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Deriving global quantitative tumor response parameters from
18F-FDG PET-CT scans in patients with non-Hodgkin’s
lymphoma
Frederic Sampedroa, Anna Domenechc, Sergio Escalerab,d and Ignasi Carrióc

Objectives The aim of the study was to address the need for
quantifying the global cancer time evolution magnitude from a
pair of time-consecutive positron emission tomography-
computed tomography (PET-CT) scans. In particular, we focus
on the computation of indicators using image-processing
techniques that seek to model non-Hodgkin’s lymphoma
(NHL) progression or response severity.

Materials and methods A total of 89 pairs of time-
consecutive PET-CT scans from NHL patients were stored
in a nuclear medicine station for subsequent analysis.
These were classified by a consensus of nuclear medicine
physicians into progressions, partial responses, mixed
responses, complete responses, and relapses. The cases
of each group were ordered by magnitude following visual
analysis. Thereafter, a set of quantitative indicators
designed to model the cancer evolution magnitude within
each group were computed using semiautomatic and
automatic image-processing techniques. Performance
evaluation of the proposed indicators was measured by a
correlation analysis with the expert-based visual analysis.

Results The set of proposed indicators achieved Pearson’s
correlation results in each group with respect to the expert-
based visual analysis: 80.2% in progressions, 77.1% in
partial response, 68.3% in mixed response, 88.5% in
complete response, and 100% in relapse. In the progression
and mixed response groups, the proposed indicators

outperformed the common indicators used in clinical
practice [changes in metabolic tumor volume, mean,
maximum, peak standardized uptake value (SUVmean,
SUVmax, SUVpeak), and total lesion glycolysis] by more
than 40%.

Conclusion Computing global indicators of NHL response
using PET-CT imaging techniques offers a strong
correlation with the associated expert-based visual
analysis, motivating the future incorporation of such
quantitative and highly observer-independent indicators
in oncological decision making or treatment response
evaluation scenarios. Nucl Med Commun 00:000–000
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reserved.
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Introduction
Fluorine-18 fluorodeoxyglucose (18F-FDG) positron

emission tomography-computed tomography (PET-CT)

has become a standard imaging method for the time

monitoring of treatment response in a variety of tumors

[1–3]. From a pair of time-consecutive whole-body PET-

CT scans nuclear medicine physicians assess a patient’s

cancer progression or response condition following a

trained visual and semiquantitative analysis of both images.

Thereafter, generally, a categorical and qualitative diag-

nosis is provided, such as ‘good response’, ‘slight progres-

sion’, or ‘strong relapse’. Although this type of information

is generally enough in the clinical routine, it lacks observer

independence and does not provide a continuous response

scale to accurately compare between cases.

In this work we address the need and computation of

observer-independent global quantitative tumor response

indicators from a pair of time-consecutive PET-CT scans.

This complementary information to the physician’s visual

analysis would prove especially useful in comprehensive

oncological treatment response evaluation and compar-

ison scenarios, as well as in the context of studying pos-

sible cancer evolution differences related to particular

clinical profiles.

This issue has been partially addressed in the literature in

the form of relating time changes in local tumor meta-

bolic activity or volume with surgical outcome parameters

[4–8]. Although this methodology is well suited to

recognize the value of quantifying PET-CT images, it

does not provide a sound framework for designing and

evaluating the proposed global response indicators due to

several reasons.

First, changes in cancer spread are not taken into con-

sideration, which, as derived from Sampedro et al. [9] and
described later in this paper, play a key role in measuring

the cancer progression or response magnitude. Second, it
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is important to note, in the general case, the lack of a

well-defined gold standard indicator to compare the

proposed global response indicators. In particular, non-

Hodgkin’s lymphoma (NHL) response or progression

magnitude is not well described by any clinical con-

tinuous parameter. Even if the international prognostic

index is considered the current prognostication system

for NHL, prognostic heterogeneity is suggested to exist

among the patients within the same international prog-

nostic index risk group [9–11]. In such a scenario, the

performance of the proposed indicators can be addressed

by using the information resulting from an expert-based

ordering by magnitude of the cases where the indicator

performance is to be measured, as shown in [3].

Thus, in this work, we start from an ordered set of NHL

response/progression cases based on its magnitude

(derived by the visual analysis of a consensus of experts

focusing on time changes in tumor volume, aggressive-

ness, and spread). Then, from its associated pair of PET-

CT scans, we propose and compute a set of global

response/progression indicators by quantifying time

changes in the segmented metabolic tumor volumes (also

provided by nuclear medicine physicians). Indicator

performance is addressed by a correlation analysis with

the initial expert-based ordering. Aiming to maximize

observer independence in the indicator computations,

the possibility of using completely automatic PET tumor

volume segmentation techniques is also addressed.

Materials and methods
A set of 178 whole-body FDG-PET/CT scans corre-

sponding to NHL lymphoma patients were acquired

from the Phillips Nuclear Medicine workstation at

Hospital de Sant Pau (Barcelona, Spain) following all

international PET/CT imaging acquisition protocols [12].

From its digital imaging and communications in medicine

(DICOM) files, two coregistered three-dimensional

volumes were obtained for each scan: a PET volume,

in standardized uptake value (SUV) [13] units, and a CT

volume (in Hounsfield units) [14]. They corresponded to

89 pairs of time-consecutive scans of the patients. The

time elapsed between scans varied depending on the

clinical management of each patient, with a median of

3.2 months and an interquartile range of 2 months.

Classification of each cancer evolution condition was car-

ried out by a consensus of three independent nuclear

medicine physicians into progression (31), partial response

(28), mixed response (nine), complete response (13), or

relapse (eight). The classification criteria were based on

changes in tumor volume, aggressiveness (represented by

its metabolic activity through its SUV), and spread, as

illustrated in Fig. 1. Figures 2 and 3 show examples of real

cases of each cancer evolution condition.

Note that the cases illustrated in Fig. 1 represent the

canonical cancer evolution conditions; that is, in practice,

real cases may be combinations of those cases. For

instance, a progression case can be presented both with

an increase in tumor volume (or uptake) and with the

appearance of new lesions, a response case with both a

decrease in volume and uptake, or a mixed response case

with both increases and decreases in volume and uptake

of the persisting tumor lesions.

Then, the cases of each group are ordered by its mag-

nitude according to the following visual criteria. For

progression cases, relative increases in volume or

aggressiveness in the existing tumor lesions are con-

sidered less severe than the appearance of new tumor

lesions in adjacent or distant anatomical locations,

respectively. However, all these variables interact, in the

sense that strong volume increases of existing lesions

may be considered more severe than the sole appearance

of small adjacent new lesions. The ordering of partial

responses is analogous, but considering the relative

volume, aggressiveness, and spread it decreases

(emphasizing the global tumor size reduction). From an

imaging point of view, the ordering of relapses and

complete responses is analogous to that of progressions

and partial responses without any tumor presence in one

of the scans. Mixed responses are ordered considering

the overall balance of tumor volume and uptake increases

and decreases of the existing tumor lesions. Figure 3

shows an ordering example of a subset of the progressions

and partial responses considered in this study.

The main goal of this work was to analyze the best global

quantitative indicators that model each of the cancer

evolution groups so as to obtain a continuous analog of

the visual qualitative assessment. The performance of

each proposed indicator will be addressed by comparing

(using the Pearson correlation coefficient) the ordering

provided by the medical experts with the order obtained

by the indicator of the same cases.

On the design of such global indicators, the ones more

commonly used in clinical practice are first considered.

Conceptually, in the presence of more than a single

tumor lesion or highly heterogenous tumor tissue (e.g.

the presence of necrotic tissue in any of the scans), global

changes in SUVmean, SUVmax, or SUVpeak [4,13,15,16]

will not appropriately model the strength of the pro-

gression or response condition, as they are unable to

model volume increases or the appearance of new tumor

lesions. In contrast, global changes in whole-body meta-

bolic tumor volume (WBMTV) or total lesion glycolysis

(TLG) [15] offer a better overall description of the

magnitude of the cancer evolution. However, they still

suffer from conceptual limitations: consider the cases

modeled in Fig. 1d and in particular the top right pro-

gression case in Fig. 3. In such a case, these indicators

may not even be valuable, as the global WBMTV has in

fact decreased in time while the case is considered a

strong cancer progression.
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Therefore, we propose a new set of indicators that seek to

model more accurately the global progression or response

magnitude. With an eye to future technological advances,

we focus only on quantitative indicators that can be

computed from the PET three-dimensional tumor seg-

mentation masks of both time-consecutive scans. These,

in the future, may be obtained accurately in an automatic

manner using recent advances in machine learning-based

segmentation techniques [17], thus obtaining full obser-

ver independence in the whole process. Nevertheless, as

current automatic segmentation methods do not achieve

the required accuracy to compute reliable indicators in

this scenario [17], we focus on the use of expert-guided

semiautomatic tumor segmentation masks that, although

introducing a slight observer dependence and a highly

time-consuming step, provide accurate and reliable esti-

mators of the underlying phenomena. Figure 4 illustrates

this reasoning.

The key clinical variable that the new set of indicators

need to model are changes in cancer spread, which are

not modeled by the common indicators described before.

A first piece of information in this respect is the change in

the number of tumor-related lesions. These can be

modeled computationally by the change in the number of

connected components (ΔNCC) between the pair of

PET tumor segmentation masks, as from an image-

processing point of view a connected component [18]

Fig. 1

Response (partial)
Response (partial)

Response (complete)

Response (mixed)

Response (mixed)

Progression

Progression

Progression

Progression

Progression (relapse)

(a) (b) (c)

(d) (e)

Illustrations of the typical cancer evolution scenarios in nuclear medicine. When a single tumor lesion is present, its change in volume or intensity in
time defines its progression or response condition (a–c). In the multilesion case, the spread of the cancer into new anatomical locations (regardless of
the volume change) is associated with a progression scenario (d), whereas the intensity increase in any of the lesions is clinically associated with a
mixed response scenario (e). Intensity of the tumor lesion is represented by its grayscale intensity.

Fig. 2

Clinical examples of complete response (a), relapse (b), and mixed response (c). The thick arrows represent the direction of time. Each PET scan is
visualized using its maximum intensity projection.
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in the tumor segmentation mask can be associated with a

single tumor-related lesion [19]. Although clearly a high

ΔNCC in magnitude will be likely associated with the

strength of the cancer evolution, this parameter suffers

from noisy behavior due to possible segmentation inac-

curacies [19] and does not quantify the actual volume of

the new tumor lesions. Furthermore, it will not recognize

the cancer progression scenario illustrated in Fig. 1d, in

which, even though a decrease in NCC (i.e. number of

tumor lesions) is observed, an underlying progression

condition could be present.

To overcome those limitations, another clinically relevant

parameter is computed, denoted as VN. VN is designed to

quantify the amount of new tumor volume that appeared in

the second scan with respect to the first. VN does not include

volume increases of the existing lesions; that is, it only adds

up the volume of tumor lesions that appeared in new ana-

tomical locations, thus quantifying the spread strength. Note

that this indicator will effectively recognize and quantify the

progression cases illustrated in Fig. 1d. The computation of

VN from the pair of time-consecutive PET tumor segmen-

tation masks is nontrivial and described in [20]. In short,

both PET scans are realigned and new tumor lesions are

detected and quantified from the subtraction of the rea-

ligned segmentation masks.

Also, as has been mentioned, the appearance of tumor

lesions in new organs or distant anatomical locations is

considered to worsen the cancer progression condition.

Fig. 3

Ordering of a subset of progression (top) and partial response (bottom) cases of this study.

Fig. 4

Cancer progression example (a) and its associated expert-guided (b) and automatic (c) three-dimensional tumor segmentation masks. Note how the
presence of errors in automatic segmentation masks may lead to conclude about a false global decrease in WBTMV (c) in an actual volume increase
scenario (b). WBTMV, whole-body metabolic tumor volume.
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To model this effect, we introduce the number of sig-

nificantly new tumor lesions (nSNTL) parameter and

approximate it computationally in the following manner.

As the set of new tumor lesions of the tumor segmenta-

tion mask from the second scan is obtained during the

computation of VN, the remaining task is to identify and

count which of those lesions (i.e. connected components

in the mask) can be classified as belonging to a new organ

or being sufficiently distant from the lesions of the first

scan. For that, one of these two conditions must hold:

either the mean Hounsfield unit value of a given lesion is

significantly different (P< 0.05) from that of all the

lesions in the first scan, or it is significantly distant (>1%
of the patient’s body surface area [21]) from them.

Finally, an indicator that aids in quantifying the magni-

tude of mixed responses is presented, denoted as AN. AN

is designed to quantify the amount of tumor volume that

increased its activity by more than 20% in the second

scan relative to the amount of tumor volume in the first

scan. Again, the computation of AN from the pair of tumor

segmentations masks is nondirect and described [20].

Results
Table 1 shows the performance results, in this context, of

the common indicators used in clinical practice. Strong

correlations are only observed in partial response, relapse,

and complete response cases.

Table 2 shows the performance results obtained by

combining them with the proposed alternative indicators

described in the previous section. Substantial perfor-

mance increases are shown in progression and mixed

response cases. No strong correlation was observed in any

scenario if using automatic segmentation procedures.

Finally, although the indicators presented in Table 2 are

the ones that obtained the best performance results on

our particular data set, very similar results were obtained

when using ΔTLG instead of ΔWBMTV (79.6% corre-

lation in progression cases, 76.7% in partial responses,

and 90.5% in relapses). Also, the complete response cases

were also modeled accurately by ΔWBMTV and ΔTLG

(both showing 83.5% correlation).

Discussion
Several noteworthy conclusions can be drawn from our

results. First, note that the conceptual limitations of this

set of indicators described in the previous section are

empirically observed in our data set. Second, the for-

mulas of the indicators that best model the cases in the

data set are a highly consistent mathematical repre-

sentation of the physician global visual analysis criteria.

Third, a substantial performance increase is shown in the

progression and mixed response scenarios with respect to

the indicators in Table 1, which demonstrates the rele-

vance of the new set of proposed indicators in modeling

real NHL evolution cases. Also, the stable results

observed in the rest of the scenarios are also coherent, as

the change in the overall tumor size and extension

(modeled by ΔWBMTV or including the tumor activity

information using TLG) is clearly the most important

visual criterion in those cases. Fourth, the most difficult

(e.g. the one with more discrepancies in the consensus of

physicians performing the visual analysis) NHL evolu-

tion scenario to order by magnitude was the mixed

response, which also showed the worse indicator corre-

lation results. Finally, fifth, as mentioned in the Materials

and methods section, current completely automatic

tumor segmentation techniques are not capable of

offering reliable parameters in this clinical context.

We also considered the possibility of including the time

elapsed between scans as another factor in the indicator

formulas, as clearly the same cancer progression or

response could be considered ‘stronger’ if it was pro-

duced in a shorter period of time. However, we consider

that the evaluation of this parameter, in conjunction with

other clinical variables such as the specific treatment

design of each patient, should be carried out at the

oncological management level and not included in the

nuclear medicine PET/CT diagnostic quantification fra-

mework. Similarly, we only considered mathematical

combinations of the proposed indicators that had a sen-

sible clinical basis, and left as future work a possible in-

depth analysis on fitting parametrical statistical models to

the proposed combined indicator formulas to study the

possible asymmetric weight distribution of each

indicator.

Finally, we consider that the incorporation of this type of

quantitative parameters in nuclear medicine diagnostic

frameworks could increase its overall potential. However,

a large amount of future work remains. On one hand,

expert-guided semiautomatic segmentation of whole-

body PET scans is a highly time-consuming task and

therefore is typically unfeasible in the clinical routine. In

this work we showed that current completely automatic

segmentation techniques are unable to provide reliable

indicators in this diagnostic context, motivating the

initiation of further research in this area. In contrast, the

incorporation of this type of indicators at the oncological

management level would require a previous in-depth

Table 1 Pearson’s correlation results of the common indicators
used in clinical practice with respect to the expert-based visual
ordering

Correlation (%) ΔWBMTV ΔSUVmean ΔSUVmax ΔSUVpeak ΔTLG

Progression 32.3 5.7 4.2 13.8 30.7
Partial response 76.9 48.1 59.6 43.7 73.8
Mixed response 8.3 20.0 13.3 26.7 25.0
Relapse 100 54.8 90.5 78.6 90.5
Complete response 88.5 44.0 64.8 80.8 83.5

max, maximum; SUV, standardized uptake value; TLG, total lesion glycolysis;
WBMTV, whole-body metabolic tumor volume.
Δ Relative change.
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analysis of its exact role as well as its possible limitations

in the clinical context, including its performance eva-

luation within alternative gold standard frameworks.

Conclusion
Addressing the need for obtaining a global continuous

and observer-independent representation of the cancer

evolution magnitude from a pair of whole-body PET-CT

scans, in this work we proposed a set of global indicators

of NHL response computed through imaging techniques

that offered strong correlation results with the associated

expert-based visual analysis.
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