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Highlights

• A system for RGB-Depth human body segmentation
and description is presented.

• Body clusters are automatically computed and a
multi-class classifier is trained.

• 3D alignment is performed within an iterative 3D
shape context fitting approach.

• We show robust biometry measurements by applying
orthogonal plates to body hull.

• Results on a novel data set improve segmentation ac-
curacy in relation to RF.
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bDept. Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007, Barcelona, Spain.
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Abstract

This paper presents a novel method extracting biometric measures using depth sensors. Given a multi-part labeled
training data, a new subject is aligned to the best model of the dataset, and soft biometrics such as lengths or circum-
ference sizes of limbs and body are computed. The process is performed by training relevant pose clusters, defining
a representative model, and fitting a 3D shape context descriptor within an iterative matching procedure. We show
robust measures by applying orthogonal plates to body hull. We test our approach in a novel full-body RGB-Depth
data set, showing accurate estimation of soft biometrics and better segmentation accuracy in comparison with random
forest approach without requiring large training data.

Keywords: 3D shape context, 3D point cloud alignment, depth maps, human body segmentation, soft biometry
analysis

1. Introduction

Soft biometrics in contrast to hard biometrics are traits
of the human body, like color of the hair, skin, height and
weight, that can be used to describe a person. These at-
tributes have a lower power to discriminate and authenti-
cate an individual, but they are easier to compute in com-
parison to hard biometrics.

Soft biometric traits have been used in video surveil-
lance to track people with single camera systems or even
with a discrete joint camera network (Demirkus et al.
(2010); Denman et al. (2012); Ran et al. (2008)); as
a preprocessing approach to help hard biometric sys-
tems to search databases faster or to increase reliability
and accuracy (Guo et al. (2010); Mhatre et al. (2001));
and for other applications like person re-identification
(Møgelmose et al. (2013)), supported diagnosis in clini-
cal setups (Reyes et al. (2013)), or commercial tools like
clothing sizing (Chen et al. (2011)), just to mention a

∗Corresponding author: mmadadi@cvc.uab.es (Meysam Madadi)

few. Most surveillance systems using soft biometrics have
integrated human height as one of their most important
cues (Denman et al. (2012); Jeges et al. (2008); Ran et al.
(2008)).

Velardo et al. (2011) proposed a weight estimation
technique that computes weight by summation of coef-
ficients of some soft biometrics like height and calf cir-
cumference. Since soft biometrics have semantic corre-
lation in human metrology, these can be computed ac-
cording to part relations. Recently, Adjeroh et al. (2010)
studied the problem of predictability and correlation in
human metrology applying some statistical measurements
between different soft biometrics features in order to make
correlation clusters among them to predict unknown body
measurements. Samejima et al. (2012) used joints esti-
mated by KinectSDK to estimate initial dimensions, af-
terwards multiple Regression of the 2 principal compo-
nents of estimated body dimensions were applied to es-
timate other dimensions. Weiss et al. (2011) computed
body measurements using a regression based approach
from body parameters after an accurate scanning of the
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Figure 1: A typical depth image and defined segments.

body.
Indeed the extraction of human body part traits in soft

biometric systems, as other areas in computer vision, suf-
fers from difficulties like illumination changes, cluttered
and uncontrolled environments, and the fact of dealing
with the articulated nature of the human body. Recently,
Microsoft-Corp. (6/2012) has launched a low price multi-
sensor device that uses pseudo random structured light
technology that is capable of capturing RGB images and
depth information simultaneously, which makes it possi-
ble to acquire 3D coordinates of pixels with high accuracy
in indoor environments and overcome most of the difficul-
ties aforementioned.

While most of the biometrics measurements are based
on regression on some known body parameters, in this
paper, first we accurately segment human limbs from a
single depth image captured by a Kinect camera, and as
a result we compute traits such as arm and leg lengths,
and neck, chest, stomach, waist and hip sizes from seg-
mented limbs. We use Kinect to get the human point
clouds using background subtraction and depth threshold-
ing from real user data, see in Figure 1 a typical pose,
depth image, and the corresponding segments. As a first
stage, we focus on human pose estimation as a multi-limb
segmentation problem (Laxton (2007)). Two general ap-
proaches are defined for this task: model based and model
free techniques. In model based approaches, a kinematic
model approximates the shape of the body from measure-
ments that best fit the observed image features (Bo and
Sminchisescu (2010); Schwarz et al. (2011); Sminchis-
escu et al. (2011); Zhu and Fujimura (2010)). Andriluka
et al. (2010) successfully combined bottom-up part-based
models with 3D top-down priors and showed the mod-
els capable to deal with more complex poses. Ramanan
(2006) proposed an edge based deformable model learned
by a conditional random field, and used an iterative pars-
ing as an energy minimization function to improve recog-
nition. Several works are based on this approach as a
first stage for human pose recovery and behavior analy-

sis applications (Ferrari et al. (2009)). Recently, Ye et al.
(2011) used an example-based approach which finds the
pose from the nearest sample after registration.

The methods for human pose estimation based on depth
data have mainly focused on model free approaches.
Model free approaches use feature vectors to learn and
map feature space to pose space. Recently, Shotton et al.
(2011) proposed a random forest based approach to learn
pixel labels from depth offsets, achieving robust segmen-
tation results. This method has become one of the stan-
dard techniques for segmentation in depth data. However,
this approach requires a huge dataset of real and synthetic
labeled images as well as an expensive training procedure.
Different works have focused on such a random forest
segmentation approach to improve recognition of human
body parts. Hernandez-Vela et al. (2012) applied graph
cuts to perform a local and spatial optimization of random
forest output probabilities in order to improve segmenta-
tion accuracy. Kohli et al. (2012) proposed a conditional
regression forests approach applying a global latent vari-
able that incorporates dependency between output vari-
ables, increasing body joint prediction.

In this work we use a model based system where la-
bels of pixels are computed from a defined model af-
ter 3D alignment with the objective of performing soft
biometrics analysis. For this task, we extract a depth
image of each frame in the training set, and compute
HOG features (Agarwal and Triggs (2006); Poppe (2007);
Shakhnarovich et al. (2007)). The described data is clus-
tered to group similar poses in the same class in order to
find the closest model to the test sample as fast as possi-
ble at test time instead of searching all the data set. The
number of clusters is defined using a Gaussian mixture in
an EM algorithm. With such an optimization, we are able
to accurately cluster training data in a problem-dependent
way without the need of prefixing clustering parameters.

Subsequently, the model is aligned to the test body
sample in the 3D space using 3D shape context descrip-
tors and 3D thin plate spline (TPS). Using HOG as a pose
recognizer does not require 3D shape context to be invari-
ant to rotation or viewpoint changes, although 3D shape
context can be rotated based on eigenvectors of the point
cloud. For our task we apply Körtgen et al. (2003) 3D
shape context for aligning point clouds of body hulls. In
our procedure, a random number of pixels is selected and
refined, removing nearest adjacent points, and then an it-
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erative process finds the best matching points. Moreover
each pixel in the body gets the nearest pixel label in the
aligned model. As a result of this step we found accurate
fitting of body parts without requiring expensive training
procedures. Finally, joint points are computed from the
segmented body parts. The intersection of a thin plate
orthogonal to the body crossing each joint point and the
body hull selects which pixels will be used for measuring
the corresponding trait.

To validate our work, we need a motion capture data set
with limbs pixel labels and traits ground truth. Therefore,
We have validated our proposed system on a novel data set
of human poses, showing high segmentation accuracy and
soft biometrics estimation. In particular, we found better
segmentation performance than random forest approach.

The rest of the paper is organized as follows: Section 2
presents the details of our method, then experiments and
results are described in section 3, and finally we conclude
our work in section 4.

2. Limbs labeling and size measurements

In this section we review 3D shape context and TPS,
describe our system for human limb segmentation and
soft biometrics computation, whose different modules are
shown in Figure 2.

2.1. Training

The Histogram of Oriented Gradients (HOG) descrip-
tor has been studied vastly in the domain of human de-
tection and pose recognition. Here, the key idea is to use
HOG as the depth descriptor of the human body on depth
images, where the gradients of the depth image are the
derivatives of the body hull surface.

Once HOG feature vectors have been computed, our
approach is based on modeling homogeneous pose clus-
ters within a training set of depth human poses using
a multi-class classifier. Then the sample pose models
are computed from the nearest neighbors of each cluster.
We use a problem-dependent clustering strategy to group
HOG feature vectors of poses, as described next.

To cope with the problem of determining the exact
number of clusters, we estimate the optimum number of
clusters by combining the EM and k-means algorithms as
proposed in Lee et al. (2006): let X = {x1, ..., xN}, xi ∈ Rd

Figure 2: Process diagram.

be a given data set. An iterative algorithm starts from
Mmin to Mmax, M ∈ {1, ...,N}, and at each iteration EM al-
gorithm is initialized with the clusters of X obtained from
k-means (k = M); then the parameters of the mixture
model and the posterior probabilities of the members of
X are computed. At the end of each iteration the mutual
relationship between every two mixtures is measured as:

ψ(i, j) = p(i, j) log2
p(i, j)

p(i)p( j)
, i = 1, ..., j, (1)

where p(i) = 1
N

∑N
n=1 p(i|xn) is the probability of the

mixture i and p(i, j) = 1
N

∑N
n=1 p(i|xn)p( j|xn) is the joint

probability of i and j mixtures. For any composition of
i, j ∈ {1, ...,M}, if ψ(i, j) > 0, then i and j mixtures are
considered statistically dependent so the process finishes
and M−1 is returned as the most suitable number of mix-
tures.

One of the limitations of such an approach is when
there is no ’meaningful’ mixture, i.e. when the number of

4



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

training poses is low or when the data does not follow nor-
mal distributions. In the case of straggly or scarce data,
algorithm goes to reach Mmax where each data is assumed
as a cluster itself. When the data distributions are not nor-
mal, we can tune Mmin and Mmax to solve this problem.
After estimating the optimal M, the EM is trained and the
labels and feature vectors of each model are kept. EM al-
gorithm shows better cluster results than k-means, besides
we can keep the parameters of EM and retrieve them later
in order to predict the cluster of a new feature vector ap-
plying the posterior probabilities of the feature vector and
the mixtures. This is useful to retrieve the closest model
to test point cloud in an efficient way at test step.

Moreover, extracted nearest model should be aligned to
the input body point cloud. For this purpose, we extract
sample points from each body point cloud to decrease
the overall fitting time while preserving performance as
follows: we first select a number of random points and
then refine them by eliminating undesired nearest adjacent
points till reach a constant portion of each point cloud.
The refinement step includes computing the Euclidean
distances among all the selected points, finding the short-
est distance, and removing one of the ending points1. This
process enables us to consider a normal distribution for
the points and, at the same time, alignment is more accu-
rate in the edges.

Subsequently, we compute the normalized gradients of
each axis as the mean values and angles of the gradients
for selected points in the depth image. Assume PN×3 is the
matrix of selected x, y, z points in the depth image coor-
dinates of the model, tN×1 is the matrix of gradient angles
and gN×2 is the matrix of normalized gradients. Then, the
point cloud for the model is defined as:

Ptan = P + α
[
g ◦

[
cos(t) | sin(t)

]
| 0

]
N×3

, (2)

where α is a static constant and A ◦ B is the Hadamard
product of A and B. We use Ptan later to compute new
gradient angles matrix of the model after converting it to
real world coordinates.

1In order to perform this task efficiently, we set an infinity value to
that value in the distance table without recomputing the whole table,
setting the flag of the removed point to undesired. At the end, we add
the desired points to the final list.

2.1.1. Point matching
Here, we employ the basic shape context of Belongie

et al. (2002) extended to 3D data. We propose to use ex-
ponential space for the radius of nested spheres (nr) as:

ri =
10i/nr − 1

9
×max({||x−y|| | x, y ∈ ω}), i = 1, ..., nr, (3)

where ω is the set of inlier points (vs. outliers). This
space partitioning forces shape context to be more sensi-
tive to near samples to the sphere bin than farther ones.
After computing the shape context histograms for all se-
lected points, the best matched points between all pairs of
points on the model and the input test pattern are found.
Such a matching process minimizes the overall matching
cost, for which a cost table performs matching based on
the histogram similarity and appearance similarity of the
points. As in Belongie et al. (2002), we use χ2 test to
find the histogram similarity cost and the gradient angu-
lar difference polarity to find the appearance cost between
pairs of (pi, q j) points of the two point clouds. So the cost
function is defined as:

C(pi, q j) =
1
2


(1 − α)

nrn2
θ

2∑

k=1

[hi(k) − h j(k)]2

hi(k) + h j(k)
+ α(1 − cos(ti − t j))


,

(4)
where nθ must be an even number, hi(k) and h j(k) denote
the k-th bin of the histogram, and ti and t j are the gradient
angles at pi and q j, respectively. The appearance cost acts
as a penalty function causing smooth alignments on the
surfaces, while the α coefficient controls this smoothing
factor.

Redundant, “dummy” points are also added to the cost
table with a constant cost to control the sensitivity of the
shape context to noise as in Belongie et al. (2002). There-
fore, points that do not match any other with a lower value
than this dummy cost will be considered as outliers. In
hard assignments, each point matches exactly one point
in the cost table so that the overall cost is minimum. This
task, commonly referred to as Linear Assignment Prob-
lem (LAP), can be solved using Jonker and Volgenant
(1987).

2.1.2. Transformations
Sample points are aligned after matching to generate

new coordinates and gradient angles which will be used
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in next iteration to refine the final matched points. This
alignment task is done by generating an interpolation ma-
trix using the best matches of random samples and thin
plate spline (see Belongie et al. (2002); Bookstein (1989))
in the form of:

T =

[
KN×N [1|PN×3]

[1|PN×3]> 0

]−1

(N+4)2

[
QN×3

0

]

(N+4)×3

, (5)

where K is a kernel matrix, P is the best model match-
ing points matrix, and Q is the best test pattern matching
points matrix. K is computed as:

Ki j =


||Pi − P j|| log(||Pi − P j||) if i , j,

λ if i = j, λ > 0,
(6)

where λ = α2λ0 is a regularization parameter used to
smooth the interpolation. The term α is defined as:

α =
1
N

N−1∑

i=1

N∑

j=i+1

||Pi − P j||, (7)

and λ0 is a scaling factor. We change 0 values of
∥∥∥Pi − P j

∥∥∥
in the indices matrix K to 1 to avoid generating −∞ in log-
arithm. Then, model sample points are mapped to their
interpolated locations in the test pattern using the inter-
polation matrix T and the same procedure specified in
equation 5 in the form [K|1|O]T , where O is the point
cloud model and Ki j = ||Oi − P j|| log(||Oi − P j||). These
new mapped points are sent to the next iteration along
with new gradient angles. New gradient angles are up-
dated in a procedure as follows: image coordinates of the
mapped model samples are computed, Ptan points com-
puted in previous sections are mapped using the matching
points and the alignment procedure, and their image co-
ordinates are estimated; finally the angles extracted from
the differences of the coordinates of 2D mapped model
and Ptan sample points are returned as new gradient an-
gles. Figure 3 illustrates an alignment example within the
described iterative process.

2.2. Label assignment

In order to cope with self-occlusions, we maintain a
complete point cloud for each sample model. Once align-
ment has been done, the complete model is transformed to

Figure 3: Iterative alignment process shows how points get closer at
each step.

the test point cloud using the matching points of the for-
mer described approach through TPS. This warped com-
plete model is used to complete occluded parts and as-
sign labels. We can easily estimate the label of each
point using its nearest neighbor pixel label after alignment
of the point clouds by applying the matching points and
the transformation procedure described above. Unfortu-
nately, assignments of labels from 3D nearest neighbors
cause problems in the case of imperfect alignments and
broken segments. To minimize this issue, as well as noise
points, we proposed to train SVM directly on 3D coordi-
nates of warped model using a linear kernel and predict
test points labels from it. SVM makes a bound around
points and tune the assignments.

2.3. Size measurements
To measure size, we complete body from complete

warped model. Therefore, we save occluders labels for
the model image. After label assignment, we use those
test points with occluder label as a mask and select those
non visible points of model inside the mask as comple-
tion points. Figure 4 shows how occludees are completed.
Following this procedure, the lengths of arms and legs are
easily obtained after extracting the points of their joints
like shoulder, elbow and wrist for arms; or hip, knee and
ankle for legs. But the most challenging part in size mea-
surements lies in the estimation of the circumference of
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Figure 4: Red points are non visible points of the model inside occluders
mask. Left image is the corresponding depth map.

body traits like neck, chest or waist. Depending on the
training data, one could add more body parameters like
principle components as degree of obesity and using such
a more robust model, full size measurements are possible
from body completion. This can obtain even more accu-
rate results in multi-view systems which require a point
cloud nearest neighbor based approach.

Next we describe a geometrical approach to compute
camera view circumference of such traits: we estimate
the orthogonal plane to the body principal axis so that the
intersection of this plane and the body hull surface is used
for estimating those measurements. Since the principal
axis of the body is the symmetry axis of it, we assume
that this axis starts at the mean point of the hip edge and
ends at the mean point of the neck edge. This edge lies on
the segment after estimating labels. The accuracy of prin-
cipal axis finding strongly depends on the segmentation
accuracy. Similarly, the principal axis of the neck starts
at the mean point of the neck edge and ends at the head
joint.

As shown in Figure 5, let h be the head point and t
be the tail point of the principal axis, j be the joint point
of a segment, γ be the orthogonal plane to the principal
axis crossing at j, and o be the intersection of γ and the
principal axis. In this assumption, o is unknown and we
compute it using other known points as:

o = α(h − t) + t, (8)

where α is the plane γ factor computed as:

α =

∑
(h − t) ◦ (m − t)∑

(h − t)2
. (9)

Let p be a point on body hull that belongs to the se-
lected segment. Point p lies on γ plane if and only if

Figure 5: Constructing trait curve for size measurement using orthogo-
nal plane γ to the body principal axis.

−→op · −→oh = 0 is satisfied. Since the body hull point cloud
is a discrete surface, we threshold the dot product for all
points in the segment to estimate the intersection curve.
However, the resulting narrow strip of points is still not
appropriate for measurements. We divide the resulting
strip into non-overlapping segments to extract the mean
point of each segment, and then consider the Euclidean
distance between neighbor segments. Applying such an
interpolation reduces affects of boundary points noises.
These measurements can be used in regression based ap-
proaches as initial parameters.

For small segments like neck, using completed point
cloud and tuning the weights of each segment in SVM
segmentation improves segment line analysis. An impor-
tant parameter is the threshold of dot product which can
be tuned for different point cloud densities and segments.

3. Experiments and results

To evaluate our method, we have created a dataset 2

manually labeled containing 1155 frames of 38 individu-
als, 7 females and 31 males, with a resolution of 640×480
pixels captured by a Kinect using the OpenNI library
OpenNI (6/2012). Each frame consists of RGB image,
and depth information and label of each body pixel, a
complete model in the self-occlusion cases, as well as,
ground truth values of the front views of limbs sizes with a
±20 mm human error in measurements, and a file contain-
ing occluder segments. Subjects rotate facing the camera
in a range of ±60◦ such that the whole body was observ-
able.

2This dataset will be made publicly available.
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We used a 10-fold cross validation over all 1155 frames
to generate the results. The segmentation error per frame
is the proportion of mislabeled pixels in relation to the
total number of pixels. Then, the overall error is averaged.

We have used a block of 9 × 6 including 2 × 2 cells
and 8 orientation bins for HOG. Figure 6 illustrates some
clusters contents and shows how the poses and bodies are
clusterized together. We achieved the best number of clus-
ters at 90 in a range of [15..100] clusters. Although the re-
sults show the robustness of our approach to the HOG pa-
rameters, we found that the parameter values give the best
alignment results: nθ = 8, nr = 15, 500 random samples,
dummy cost 0.1, 35% of samples as additional dummy
points, appearance cost weight 0.15, and 4 iterations. We
set the parameter λ0 to 1000 for first iteration to have an
affine transformation and brk−1 for next iterations where
b = 0.9, r = 1.7, and k is the iteration number.

In order to compare our approach, we have considered
the random forest (RF) pixel labeling approach as defined
in Shotton et al. (2011). In particular, the RF implemen-
tation computes the weights of each body part label as:

Wl = 0.5 +
P(l)√∑N
i=1 P(i)2

, (10)

where P(l) is the probability of the label l and is equal to
the averaged proportion of the number of pixels with la-
bel l compare to the total number of pixels in the body for
some random images. In essence, this weight adjusts the
probability of small vs. large segments. We compared to
Shotton et al. (2011) just in case of segmentation, because
the outputs of this approach is noisy and is not consistent
with our biometrics measurements. The whole approach
is implemented in C++ using the OpenCV library, and
the computational time for the complete soft biometric
estimation is around 50 seconds: less than 1s for nearest
model finding, 2s for point sampling, 14s for alignment
and 33s for label assignment.

3.1. Segmentation results

Given the results shown in Figure 7, we fixed the num-
ber of cluster to be 90 and progressively increasing the
number of training images in order to test our multi-part
segmentation methodology. The results in Figure 7 illus-
trate a low sensitivity of our approach to the number of

Figure 6: Some typical clusters are shown in this image among HOG
and EM. The number of clusters is estimated for every combination of
parameters. We employed randomly 90% of data to train 10% to test.

Figure 7: In our approach, segmentation error remains stable in different
amount of training data in comparison to RF. Average error percentage
for our method and RF at the best case is 13.55±7.39 and 32.26±10.03,
respectively.

training data: human body segmentation accuracy is im-
proved between 10% and 20% compared to RF. On the
other hand, RF trend shows that segmentation errors re-
main stable and is not able to improve for higher amounts
of training data. We plot the qualitative results of seg-
mentation in Figure 8, where the influence of alignment
in the segmentation is shown. Segmentation errors occur
in the areas for which alignment is not perfect, so SVM
has incorrect labels. Another source of error comes from
inconsistencies of manual labeling for different samples.
The results in the image shows how the approach copes
with the self occlusions.

The similarity of the test pattern to the estimated model
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Figure 8: Qualitative results. First column shows the nearest model
found, second column is the test sample, third column is the warped
model after registration, and the next two columns belong to our ap-
proach and RF segmentation respectively. Black points correspond to
segment lines used for measurements. It can be seen that segment lines
accuracy has a direct relation with the segmentation accuracy and purity.

plays also an important role. In this case, higher num-
ber of random samples will generate better alignment and
segmentation result, and higher complexity instead. Us-
ing perfect alignment parameters implies a low number of
iterations, whereas a high number of iterations will reduce
the accuracy dramatically in some cases. We observed
that the affine behavior of λ0 at first iteration generated
quite better transformation results. We also implemented
soft-assignment vs. hard-assignment which is faster but
no difference in accuracy was found.

3.2. Biometric estimation

We show in Figure 9 the average limbs size errors
among all subjects. This shows that the data distribution
among all individuals is not normal and some data is more
challenging for measurements. Notice that segment lines
in different parts lie into the segments according to the
Figure 8 even for small segments like neck.

Figure 9: Overall size error per person in mm.

The accuracy of measurements is directly related to the
accuracy of the segmentation and database labels: chest
has the highest size errors (because clothes affect mostly
on this part) whereas arm and leg have the lowest error
values. Other source of errors are the affect of clothes in
some poses as well as human faults in taking groundtruth.
Besides self occlusions problem for example in the chest
part has been solved by completing the point cloud. Table
1 summarizes the average mean and standard deviation
errors in mm per limb.

Since we used geometrical approach for body measure-
ments in this work, an extension to a multi-camera system
utilizing occlusion completion would generate more accu-
rate body base lines beside quite accurate results for full
body circumference. Although we just considered one
view circumference in this work, but this is the direct con-
sequence of the results of our work.

4. Conclusions

We have introduced human segmentation as an inter-
mediate stage for accurate soft biometric measurements
applying an effective geometrical approach. As a result,
an effective and accurate approach for body part size esti-
mation from a static depth image is achieved. After clus-
tering HOG feature vectors from depth images, the 3D
shape context descriptor is used to match the points of the
test pattern to the nearest estimated model. The alignment
of point clouds is achieved using the TPS transformation
which assigns the label of the nearest pixels. Both qualita-
tive and quantitative results demonstrate that we improve
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Table 1: The average mean and standard deviation error in mm for all the data.

Neck Chest Stomach Waist Hip Arm Leg
Our method 55.76±33.57 69.47±49.58 64.63±39.84 46.60±31.45 55.61±34.35 41.44±25.65 30.65±24.07

human segmentation precision between 10% and 20% us-
ing a reduced set of training poses, as compared to random
forest.

As a future work, we plan to parallelize and intro-
duce our methodology in real-time scenarios, such as in-
telligent surveillance or size clothing estimation for e-
commerce and retail purposes.
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