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Objectives In this work we address the need for the

computation of quantitative global tumoral state indicators

from oncological whole-body PET/computed tomography

scans. The combination of such indicators with other

oncological information such as tumor markers or biopsy

results would prove useful in oncological decision-making

scenarios.

Materials and methods From an ordering of 100 breast

cancer patients on the basis of oncological state through

visual analysis by a consensus of nuclear medicine specialists,

a set of numerical indicators computed from image analysis of

the PET/computed tomography scan is presented, which

attempts to summarize a patient’s oncological state in a

quantitative manner taking into consideration the total tumor

volume, aggressiveness, and spread.

Results Results obtained by comparative analysis of the

proposed indicators with respect to the experts’ evaluation

show up to 87% Pearson’s correlation coefficient when

providing expert-guided PET metabolic tumor volume

segmentation and 64% correlation when using completely

automatic image analysis techniques.

Conclusion Global quantitative tumor information

obtained by whole-body PET/CT image analysis can prove

useful in clinical nuclear medicine settings and oncological

decision-making scenarios. The completely automatic

computation of such indicators would improve its impact

as time efficiency and specialist independence would be

achieved. Nucl Med Commun 35:362–371 �c 2014 Wolters

Kluwer Health | Lippincott Williams & Wilkins.
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Introduction and related work
18F-fluorodeoxyglucose (18F-FDG) PET/computed tomo-

graphy (PET/CT) has become a standard imaging

method for the staging, restaging, and monitoring of

treatment response in a variety of tumors. By injecting

the 18F-FDG radiopharmaceutical into the patient, a

metabolic image of the whole body, measured in standard

uptake value (SUV) units, is acquired. This metabolic

image is obtained in combination with a coregistered CT

scan that provides higher anatomical resolution (in

Hounsfield units, HU).

Whole-body (WB) PET/CT scans are a valuable tool for

cancer detection and can be used to evaluate the spread

of cancer throughout the patient’s body [1,2]. The

current analysis of WB PET/CT scans is mainly visual;

nuclear medicine physicians build a descriptive report

about their findings regarding the possible location of

cancer and its metastases.

Local quantitative tumor lesion information, such as its

mean and maximum uptake value (SUVmean, SUVmax)

and diameter, is usually included in the report. Global

quantitative information, such as the whole-body meta-

bolic tumor volume (WBMTV) and total lesion glycolysis

(TLG), is usually not included in the report, although

they have been proven to be clinically relevant as

independent prognostic markers [3–7]. This may be

partly because the measurement of these parameters,

which currently requires an expert-guided manual or

semiautomatic tumor segmentation from the PET scan,

is highly time consuming and therefore not practical in a

clinical setting. It may also be because the usefulness of

this time-inefficient measurement has not been fully

determined [7].

In this work we address the computation of global

quantitative indicators from WB PET/CT scans that

reflect the patient’s oncological state. This type of

indicator is referred to as PET Global Oncological State

Indicator (PGOSI) hereon. Here, we consider that the

oncological state of a patient is deduced in a qualitative

manner from the expert-based visual analysis of WB PET

images and is related to the quantity of tumor present in

the body as well as its aggressiveness and spread. Clinical

nuclear medicine experts agree on the need for such a

quantitative indicator that, when combined with com-

plementary oncological indicators such as tumor markers
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or biopsy results, would prove a valuable tool for

oncological decision making [1,2]. WBMTV and TLG

can be considered examples of PGOSI. Some conceptual

limitations of these indicators as well as new indicator

proposals that try to overcome them are presented in the

subsequent sections.

In this scenario, defining a gold standard for assessing the

performance of any proposed PGOSI is a complex task. It

could be argued that an appropriate choice would be to

compare the PGOSI results with other oncological clinical

variables such as biopsy results, TNM staging [8], tumor

markers, or N-year survival rates. However, we consider

that none of these variables appropriately model what our

PGOSI proposal is intended for: biopsy results are only

conclusive about a single anatomical location and do not

relate directly to the total tumor quantity and spread

within the patient’s whole body; TNM staging does give

an insight into the tumor quantity and spread but in a

categorical manner, and hence it could be argued that two

patients may possess slightly different oncological states

albeit belonging to the same TNM category; tumor

marker results may be independent of PET/CT observa-

tions depending on the type of tumor and its stage, and

N-year survival rates may not be appropriate for

comparison with PGOSI results as patients may undergo

different treatments and suffer from other nononcological

pathologies.

Note that in the related scenario of PET follow-up

evaluation, in which two time consecutive PET/CT scans

are compared to address therapy response, treatment

outcome parameters can be successfully used as the gold

standard to address the performance of the proposed

quantitative indicators obtained by the pair of PET/CT

scans [9,10]. However, the current work focuses on a

single PET/CT scan analysis to provide relevant oncolo-

gical prognostic quantitative indicators.

Therefore, the authors consider that an appropriate

information source for assessing the performance of the

proposed PGOSIs is a specialist-based visual PET

evaluation of each patient’s oncological state from a

consensus of independent experts in the field. In this

work, we present a set of quantitative PGOSIs and test

their impact at the clinical level by comparing their

performance with the corresponding qualitative evalua-

tion carried out by nuclear medicine specialists. We

emphasize on the time-efficiency aspect of PGOSI

computations by comparing expert-guided semiautomatic

strategies and completely automatic approaches.

Materials and methods
The proposed framework for the performance assessment

of PGOSI candidates in breast cancer patients is as

follows. A set of 100 WB PET/CT scans corresponding to

breast cancer patients with different tumor stages were

acquired from the Nuclear Medicine Department at

Hospital de Sant Pau (Barcelona, Spain) following all

international PET/CT imaging acquisition protocols.

These patients were grouped into four categories

according to their tumoral state by the consensus of

three independent nuclear medicine physicians as shown

in Fig. 1, following visual inspection criteria. As the role of

the proposed PGOSIs would have a major clinical impact

on the prognosis and management of early-stage cancer

patients [11], a larger number of patients in this stage

were acquired.

Also, semiautomatic segmentation of metabolic tumor

volume obtained from all WB PET scans was carried out

by three independent nuclear medicine physicians, which

yielded three independent segmentations (S1, S2, and

S3) of all patients in order to test the efficacy of any

PGOSI proposal in this procedure (Fig. 2). The

segmentation was accomplished using a specific-purpose

WB PET segmentation software tool.

To be able to test the performance of any given PGOSI

proposal, the set of 100 patients was ordered according to

their oncological state upon agreement among three

independent nuclear medicine experts. The set of

clinical variables that were taken into consideration by

the experts during the ordering procedure were:

(1) C1: Total tumor volume.

(2) C2: Global aggressiveness of the tumor.

(3) C3: Spread of the tumor – that is, number of organs

affected by the tumor and the number of metastases.

Now, given a PGOSI calculation proposal, once computed

to the whole set of breast cancer patients, an ordering

Fig. 1
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of patients according to their PGOSI value can be

obtained. The performance (related to clinical impact) of

the proposed PGOSI can be addressed by computing the

correlation value between the experts’ patient ordering

and the proposed PGOSI ordering. Figure 3 shows an

ordering example of a subset of the breast cancer

patients, as well as the corresponding schematic drawings

that have been used throughout this paper to illustrate

the set of PGOSI proposals and their performance.

The set of PGOSI proposals in this work is detailed as

follows. First, it should be noted that, in order to

maximize performance, any PGOSI proposal should seek

to quantitatively represent the clinical variables that

define a patient’s tumoral state (C1, C2, and C3).

Second, an important property of any PGOSI should be

its level of independence from any specialist evaluation,

in the sense that an ideal PGOSI should be automatically

computed from any given WB PET/CT scan. However,

current technology is unable to automatically identify and

segment the entire tumoral volume in a given WB PET/

CT scan in a reliable manner (although encouraging

results have been shown recently in this respect [12]).

Thus, in this work we conduct a comparative analysis of

the performance of the PGOSI proposals when they are

computed in a completely automatic manner or after

providing an expert-guided semiautomatic tumor seg-

mentation mask. In doing this, we assume that techno-

logical advances will at some point bring both

performances to the same level.

The set of existing clinically justified PGOSI proposals

that are related to C1 and C2 have been already

mentioned (SUVmax, SUVmean, WBMTV, and TLG).

The SUVmax and SUVmean of the patient’s whole-body

tumor volume try to measure the cancer aggressiveness

but miss the information related to the actual tumor

quantity that is present within the patient’s body. In

contrast, WBMTV does measure the cancer quantity but

fails to model its aggressiveness. TLG takes into account

both the quantity and aggressiveness of the patient’s

cancer, but fails to reveal its spread (C3). The limitation

of this set of PGOSIs is illustrated in Fig. 4.

To overcome these limitations, a new set of PGOSIs is

proposed and described as follows. A key issue to be

addressed is how to quantify the cancer spread through-

out the patient’s body (C3) and compare it with that of

other patients, assuming that all of them have the same

tumor quantity and the same mean aggressiveness. In

particular, a major goal is to be able to distinguish

between both tumoral conditions seen in Fig. 4d.

A first alternative would be to compute the number of

connected components (NCC) [13] from the PET tumor

segmentation mask, which will be related to the number

of tumor lesions within the patient’s body. This

parameter would give a clue about the cancer spread

but suffers from some limitations in the special case of a

relatively condensed group of tumor lesions, wherein it

could be argued that the overall cancer spread would be

inferior and therefore the PGOSI value would be so. This

limitation is shown in Fig. 5.

To avoid this problem, the NCC value could be combined

with the average distance between components, which

can be computed by averaging the distance (measured in

millimeters, for instance) between the middle points of

all connected components. Setting up a new parameter

Fig. 2

Sample metabolic tumor volume segmentation carried out by a nuclear medicine expert.
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based on the product of NCC and average distance

between components (aNCC) overcomes the NCC

limitation, but produces another limitation related to

the average operation, as illustrated in Fig. 6.

One could try to extend this reasoning by introducing the

SD between the middle points of the connected

components as a new parameter to be taken into account.

However, it rapidly becomes clear that what is needed is a

new parameter that approximates the number of organs

where the cancer is present within the patient’s body.

Note that this parameter, referred to as NORG, would

overcome the limitations of NCC and aNCC (Fig. 7).

To deal with this task, the following algorithm for

obtaining an approximation of the number of affected

organs (NORG) is proposed. We start by setting NORG

at 0. Then, for each connected component of the PET

tumoral segmentation mask, if it has an average HU value

significantly different from that of all other connected

components or if its middle point is significantly far away

from the rest of the connected components, we increase

its value by 1. When terminated, an approximation of the

actual number of organs or distinct anatomical locations

where the tumor is present is obtained. This method has

shown a positive correlation of 41% when compared with

the NORG value for the 100 breast cancer patients

with the actual number of affected organs identified by

the medical experts for each patient (where ganglionar

adenopathies were considered a single organ except if

there existed superior and inferior instances). This result,

which is superior to the NCC (31%) or aNCC (33%)

correlation, is considered appropriate for quantitatively

modeling the patient’s cancer spread.

Once a set of several quantitative variables that try to

measure the cancer spread has been introduced, to obtain

a robust PGOSI proposal, the data obtained from it

should be combined with the variables that are related to

tumor quantity and aggressiveness.

A first step consists of combining the tumor quantity and

aggressiveness indicators. TLG has already been pro-

posed for this task, but the authors consider this

parameter highly dependent on the segmentation proce-

dure (as it directly includes the WBMTV) and does not

consider the distribution of SUVs across all tumor regions

(as it includes only the SUVmean).

Fig. 3

Experts’ patient ordering in ascending tumoral grade based on clinical visual and semiquantitative variables (top). Schematic illustrations that model
the corresponding tumor distribution within each patient’s body (bottom) and its aggressiveness (represented by its grayscale intensity: the darker
the higher).
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Thus, a new parameter for this measurement is

introduced as the sum of all SUVs of the tumor

segmentation mask voxels. We consider this number to

be less sensitive to the chosen segmentation method as

the boundary voxels in tumor lesions (which is generally

responsible for the difference among segmentation

methods) will contribute less to the final parameter

value, as they tend to have a lower SUV. Also, taking the

sum and not the average of all tumor SUVs will provide a

better sense of distribution of its aggressiveness. This

parameter is then normalized by voxel size (in mm3) and

the patient’s body surface area, which can be easily

obtained from the DICOM scan metadata. We will refer

to this described parameter as nTSUV.

Before addressing the performance results of the set of

PGOSI proposals, note that its derivation and analysis

have been highly simplified, in the sense that in some

PET/CT scans its values could be substantially altered by

physiological and pathological phenomena. For instance,

SUVmax and SUVmean may be altered because of muscular

uptake (Fig. 8a) or partial volume effects if the lesions are

located near brown fat uptake (Fig. 8b) [14]. Also,

segmenting false-positive or false-negative 18F-FDG

uptakes (e.g. inflammation) could alter most of the indi-

cators, especially the WBMTV value (and even the spread

indicators if a false lesion is significantly isolated from the

Fig. 5

Limitation of the NCC as a measure of cancer spread. Assuming the
same tumoral volume and SUVmean, the NCC parameter is able to
distinguish between a single big lesion and a set of smaller lesions, but
does not give a clue about their spatial distribution, leading to possible
clinical miss-ordering. NCC, number of connected components;
SUV, standard uptake value.

Fig. 6

Limitation of the aNCC parameter as a measure of cancer spread.
Although it succeeds at distinguishing between common spread
differences, the average distance measure could lead to some miss-
orderings, as it could be argued that the last tumoral state would be
inferior to the third (where the tumor has reached a larger number
of distinct anatomical locations).

Fig. 7

The NORG parameter as a good conceptual indicator of cancer spread
across the patient’s body.

Fig. 4

(a)

(c) (d)

(b)

Conceptual limitations of common follow-up indicators when used
as a PGOSI. The patients’ schematic illustrations are based on those
defined in Fig. 3. For each case, the equals sign illustrates that
the same PGOSI value would be obtained in both patients [(a) SUVmax;
(b) SUVmean; (c) WBMTV; (d) TLG], albeit possessing an arguably
different oncological state. PGOSI, PET Global Oncological State
Indicator; SUV, standard uptake value; TLG, total lesion glycolysis;
WBMTV, whole-body metabolic tumor volume.
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rest). Finally, the NCC, aNCC, and NORG parameters

may not accurately model what they are intended for in

advanced tumoral states, as seen in Fig. 8c and d. Since

the experts’ visual evaluation is not conditioned on these

quantitative parameter variabilities, this could reflect a

first limitation of the proposed PGOSI framework.

In the next section, an exhaustive performance analysis of

a set of PGOSI proposals is presented. All PGOSI

proposals were obtained by combining the previously

described parameters, which seek to quantify the

qualitative information that the medical experts use to

evaluate the patients’ global oncological state from WB

PET/CT scans.

Results and discussion
In this section, performance results of a set of PGOSI

proposals in terms of the Pearson correlation coefficient

of the experts’ ordering of the 100 breast cancer patients

and the ordering obtained from the computation of each

PGOSI are addressed.

Table 1 shows the correlation results of a set of PGOSI

proposals. Performance using either manual (i.e. expert

guided) or automatic tumor segmentation techniques is

presented. For the manual segmentation scenario, to

evaluate the segmentation independence of all PGOSI

proposals, performance results are computed in three

different tumor segmentation masks segmented by

three independent nuclear medicine physicians (S1, S2,

and S3). Completely automatic tumor segmentation

strategies include the machine learning framework

(MLF) described by Sampedro et al. [12] and a naı̈ve

direct thresholding method at an SUV of 3.0 [15].

First, note the performance results of the state-of-the-art

indicators. As predicted in the previous section, the

SUVmean (48%) and SUVmax (60%) do not model a

patient’s global tumoral state precisely. The WBMTV and

TLG parameters, as expected, give much better results

(80%). These results are consistent with those obtained

in clinical studies [16–18]. It is to be noted that our

proposed nTSUV indicator gives the same correlation

performance (80%) but is up to three times more

Table 1 Performance results using Pearson’s correlation coefficient of a set of PET Global Oncological State Indicator proposals

Manual segmentation Auto segmentation

PGOSI S1 S2 S3 Mean SD MLF Threshold

SUVmean 0.4929 0.4698 0.4945 0.4857 0.0138 0.3319 0.2492
SUVmax 0.5965 0.6142 0.6142 0.6083 0.0102 0.4502 0.2487
WBMTV 0.7997 0.8124 0.8040 0.8054 0.0064 0.5664 0.3154
TLG 0.7934 0.8015 0.7944 0.7964 0.0044 0.5730 0.2733
nTSUV 0.8024 0.8074 0.8026 0.8041 0.0028 0.5759 0.2562
nTSUV*NCC 0.8581 0.8561 0.8528 0.8557 0.0027 0.6214 0.2567
nTSUV*aNCC 0.8429 0.8392 0.8384 0.8402 0.0024 0.6114 0.2563
nTSUV*NORG 0.8712 0.8597 0.8642 0.8650 0.0058 0.6351 0.2578

Maximum correlation values are highlighted in bold.
MLF, machine learning framework; PGOSI, PET Global Oncological State Indicator; SUV, standard uptake value; TLG, total lesion glycolysis; WBMTV, whole-body
metabolic tumor volume.

Fig. 8

A sample of patient’s physiological and pathological states that could alter any PGOSI performance. (a) muscular uptake, (b) brown fat uptake,
(c and d) advanced tumoral stage. PGOSI, PET Global Oncological State Indicator.

Global PET/CT tumor quantification Sampedro et al. 367

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.



independent of the manual segmentation used, which is

consistent with its design and proposal.

Therefore, the authors consider that the indicator that

best models the quantity and aggressiveness of the tumor

is the nTSUV. Now, this parameter should be combined

with the spread indicators NCC, aNCC, and NORG to

improve the performance results. As can be observed, a

significant improvement of 6% correlation was achieved.

Although no significant difference is shown regarding the

use of NCC, aNCC, and NORG, the best performance

results were obtained by combining nTSUV and NORG,

which is consistent with the derivation presented in the

previous section.

Regarding the results obtained using a completely

automatic segmentation scenario, because of the high

complexity of the problem, significantly lower correlation

results were obtained. Very poor correlation (< 32%) was

obtained using the direct thresholding method, which is

consistent with the fact that this method would consider

any voxel with an SUV greater than 3.0 as tumoral,

including physiological uptakes in the brain, heart,

kidneys, and bladder. Moderate but significant correlation

results were obtained using the MLF method (63%),

which were remarkably higher than those of some state-

of-the-art indicators such as SUVmean and SUVmax. It is

noteworthy that this methodology, despite showing about

20% worse performance than the best manual segmenta-

tion alternative, is much more time efficient and does not

suffer from variabilities due to different segmentations

obtained by different experts or software tools.

Figure 9 shows the state-of-the-art visual correlation

results between the experts’ ordering and each PGOSI

using manual segmentation (S1). Figure 10 shows the

corresponding results of the nTSUV*NORG PGOSI

using either manual segmentation (S1) or automatic

segmentation (MLF).

Another way of evaluating the performance of the

nTSUV*NORG PGOSI could be by computing its mean

number of position errors from the experts’ ordering.

Using manual segmentation, the value obtained was

11.3±10.2, which means that on average the ordering

resolution of this indicator is 11 positions. If one

considers a plausible 5% of outliers due to either

segmentation or experts’ ordering errors, this number

reduces to 9.8±7.9. Considering that during the ordering

process the nuclear medicine physicians agreed that there

would be a mean 5–6-position variance if the ordering was

carried out independently instead of by consensus, this

result can be considered noteworthy. Using automatic

segmentation (MLF), the results were 17.9±17.0 and

15.3±13.1 (if a 5% outlier is assumed).

In clinical practice, the impact of the proposed PGOSI

can be addressed by establishing a numeric indicator

Fig. 9
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range for each of the four groups of patients based on

oncological state (low, moderate, high, very high). In this

case, for 90% of patients in the low group, the

nTSUV*NORG value range was 21.52–5157.77; for 40%

of patients in the medium group the range was

5249.52–16486.45; for 65% of patients in the high group

the range was 17852.39–138386.08; and for 71% of

patients in the very high group the range was

210293.92–7882691.02. These results are consistent with

the difficulty of distinguishing between medium and high

oncological states in a quantitative manner with a

relatively small patient sample.

For the sake of completeness, Table 2 shows the

performance of another set of PGOSI proposals based

on the combination of other relevant indicators that have

been described in this work. Although none of them

achieved the performance of nTSUV*NORG, very similar

performance results and tendencies were seen, which

confirms that when WBMTV or TLG is combined with

cancer spread indicators, a significant performance

improvement is obtained.

Finally, a small illustrative test to validate the potential

value of the proposed scoring system was conducted.

First, the PET/CT scans of five patients (independent

from the ones used in the previous analysis) with a very

similar oncological state (i.e. in the same stage) were

given to three independent nuclear medicine specialists

to be ordered according to oncological state. As expected,

the ordering varied among the specialists, and there-

fore the possible ordering obtained by consensus among

all of them may be weak. Then, in the same setting,

a new independent set of five patients in a very

similar oncological state was selected. Now, however,

not only images but also some of the PGOSI values for

each patient (in particular, the WBMTV and nTSUV*
NORG values) were provided to the specialist. A

substantial agreement in the ordering by the three

specialists compared with the previous scenario was

Table 2 Performance results using Pearson’s correlation coefficient of a set of PET Global Oncological State Indicator proposals

Manual segmentation Auto segmentation

PGOSI S1 S2 S3 Mean SD MLF Threshold

NCC 0.8251 0.8210 0.8255 0.8239 0.0025 0.6430 0.0012
aNCC 0.7639 0.7891 0.7753 0.7761 0.0126 0.5614 0.0025
NORG 0.8083 0.7994 0.8177 0.8085 0.0092 0.6526 0.0034
WBMTV*NCC 0.8476 0.8471 0.8523 0.8490 0.0029 0.6136 0.3174
WBMTV*aNCC 0.8370 0.8326 0.8346 0.8347 0.0022 0.6094 0.3152
WBMTV*NORG 0.8592 0.8498 0.8571 0.8554 0.0049 0.6300 0.3154
TLG*NCC 0.8519 0.8520 0.8512 0.8517 0.0004 0.6163 0.2713
TLG*aNCC 0.8420 0.8351 0.8340 0.8370 0.0043 0.6091 0.2742
TLG*NORG 0.8661 0.8524 0.8565 0.8583 0.0070 0.6334 0.2733

MLF, machine learning framework; NCC, number of connected components; PGOSI, PET Global Oncological State Indicator.

Fig. 10
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observed, which would induce a more robust ordering by

consensus.

In summary, the presented results show how quantitative

indicators that model the patient’s oncological state from

a WB PET/CT scan can be obtained such that there

is significant agreement with the corresponding

human-expert visual analysis. This fact represents an

important contribution, as numerical indicators are

known to be much more convenient in decision-making

scenarios because of their robustness and human

independence.

Conclusion
In this work we have presented a number of quantitative

indicators computed from WB PET/CT scans that

seek to model the global oncological state of a given

patient. The design and performance of the proposed

indicators have been addressed through a qualitative

evaluation of a set of 100 breast cancer patients from

a consensus of three nuclear medicine physicians.

In this process, the specialists took into consideration

visual and semiquantitative parameters related to the

patient’s tumor volume, aggressiveness, and spread.

Therefore, the set of proposed quantitative indicators

have been designed to model these tumor properties

through the computational image analysis of the

metabolic tumor volume segmentation of a WB PET

scan, aiming to maximize independence from specialist

evaluation.

Performance results based on the correlation between the

ordering by global tumoral state of the 100 breast cancer

patients performed by the consensus of experts and the

proposed quantitative indicators have shown up to 87%

correlation using expert-guided PET tumor volume

segmentation and 64% using a completely automatic

segmentation framework.

The authors consider that the results of this work

have contributed to support the need of a quantitative

oncological summary of a WB PET/CT scan, which

would prove helpful in oncological decision-making

scenarios when combined with other cancer indicators.

Future work includes performing case studies in

different cancer types in which PET evaluation plays a

significant role (e.g. lymphoma, sarcoma, or ovarian

cancer), as well as keeping track of automatic PET

tumor segmentation technologies to obtain a reliable,

time-efficient, and expert independent indicator compu-

tation system.

Finally, all the described framework and results will need

to be validated in large cohorts in long-term studies to

fully determine whether the proposed indicators are

useful in oncological and nuclear medicine settings to

address the prediction of the patient’s outcome and

treatment response.
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