vector of 68 dimensions. An example of a manual
and automatic texture-based segmentation for the same
sample is shown on the right of Fig. 4.

To generate the data set of RF features, the RF
signals have been acquired using a 12-bit acquisition
card with a sampling rate of fs = 200 Mhz. The IVUS
equipment used is Galaxy II from Boston Scientific

Figure 4 Left: IVUS data set samples. Right: (top) segmentation
by a physician and (down) Automatic classification with texture-
based features. The white area corresponds to calcium, the light
gray area to fibrosis, and the dark gray area to soft plaque.
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Table 3 Mean rank for each
feature set. Feature set RF Texture-based RF+Texture-based Slopes

Mean rank 2.94 2.28 1.72 2.83

with a catheter transducer frequency of f = 40 Mhz,
and it is assumed a sound speed in tissue of 1565
m/s. Each IVUS image consists of a total of 256 A-
lines (ultrasound beams), with a radial distance of r =
0.65 cm. The attenuation in tissue factor used is α =
1Db/Mhz × cm. To analyze the RF signals, the sliding
window is composed of n = 64 samples of depth and
m = 12 radial A-lines, and the displacement is fixed in
16 samples and four A-lines. The power spectrum of the
window ranges from 0 to 100 m/s and it is sampled by
100 points. Then, it is complemented with two energy
measures yielding a 102 feature vector.

We also consider a third data set that concatenates
the descriptors from the previous RF and texture-
based features, obtaining a feature vector of length 170
features.

3.4 Slope-Based Features

Finally, the fourth data set considers the slope-based
features proposed by in [22]. In particular, each sample
is characterized by means of 14 slope-based features
corresponding to: maximum power in DB from 20 to
60 MHz, frequency at the maximum power, negative
slope in db/MHz between maximum and 60, minimum
power in that slope, frequency corresponding to this
negative slope, the estimated y intercept of this slope,
the positive slope in db/Mhz between 20 and maximum,
minimum power in that slope, frequency corresponding
to this negative slope, the estimated y intercept of this
slope, the mean power, the power at 0 MHz, power Db
at 100 Mhz, and the power at the midband frequency
(40 MHz) in DB [22].

Figure 5 Performance results
for different sets of features,
ECOC designs and base
classifiers on the IVUS
data set.

Performance results with Radial Frequency features

Performance results with texture-based features

Performance results combining features

Performance results with slope-based features
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Table 4 Mean rank for each
ECOC design over all the
experiments.

ECOC design One-versus-one One-versus-all Dense random

Mean rank 2.33 5.08 4.25
ECOC design Sparse random Decoc Sub-class
Mean rank 5.00 2.67 1.00

4 Results

Before the experimental results are presented, we com-
ment the data, methods, and evaluation measurements.

• Data The data used for the experiments corre-
sponds to the four data sets described at the previ-
ous section: RF, texture-based, combined RF and
texture-based features data sets, and slope-based
features.

• Methods We compare our method with the state-
of-the-art ECOC coding designs: one-versus-one
[14], one-versus-all [15], dense random [16], sparse
random [16], and DECOC [10]. Each strategy uses
the previously mentioned Linear Loss-weighted de-
coding to evaluate their performances at identical
conditions. Three different base classifiers are ap-
plied over each ECOC configuration: nearest mean
classifier (NMC) with the classification decision us-
ing the Euclidean distance between the mean of
the classes, discrete AdaBoost with 40 iterations
of decision stumps [17], and linear discriminant
analysis implementation of the PR Tools using
the default values (Faculty of Applied Physics,
Delft University of Technology, The Netherlands,
http://www.prtools.org/).

• Evaluation measurements To measure the perfor-
mance of the different experiments, we apply leave-
one-patient-out evaluation. Moreover, we use the
statistical Friedman and Nemenyi tests to look for
statistical significance among the methods perfor-
mances [18].

4.1 IVUS Tissue Characterization

Applying the three different base classifiers over the
set of ECOC configurations, the performance results
for RF features, texture-based features, combined RF
and texture-based features, and slope-based features
are shown in Fig. 5.

Comparing the results among the different data sets,
one can see that the worst performances are obtained
by the RF and slope-based features, which obtain very
similar results for all the base classifiers and ECOC
configurations. The texture-based features obtain in
most cases results upon 90%. Finally, the data set of

combined RF and texture-based features slightly out-
perform the results obtained by the texture-based fea-
ture, though the results do not significantly differ.3 This
behavior is summarize on Table 3, where the mean rank
obtained by each feature set is shown. The rankings are
obtained estimating each particular ranking r j

i for each
problem i and each feature set j, and computing the
mean ranking R for each feature set as R j = 1

N

∑
i r j

i ,
where N is the total number of problems (3 base clas-
sifiers × 6 ECOC designs). Note that the best ranking
corresponds to the combined set of features, and that
the individual feature set that obtains the best results
correspond to texture-based.

Concerning the classification strategies, observing
the obtained performances in Fig. 5, one can see that
independently of the data set and the ECOC design
applied, the Sub-class ECOC approach always attains
the best results. To compare these performances, the
mean rank of each ECOC design considering the twelve
different experiments is shown in Table 4. In this case,
the rankings are obtained estimating each particular
ranking r j

i for each problem i and each ECOC con-
figuration j, and computing the mean ranking R for
each ECOC design as R j = 1

N

∑
i r j

i , where N is the
total number of problems (three base classifiers × four
data sets). One can see that the sub-class ECOC attains
the best position for all experiments. To analyze if
the difference between methods ranks are statistically
significant, we apply the Friedman and Nemenyi tests.
In order to reject the null hypothesis that the measured
ranks differ from the mean rank, and that the ranks are
affected by randomness in the results, we use the Fried-
man test. The Friedman statistic value is computed as
follows:

X2
F = 12N

k(k + 1)

⎡

⎣
∑

j

R2
j − k(k + 1)2

4

⎤

⎦ (2)

In our case, with k = 6 ECOC designs to com-
pare, X2

F = 30.71. Since this value is undesirable

3Due to the high similitude among slope-based and RF features
results, the combination of texture-based and slope-based fea-
tures has been omitted.

http://www.prtools.org/
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conservative, Iman and Davenport proposed a cor-
rected statistic:

FF = (N − 1)X2
F

N(k − 1) − X2
F

(3)

Applying this correction we obtain FF = 11.53. With
six methods and twelve experiments, FF is distributed
according to the F distribution with 5 and 55 df. The
critical value of F(5, 55) for 0.05 is 2.40. As the value of
FF is higher than 2.45 we can reject the null hypothesis.
One we have checked for the for the non-randomness
of the results, we can perform a post hoc test to check if
one of the techniques can be singled out. For this pur-
pose we use the Nemenyi test—two techniques are sig-
nificantly different if the corresponding average ranks
differ by at least the critical difference value (CD):

CD = qα

√
k(k + 1)

6N
(4)

where qα is based on the Studentized range statis-
tic divided by

√
2. In our case, when comparing six

methods with a confidence value α = 0.10, q0.10 = 1.44.
Substituting in Eq. 4, we obtain a critical difference
value of 1.09. Since the difference of any technique rank
with the Sub-class rank is higher than the CD, we can
infer that the Sub-class approach is significantly better
than the rest with a confidence of 90% in the present
experiments.

5 Conclusions

In this paper, we characterized intravascular ultrasound
tissues based on different types of features, such as
radial frequency, texture-based features, and combined
features. We presented a Sub-class approach of error-
correcting output codes that splits the tissue classes
into different sub-sets according to the applied base
classifier. In this sense, complex IVUS data sets con-
taining overlapping data are solved by splitting the orig-
inal set of classes into sub-classes, and embedding the
binary problems in a problem-dependent ECOC de-
sign. The method automatically characterizes different
tissues, showing performance improvements over the
state-of-the-art ECOC techniques for FLDA, Discrete
AdaBoost, NMC, and Linear and RBF SVM. In partic-
ular, the results shows higher performance when using
texture-based features compared with RF signals and
slope-based features, and slights improvements when
the sets of features are combined.
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