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a b s t r a c t

Human multi-limb segmentation in RGB images has attracted a lot of interest in the research community
because of the huge amount of possible applications in fields like Human–Computer Interaction,
Surveillance, eHealth, or Gaming. Nevertheless, human multi-limb segmentation is a very hard task
because of the changes in appearance produced by different points of view, clothing, lighting conditions,
occlusions, and number of articulations of the human body. Furthermore, this huge pose variability
makes the availability of large annotated datasets difficult. In this paper, we introduce the HuPBA8kþ
dataset. The dataset contains more than 8000 labeled frames at pixel precision, including more than
120 000 manually labeled samples of 14 different limbs. For completeness, the dataset is also labeled at
frame-level with action annotations drawn from an 11 action dictionary which includes both single
person actions and person–person interactive actions. Furthermore, we also propose a two-stage
approach for the segmentation of human limbs. In the first stage, human limbs are trained using
cascades of classifiers to be split in a tree-structure way, which is included in an Error-Correcting Output
Codes (ECOC) framework to define a body-like probability map. This map is used to obtain a binary mask
of the subject by means of GMM color modelling and Graph-Cuts theory. In the second stage, we embed
a similar tree-structure in an ECOC framework to build a more accurate set of limb-like probability maps
within the segmented user mask that are fed to a multi-label Graph-Cut procedure to obtain final multi-
limb segmentation. The methodology is tested on the novel HuPBA8kþ dataset, showing performance
improvements in comparison to state-of-the-art approaches. In addition, a baseline of standard action
recognition methods for the 11 actions categories of the novel dataset is also provided.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Human analysis in RGB images is a challenging task because of
the high variability of the human body, including the wide range
of human poses, lighting conditions, cluttering, clothes, appear-
ance, background, point of view, and number of human body
limbs. Even so, human analysis in visual data has become one of
the more interesting areas of research in Computer Vision and
Pattern Recognition because of its capabilities in final applications
(i.e. human–computer interaction, surveillance, gaming, eHealth,
and interactive virtual reality systems). In this sense, the common
pipeline for human body analysis in visual data uses to be defined
in a bottom-up fashion. First, the human body limbs are segmen-
ted and the body pose is estimated (often with a prior person/

background segmentation or person detection step). Then, once
the body pose is estimated higher abstraction analysis can be
performed. Usually, the following step in the pipeline is action/
gesture recognition, since actions can be seen as a set of estimated
body poses varying over time.

The first step of the pipeline, which concerns human limb
segmentation or pose estimation in RGB images, has been a core
problem in the Computer Vision field since its early beginnings. In
this particular problem the goal is to provide a complete segmen-
tation of each of the defined human body parts appearing in an
image, discriminating human limbs from each other and from the
rest of the image. Usually, human body segmentation is treated in
a two-stage fashion. First, a human body part detection step is
performed, and then, these human part detections are used as
prior knowledge to be optimized by segmentation/inference
strategies in order to obtain the final human-limb segmentation.
In the literature one can find many works that follow this two-
stage scheme. Bourdev and Malik [1] used body part detections in
an AND–OR graph to obtain the pose estimation. Vinet et al. [2]

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2014.07.069
0925-2312/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: gammarl@gmail.com (D. Sánchez),

mbautista@ub.edu (M. Ángel Bautista), sergio@maia.ub.es (S. Escalera).

Please cite this article as: D. Sánchez, et al., HuPBA8kþ: Dataset and ECOC-Graph-Cut based segmentation of human limbs,
Neurocomputing (2014), http://dx.doi.org/10.1016/j.neucom.2014.07.069i

Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.07.069
http://dx.doi.org/10.1016/j.neucom.2014.07.069
http://dx.doi.org/10.1016/j.neucom.2014.07.069
mailto:gammarl@gmail.com
mailto:mbautista@ub.edu
mailto:sergio@maia.ub.es
http://dx.doi.org/10.1016/j.neucom.2014.07.069
http://dx.doi.org/10.1016/j.neucom.2014.07.069
http://dx.doi.org/10.1016/j.neucom.2014.07.069
http://dx.doi.org/10.1016/j.neucom.2014.07.069


proposed to use Conditional Random Fields based on body part
detectors to obtain a complete person/background segmentation.
Nevertheless, one of the methods that have generated more
attraction is the well known pictorial structure for object recogni-
tion introduced by Felzenszwalb and Huttenlocher [3]. Some
works have applied an adaptation of pictorial structures using a
set of joint limb marks to infer spatial probabilities [4–7]. Later on,
an extension was presented by Yang and Ramanan [8,9] which
proposed a discriminatively trained pictorial structure that models
the body joints instead of limbs. In contrast, there is also current
tendency to use Graph-Cuts optimization to segment the human
limbs [10] or full person segmentation [11].

The common step after estimating the pose of a subject within
the pipeline of human body analysis is analyzing non-verbal
communication in terms of actions and/or gestures, which can
be interpreted as a set of poses varying over time. In this sense, in
order to deal with action/gesture recognition there exist a wide
number of methods based on dynamic programming algorithms
for alignment and clustering of temporal series [12,13]. One of the
most common methods for Human Gesture Recognition based
on dynamic programming is Dynamic Time Warping (DTW)
[14,15,13], since it offers a simple yet effective temporal alignment
between sequences of different lengths. Other probabilistic meth-
ods such as Hidden Markov Models (HMM) or Conditional Ran-
dom Fields (CRF) have been commonly used in the literature [16].
Some other methods also considered for action/gesture recogni-
tion include Neural Networks approaches, Boosting variants, and
Random Forest [17,18].

The Computer Vision community has been lately focusing their
efforts on developing methods for both pose estimation and action/
gesture recognition. However, one of the main problems is the
necessity of public available datasets containing annotations of all
the variabilities the methods have to deal with. Substantial effort has
been put on designing datasets with different scenarios, people and
illumination characteristics. Datasets such as Parse [7], Buffy [19],
UIUC People [20], and Pascal VOC [21] are widely used to evaluate
different pose estimation and action/gesture recognition methods.
However, these public available datasets fail to provide a sound
framework to validate pose recovery systems (i.e. the number of
samples per limb is small, the labeling is not accurate, and there are
no interactions of actors). Given this lack of sound and refined public
datasets for human multi-limb segmentation and/or action/gesture
recognition, we introduce the HuPBA8kþ dataset, which to the best
of our knowledge is the biggest RGB human-limb labeled dataset.
The dataset contains more than 8000 labeled frames at pixel
precision and more than 120 000 manually labeled samples of 14
different limbs. In addition, the HuPBA8kþ dataset is also labeled
with action annotations drawn from an 11 action dictionary which
includes both single person actions and interactive actions (actions
performed by more than one person).

Furthermore, we also extend our work of [22] by proposing a two-
stage approach for the segmentation of human limbs. In a first stage, a
set of human limbs is normalized by main orientation to be rotation
invariant, described using Haar-like features, and trained using cas-
cades of Adaboost classifiers to be split in a tree-structure way. Once
the tree-structure is trained, it is included in a ternary Error-Correcting
Output Codes (ECOC) framework. This first classification step is applied
in a windowing way on a new test image, defining a body-like
probability map, which is used as an initialization of a binary GRAB
Cuts optimization procedure. In the second stage, we embed a similar
tree-structured partition of limbs in a ternary ECOC framework andwe
use Support Vector Machines (SVMs) with HOG descriptors to build a
more accurate set of limb-like probability maps within the segmented
user binary mask that are fed to a multi-label Graph-Cut optimization
procedure to obtain the final human multi-limb segmentation. We
tested our ECOC-Graph-Cut based approach in the novel HuPBA8kþ

dataset and compared with state-of-the-art pose recovery approaches,
obtaining performance improvements in both person/background and
multi-limb segmentation steps. For completeness, we also provide
action recognition results as a baseline for the HuPBA8kþ dataset.
Summarizing, our key contributions are the following:

� We introduce the HuPBA8kþ dataset, the largest RGB labeled
dataset of human limbs, with more than 120 000 manually
annotated limbs. The dataset also includes frame-level annota-
tion for 11 action/gesture categories.

� We propose a two stage approach based on ECOC and Graph-
Cuts for the segmentation of human limbs in RGB images.

� We provide a baseline for Action Recognition in the novel
dataset.

The rest of the paper is organized as follows: Section 2
introduces the novel dataset. Section 3 introduces the proposed
method. Section 4 presents the experimental results, and finally,
Section 5 concludes the paper.

2. HuPBA8Kþ dataset

Automatic human limb detection and segmentation, human
pose recovery and human behavior analysis are challenging
problems in computer vision, not only for the intrinsic complexity
of the tasks, but also for the lack of large public and annotated
datasets. Usually, public available datasets lack refined labeling or
contain a very reduced number of samples per limb (e.g. Buffy
Stickmen V3.01, Leeds Sports and Hollywood Human Actions
[19,23,24]). In addition, large datasets often use synthetic samples
or capture human limbs with sensor technologies such as MoCap
in very controlled environments [25].

Being aware of this lack of public available datasets for multi-
limb human pose detection, segmentation and action/gesture
recognition, we present a novel fully limb labeled dataset, the
HuPBA8kþ dataset. This dataset is formed by more than 8000
frames where 14 limbs are labeled at pixel precision.1 Further-
more, the HuPBA8kþ dataset also contains gesture/action annota-
tions for 11 isolated and collaborative action categories. The main
characteristics of the dataset are the following:

1. The images are obtained from 9 videos (RGB sequences) and a
total of 14 different actors appear in those 9 sequences. In
concrete, each sequence has a main actor (9 in total) which
during the video interacts with secondary actors performing a
set of different actions.

2. Each video (RGB sequence) was recorded with a mean 15
fps rate.

3. RGB images were stored with resolution 480�360 in BMP file
format.

4. For each actor present in an image 14 limbs (if not occluded)
were manually tagged: Head, Torso, R–L Upper-arm, R–L
Lower-arm, R–L Hand, R–L Upper-leg, R–L Lower-leg, and R–
L Foot.

5. Limbs are manually labeled using binary masks and the
minimum bounding box containing each subject is defined.

6. The actors appear in a wide range of different poses and
performing different actions/gestures.

7. For each video we manually labeled a set of 11 gesture/action
categories: Wave, Point, Clap, Crouch, Jump, Walk, Run, Shake
Hands, Hug, Kiss, and Fight.

1 The whole number of manual labeled limbs exceeds 120 000.
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Finally, the easy and challenging aspects of the HuPBA8kþ
dataset are listed in Table 1.

2.1. Data format and structure

The dataset we introduce is composed of RGB images, labeled
limbs (binary masks) and additional information that has a specific
structure to distinguish the location of limbs and gestures/actions for
each actor. Additionally, for each actor, a pair of structured files is
created to store the location of the bounding-boxes for each RGB
image and the start-end frames associated with the gestures/actions
executed. The folder structure that contains the HuPBA8kþ dataset is
shown in Fig. 1.2

2.1.1. Folder \images
In this folder, we store the set of frames for a given video sequence.

The folder \images contains the sequence of RGB images (480�360
pixels). Each image name has the structure idActor_numberFrame.bmp,
where

� idActor: Numerical identifier of the actor f01;02;…;09g.
� numberFrame: Numerical identifier of the image in the

sequence.

2.1.2. Folder \masks
This folder contains the binary masks for each one of the 14

limbs appearing on each frame. In the case of two actors appearing
in a frame, there will be an id for each one in order to distinguish
limbs. Each binary mask name has the structure idActor_number-
Frame_idUser_idLimb.bmp, where

� idActor: Numerical identifier of the actor f01;02;…;09g.
� numberFrame: Numerical identifier of the image in the

sequence.
� idUser: Numerical identifier for the actor that appears in the

image. Values f1;2;…;ng. In case of appearing two actors: The
main actor and another, the main actor is 1, the second is 2,
and so on.

� idLimb: Numerical identifier of the limb, which is described
in Fig. 2.

2.1.3. Bounding-boxes
In addition, for each sequence there is a file 0X_boundingbox.csv

located in the directory \csv_files that contains the bounding-
boxes of all actors that appear in that sequence. That is, for each
actor that appears in an image, its bounding-box is given. In the
case of two actors appearing in an image, two bounding-boxes will
be described, one for each actor, as shown in Fig. 3. The csv file
contains the following structure:

� id_user: Numerical identifier for the actor that appears in the
image. Values f1;2;…;ng. In case of appearing two actors: The
main actor and another, the main actor is 1 and the second is 2.
Thus, there will be two bounding-boxes, one for 1, another for 2,
and so on.

Table 1
Easy and challenging aspects of the HuPBA8kþ dataset.

Easy
Fixed Camera
Frontal point of view
Full body capture
The main actor is kept within a sequence
Several instances of each gesture/action
Gestures/actions differentiated by an idle pose in most cases
Fixed background across all video sequences

Challenging
Within each sequence
Gestures/actions execution involve most limbs
Large variability of poses
Some gestures/actions imply the interaction of various actors
Some parts of the body may be occluded

Between sequences
Variations in clothing, skin color, gender, height and corporal conditions
Some parts of the body may be occluded

Fig. 1. Folders structure.

Fig. 2. Human-limb labelling on the HuPBA8kþ dataset.

Fig. 3. Sample of two bounding-boxes in a frame.2 Web page of the dataset will be public after acceptance of the paper.
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� number_frame: Numerical identifier of the image in the
sequence.

� x: Minimum position of X. That is, the leftmost.
� y: Minimum position of Y. That is, the uppermost.
� width: Width of the bounding-box.
� height: Height of the bounding-box.

2.1.4. Gestures/Actions
Besides the human-limb labeling provided on the dataset, we

also annotated gestures/actions performed by the actors. The 11
gesture/action categories labeled are the following: Wave, Point,

Clap, Crouch, Jump, Walk, Run, Shake Hands, Hug, Kiss and Fight.
An example of key frames for the different gesture/action cate-
gories is shown in Fig. 4. Each set of gestures/actions performed by
an actor is associated with a file ./csv_files/0X_gestures.csv that
contains the following structure:

� id_user: Numerical identifier for the actor that appears in the
image. Values f1;2;…;ng.

� label_gesture: Numerical identifier related to the gesture/
action performed. There are gestures/actions that involve just
one actor (i.e. walk or run), and others more than one actor (i.e.
fight or kiss).

Fig. 4. Different gesture categories labeled on the HuPBA8kþ dataset. Images from (a) to (g) illustrate single actor gestures/actions, and images from (h) to (k) show gestures/
actions that required interacting with a secondary actor. Additionally, (l) shows an example of an existing idle gesture/action.
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� start_frame: The number of image where the gesture/action
starts.

� end_frame: The number of the image where the gesture/
action ends.

Finally, in Table 2 we compare the HuPBA8kþ dataset character-
istics with some publicly available datasets. These public datasets
are chosen taking into account the variability of limbs and gestures/
actions. One can see that the novel dataset offers higher number of
annotated limbs at pixel precision in comparison with state-of-the-
art public available datasets. In case of gestures/actions, there is
more equality in the number of gestures/actions set with the other
datasets (i.e. HOLLYWOOD (HW), MMGR13, Human Actions). In

contrast, MMGR13 presents much more variety of gestures/actions
and samples than the proposed dataset.

3. ECOC and Graph-Cut based multi-limb segmentation

In the following subsections we describe the proposed system for
automatic segmentation of human limbs. The main goal of this
approach is to facilitate the multi-limb segmentation as a collection
of softer sub-stages for the current database. Our main contributions
are (i) The HuPBA8kþ dataset, the largest RGB labeled dataset of
human limbs, with more than 120 000 manually annotated limbs.
(ii) A two stage approach based on ECOC and Graph-Cuts for the

Table 2
Comparison of public dataset characteristics.

Dataset Labeling at pixel
precision

#
limbs

# labeled
limbs

# frames Full
body

Bounding-box on
limbs

Gesture
annotation

#
gestures

# gesture
samples

HuPBA Yes 14 124 761 8234 Yes Yes Yes 11 235
PARSE[7] No 10 3050 305 Yes Yes No – –

BUFFY[19] No 6 4488 748 No Yes No – –

UIUC people[20] No 14 18 186 1299 Yes Yes No – –

LEEDS SPORTS[23] No 14 28 000 2000 Yes Yes No – –

HW[24] – – – – – No Yes 8 430
MMGR13[17] No 16 27 532 800 1 720 800 Yes Yes Yes 20 13 858
H.Actions[26] No – – – Yes No Yes 6 600
Pascal VOC[21] Yes 5 8500 1218 Yes Yes No – –

MPII Human Pose
[27]

Yes 14 567 308 40 522 Yes Yes Yes 20 491

FLIC[28] No 29 145 087 5003 No Yes No – –

H3D[29] No 19 38 000 2000 No Yes No – –

Fig. 5. Scheme of the proposed human-limb segmentation method.
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segmentation of human limbs in RGB image. (iii) A baseline for
action recognition in the dataset. The first stage, which focuses on
binary person/background segmentation, consists of four main
steps: (a) Body part learning using cascade of classifiers with Haar-
like features. The selection of this model is based on its simplicity and
fast computation, at the same time that allows training an unba-
lanced binary problem while reducing the false positive detection
rate. (b) Tree-structure learning of human limbs. A tree structure
approach allows defining the groups of body parts by taking into
account their visual appearance and kinematic constraints. (c) ECOC
multi-limb detection. The ECOC framework is used as a refinement
process that permits us to enhance the soft cascade detections by
learning a tree human limbs embedded in it. (d) Binary Grab-Cut
optimization for foreground extraction is used to obtain a pixel-wise
segmentation of the human body. In the second stage, we segment
the person/background binary mask into different limb regions. This
stage consists of four steps: (e) Tree-structure body part learning
without background. A second tree structure is created with the same
grouping than (b) but without taking into account the background
removed by the cascade detections. (f) ECOC multi-limb detection.
The soft cascade detections are enhanced with a second model
composed of HOG descriptors and SVM classifiers as both jointly
combined obtain a more robust performance. (g) Limb-like prob-
ability map definition and (h) Alpha-beta swap Graph-Cuts multi-limb
segmentation as an extension of the binary GRAB cuts for multi-label
segmentation that provides very accurate results by taking into
account contextual information. The scheme of the proposed system
is illustrated in Fig. 5.

3.1. Body part learning using cascade of classifiers

The core of most human body segmentation methods in the
literature relies on body part detectors. In this sense, most part
detectors in the literature follow a cascade of classifiers architec-
ture [30–34]. Cascades of classifiers are based on the idea of
learning an unbalanced binary problem by using the positive
outputs of a classifier di as an input for the following classifier
diþ1. Particularly, this cascade structure allows any classifier to
refine the prediction by reducing the false positive rate at every
stage of the cascade. In this sense, we use AdaBoost as the base
classifier in our cascade architecture. In addition, in order to make
the body part detection rotation invariant, all body parts are
rotated to the dominant gradient region orientation. Then, Haar-
like features are used to describe the body parts.

Because of its properties, cascade of classifiers are usually
trained to split one visual object from the rest of the possible
objects of an image. This means that the cascade of classifiers learns
to detect a certain object (body part in our case), ignoring all other
objects (all other body parts). However, if we define our problem as
a multi-limb detection procedure, some body parts are similar in
appearance, and thus, it makes sense to group them in the same
visual category. Because of this reason, we propose to learn a set of
cascade of classifiers where a subset of limbs is included in the
positive set of a cascade, and the remaining limbs are included as
negative instances together with background images in the nega-
tive set of the cascade. Applying this grouping for different cascades
of classifiers in a tree-structure way and combining them in an
Error-Correcting Output Codes (ECOC) framework enable the sys-
tem to perform multi-limb detection [35].

3.2. Tree-structure learning of human limbs

The first issue to take into account when defining a set of
cascades of classifiers is how to define the groups of limbs to be
learnt by each individual cascade. For this task, we propose to train a
tree-structure cascade of classifiers. This tree-structure defines the
set of meta-classes for each dichotomy (cascade of classifiers) taking
into account the visual appearance of body parts, which has two
purposes. On one hand, we aim to avoid dichotomies in which body
parts with different visual appearances belong to the same meta-
class. On the other hand, the dichotomies that deal with classes that
are difficult to learn (body parts with similar visual appearance) are
defined taking into account few classes. An example of the body part
tree-structure defined taking into account these issues for a set of
7 body limbs is shown in Fig. 6(a). Notice that classes with similar
visual appearance (e.g. upper-arm and lower-arm) are grouped in
the same meta-class in most dichotomies. In addition, dichotomies
that deal with difficult problems (e.g. d5) are focused only in the
difficult classes, without taking into account all other body parts. In
this case, class c7 denotes the background.

3.3. ECOC multi-limb detection

In the ECOC framework, given a set of N classes (body parts) to be
learnt, n different bi-partitions (groups of classes or dichotomies) are
formed, and n binary problems over the partitions are trained [36]. As
a result, a codeword of length n is obtained for each class, where each
position (bit) of the code corresponds to a response of a given classifier
d (coded by þ1 or �1 according to their class set membership, or 0 if

Fig. 6. (a) Tree-structure classifier of body parts, where nodes represent the defined dichotomies. Notice that the single or double lines indicate the meta-class defined.
(b) ECOC decoding step, in which a head sample is classified. The coding matrix codifies the tree-structure of (a), where black and white positions are codified as þ1 and �1,
respectively. c, d, y, w, X, and δ correspond to a class category, a dichotomy, a class codeword, a dichotomy weight, a test codeword, and a decoding function, respectively.
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a particular class is not considered for a given classifier). Arranging the
codewords as rows of a matrix, we define a coding matrix M, where
MAf�1;0; þ1gN�n. During the decoding (or testing) process, applying
the n binary classifiers, a code x is obtained for each data sample ρ
in the test set. This code is compared to the base codewords (yi,
iA ½1;…;N�) of each class defined in the matrix M, and the data
sample is assigned to the class with the closest codeword [35].

The ECOC coding step has been widely tackled in the literature
either by predefined or problem-dependent strategies. However,
recent works showed that problem-dependent strategies can obtain
high performance by focusing on the idiosyncrasies of the problem
[37]. Following this fashion, we define a problem dependent coding
matrix in order to allow the inclusion of cascade of classifiers and
learn the body parts. In particular, we propose to use a predefined
codingmatrix inwhich each dichotomy is obtained from the body part
tree-structure described in the previous section. Fig. 6(b) shows the
coding matrix codification of the tree-structure in Fig. 6(a).

3.3.1. Loss-weighted decoding using cascade of classifier weights
In the ECOC decoding step an image is processed using a

windowing method, and then, each image patch, that is, a sample
ρ, is described and tested. In this sense, each classifier d outputs a
prediction whether ρ belongs to one of the two previously learnt
meta-classes. Once the set of predictions xρ1�n is obtained, it is
compared to the set of codewords of M, using a decoding function
δðxρ;MÞ. Thus, the final prediction is the class with the codeword
that minimizes δðxρ;MÞ. In [35] the authors proposed a problem-
dependent decoding function (distance function that takes into
account classifier performances) obtaining very satisfying results.
Following this core idea, we use the Loss-Weighted decoding of
Eq. (1), where Mw is a matrix of weights and L is a loss function
ðLðθÞ ¼ exp�θÞ.

δLW ðxs; iÞ ¼ ∑
n

j ¼ 1
Mwði; jÞLðyij � djðxsÞÞ ð1Þ

In Eq. (1),Mw (weight matrix) corresponds to the product of cascade
accuracies at each stage. Thus, each column i of Mw is assigned a
weight wi as

wi ¼ ∏
k

j ¼ 1

TPðdijÞþTNðdijÞ
TPðdijÞþFNðdijÞþFPðdijÞþTNðdijÞ

; ð2Þ

for a cascade of classifiers of k stages, where dj
i stands for the i-th

cascade and stage j, jA ½1;…; k�, and TP, TN, FN, and FP compute the

number of true positives, true negatives, false negatives and
false positives, respectively. Finally, a body-like probability map
PblA ½0;1�l�w, where l and w are the length and the width of I
respectively, is built. This map contains, at each position Pblij , the pro-
portion of body part detections for each pixel over the total number
of detections for the whole image. In other words, pixels belonging
to the human body will show a higher body-like probability than the
pixels belonging to the background. Examples of probability maps
obtained from ECOC outputs are shown in Fig. 9(e) and (g) (see also
step (c) in Fig. 5).

3.4. Binary Grab-Cut optimization for foreground mask extraction

Grab-Cut [10] has been widely used for interactive background/
foreground extraction (binary segmentation). Formally, given a
color image I, let us consider the array z¼ ðz1;…; zq;…; zQ Þ of Q
pixels where zi ¼ ðRi;Gi;BiÞ, iA ½1;…;Q � in RGB space. The segmen-
tation is defined as an array α¼ ðα1;…αQ Þ, αiAf0;1g, assigning a
label to each pixel of the image indicating if it belongs to
background or foreground. A trimap T is defined consisting of
three regions: TB, TF and TU, each one containing initial back-
ground, foreground, and uncertain pixels, respectively. Pixels
belonging to TB and TF are clamped as background and foreground
respectively—which means Grab-Cut will not be able to modify
these labels, whereas those belonging to TU are actually the ones
the algorithm will be able to label. Color information is introduced
by GMMs. A full covariance GMM of U components is defined for
background pixels (αi ¼ 0), and another one for foreground pixels
(αj ¼ 1), parameterized as follows:

θ¼ fπðα;uÞ;μðα;uÞ;Σðα;uÞ;αAf0;1g;u¼ 1…Ug; ð3Þ
with π being the weights, μ the means and Σ the covariance matrices
of the model. We also consider the array u¼ fu1;…;ui;…uQ g,
uiAf1;…Ug, iA ½1;…;Q � indicating the component of the background
or foreground GMM (according to αi) the pixel zi belongs to. The energy
function for segmentation E is then

Eðα;u;θ; zÞ ¼ Uðα;u;θ; zÞþλVðα; zÞ; ð4Þ
where U is the likelihood potential based on the probabilities pð�Þ of the
GMM:

Uðα;u;θ; zÞ ¼∑
i
� log pðzijαi;ui;θÞ� log πðαi;uiÞ; ð5Þ

and V is a regularizing prior assuming that segmented regions should
be coherent in terms of color, taking into account a neighborhood N

Fig. 7. (a) Tree-structure classifier of 6 body parts, (b) ECOC decoding step.
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around each pixel:

Vðα; zÞ ¼ γ ∑
fm;qgAN

½αqaαm� expð�β:zm�zq:
2Þ; ð6Þ

where weight λARþ specifies the relative importance of the boundary
term against the unary term U.

With this energy minimization scheme and given the initial
trimap T, the final segmentation is performed using a minimum
cut algorithm. However, we propose to omit the classical semi-
automatic trimap initialization by an automatic trimap assignment
based on the human body probability map PblA ½0;1�l�w. In this
sense, depending on the probability of each pixel it will be
assigned to a certain tag TB, TF and TU.

3.5. Tree-structure body part learning without background

Once the binary person/background segmentation is performed
by means of Grab-Cut (mask shown in Fig. 5(e)), we apply a second
procedure in order to split the person mask into a set of hu-
man limbs.

For this step, we define a new tree-structure classifier similar to
the one described in Section 3.2 without including the background
class c7 shown in Fig. 6(a). An example of the tree-structure body
part taking into account the set of 6 body limbs is shown in Fig. 7(a).

3.6. ECOC multi-limb detection

In order to obtain an accurate detection of human limbs within
the segmented user mask, we base on HOG descriptor [38] and
SVM classifier which have shown to obtain robust results in
human estimation scenarios [38,10,30]. We extract HOG features
for the different body parts (previously normalized to dominant
region orientation), and then, SVM classifiers are trained on that

feature space, using a Generalized Gaussian RBF Kernel based on
Chi-squared distance [39].

This stage follows a similar pipeline as the one described in
Section 3.3. In this sense, each SVM classifier learns a binary
partition of human limbs but without taking into account the
background class. As shown in Fig. 6(b), we train n¼6 SVMs with
different binary human-limb partitions.

At the ECOC decoding step, we also use the Loss-Weighted
decoding [35] function shown in Eq. (1) (an example is shown in
Fig. 7(b)). In this sense, for each RGB test image corresponding to the
binary mask shown in Fig. 5(e), we adopt a sliding window approach
and test each patch on our ECOC multi limb recognition system.
Then, based on the ECOC output we construct a set of limb-like
probability maps. Each map Pc contains, at each position Pc

ij, the
probability of pixel at the entry ði; jÞ of belonging to the body part
class c, where cAf1;2;…;6g. This probability is computed as the
proportion of detections at point ði; jÞ over all detections for class c.
Examples of probability maps obtained from ECOC outputs are
shown in Fig. 5(h). While Haar-like based on AdaBoost gave us a
very accurate and fast initialization of human regions for binary user
segmentation, in this second step, HOG-SVM is applied in a reduced
region of the image, providing better estimates of human limb
locations.

3.7. Alpha-beta swap Graph-Cuts multi-limb segmentation

We base our proposal on Graph-Cuts theory to tackle our
human-limb segmentation problem [10,11,40–42]. In [42], Boykov
et al. developed an algorithm, named as α–β swap graph-cut,
which is able to cope with the multi-label segmentation problem.
The α–β swap graph-cut is an extension of binary GRAB cuts that
performs an iterative procedure where each pair of labels ðαq;αmÞ,
fm; qgAf1;2;…;6g, is segmented using Graph-Cuts. This procedure
segments all α pixels from β pixels with Graph-Cuts and the
algorithm will update the α–β combination at each iteration until
convergence. However, to cope with the multi-label case, an
extension of the binary GRAB Cuts optimization framework
described in Section 3.4 is needed.

In this sense, αiAf1;…; cg and an initial labeling TAfT1;…; Tcg
are defined by an automatic trimap assignment based on the set of
limb-like probability maps PcA ½0;1�l�w defined in the previous
section. In addition, the coefficient that multiplies the exponential
term in Eq. (6), ½αqaαm�, is changed to Ωðcq; cmÞ, which penalizes
relations between pixels zq and zm depending on their label
assignations and a user-predefined pair-wise cost to each possible

Table 3
Prior cost between each pair of labels.

Head Torso Arms Forearms Thighs Legs Background

Head 0 20 35 50 70 90 1
Torso 20 0 15 25 40 70 1
Arms 35 15 0 10 60 80 1
Forearms 50 25 10 0 30 60 1
Thighs 70 40 60 30 0 10 1
Legs 90 70 80 60 10 0 1
Background 1 1 1 1 1 1 1

Fig. 8. (a) Action samples and selected median length sample. (b) Aligned samples with same length . (c) Computation of the mean sample.
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combination of labels:

Vðc; zÞ ¼ γ ∑
fm;qgAN

Ωðcq; cmÞ expð�β:zm�zq:
2Þ: ð7Þ

In concrete, in order to introduce prior costs between different
labels, Ωðcq; cmÞ must fulfill some constraints related to spatial

coherence between the different labels, taking into account the
natural constraints of the human limbs (i.e. head must be closer to
torso than legs and arms are nearer to forearms than head). In
particular, we experimentally fixed the penalization function Ω as
defined in Table 3.

Fig. 9. (a) Original RGB image. (b) Multi-limb ground truth. (c) Probability map obtained by the Person Detector method. (d) Person/background segmentation of the Person
DetectorþGbCut approach. (e) Probability map yielded by the cascade class method. (f) Person/background segmentation of the cascade class method. (g) Probability map
obtained from the ECOC method. (h) RGB segmentation obtained by the ECOCþGbCut approach.
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4. Experimental results

In order to present the experimental results, we first discuss
the data, experimental settings, methods and validation protocol.

4.1. Data

We use the proposed HuPBA8kþ dataset described in Section 2.
We reduced the number of limbs from the 14 available in the dataset
to 6, grouping those that are similar by symmetry (right–left) such as
arms, forearms, thighs and legs. Thus, the set of limbs of our problem
is composed of head, torso, forearms, arms, thighs and legs. Although
labeled within the dataset, we did not include hands and feet in our
multi-limb segmentation scheme. Finally, in order to train the limb
classifiers, ground truth masks are used to normalize all limb regions
per dominant orientation, and both Haar-like features and HOG
descriptors are computed based on the aspect ratio of each region,
making the descriptions scale invariant.

4.2. Methods and experimental settings

In this section we introduce the different methods compared
for binary segmentation,multi-limb segmentation and action/gesture
recognition tasks. In addition, the experimental settings for these
methods are explained.

4.2.1. Binary segmentation methods
As the first stage of our approach computes a binary person/

background segmentation, we compare in this step the following
methods:

� P.DetectorþGbCut: The well-known Person Detector of [38]
followed by Grab-Cut segmentation.

� C.ClassþGbCut: The cascade of classifiers proposed by Viola and
Jones [43], training one cascade of classifiers per limb and
Grab-Cut segmentation.

� ECOCþGbCut: The proposed ECOC tree-structure body part
classifier and automatic Grab-Cut segmentation for person/
background segmentation.

4.2.2. Multi-limb segmentation methods
To evaluate the performance of our proposal for multi-limb

segmentation, we compare our strategy with two state-of-the-art
methods for multi-limb segmentation:

� FMP: This method was proposed by Yang and Ramanan [8,9]
and it is based on Flexible Mixtures-of-Parts (FMP). We
compute the average of each set of mixtures for each limb
and for each pyramid level in order to obtain the probability
maps for each limb category. In order to compute the prob-
ability map of the background category, we subtract 1 with the
maximum probability A ½0;1� of the set of limbs detection at
pixel location.

� IPP: This method is proposed by Ramanan [7] and it is based on
an Iterative Parsing Process (IPP). We use it to extract the limb-
like probability maps followed by α-β swap graph-cut multi-
limb segmentation. The background category is computed as
shown in FMP method.

� ECOCþGraph-Cut: Our proposed human limb segmentation
scheme shown in Fig. 5.

4.2.3. Action/gesture recognition methods
In the case of the action recognition task our goal is to provide a

firm baseline of the recognition of the 11 actions categories labeled

within the HuPBA8Kþ dataset. In order to do it, we compare
performance of the following standard methodologies:

� Dynamic time warping using a random sample: We use the
standard DTW algorithm to recognize the different actions
categories in the dataset [13]. In order to compute the cost
matrix for each of the gesture/action classes we choose a
sample of that category at random.

� Dynamic time warping using the mean sample: Following the
trend in [15], in order to compute the cost matrix we form a mean
sample of each one of the action classes. That is, we choose the
sample of each category and align all samples with it. Then, once
all samples from the same class are aligned (they have the same
length) we compute the mean, an example is shown in Fig. 8.

� Hidden Markov model: We use the standard discrete HMM
framework [16]. Each HMM, was trained using the Baum–Welch
algorithm, and 3 states were experimentally set for the every
action category, using a vocabulary of 50 symbols computed using
K-means over the training data features. Final recognition is
performed with temporal sliding windows of different wide sizes,
based on the training samples length variability.

The computation of the feature vector for training and testing the
action recognition approaches is based on the segmentation results of
our approach. Given the multi-segmentation of limbs, we computed
the feature vector of a frame as the concatenation of the 6 limb-like
probability maps, resizing each one of them to a 40�20 pixels region
and vectorizing that region. We obtain a final vector of d¼ 40 � 20 �
6¼ 4800 dimensions, which is then reduced to d¼150 dimensions
using the Random Projection algorithm [44].

4.2.4. Experimental settings
In a preprocessing step, we resized all limb sample to a 32�32

pixels region for computational purposes. Then, we used the
standard Cascade of Classifiers based on AdaBoost and Haar-like
features [43], and we forced a 0.99 false positive rate and a
maximum of 0.4 false alarm rate during 8 stages. We used the
OpenCV implementation3 to learn the cascading classifiers. On the
detection step, we use a sliding window approach on a RGB test
image I, each patch is decoded in the ECOC framework. Then, we
consider all body-parts as a single body category. Thus, a body-like
probability map PA ½0;1�l�w, where l and w are the length and the
width of I respectively, is built. This map contains, at each position
Pij, the proportion of body part detections for each pixel over the
total number of detections for the whole image. The sliding
window has an initial patch size of 32�32 pixels up to 60�60
pixels and a geometric factor of 1.1 and 2 pixels separation
between patches. Additionally, the ECOC framework for the two
stages is used with the ECOClib.4. As a final part of the first stage,
binary GRAB Cuts3 were applied to obtain the binary segmenta-
tion, where the initialization values of foreground and background
must
be chosen. Thus, a set of value tags is assigned for background and
foreground pixels: obvious background (GC_BGD), possible background
(GC_PR_BGD) and possible foreground (GC_PR_FGD). These value tags

Table 4
Mean overlapping and standard deviation.

P.DetectorþGbCut C.ClassþGbCut ECOCþGbCut

49.60720.45 58.26717.31 61.79714.02

3 OpenCV library: http://opencv.willowgarage.com
4 ECOClib: http://sourceforge.net/p/ecoclib/code/HEAD/tree/
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are tuned via cross-validation for different ranges. Empirically, we
perform a grid-search for the following intervals: GC_BGD¼[0, 0.5],
GC_PR_BGD¼[0.5, 0.8] and GC_PR_FGD¼[0.8, 1.0] with a stepping of
0.07. For the second stage, we set the following parameters for the HOG
descriptor3: 32�32 window size, 16�16 block size, 8�8 block stride,

8�8 cell size and 8 for number of bins. Then, we trained SVMs5 with a
Generalized Gaussian RBF kernel based on Chi-squared distance. The
parameters C and γ were tuned via cross-validation in a grid-search
where C values were obtained in a linear sampling in the range [0, 104]
and γ values where obtained in a logarithm sampling in the range
(0, 1]. Finally, the model selection step was done via a leave-one-

sequence-out cross-validation. We obtain limb-like probability maps
as in first stage but particularly considering the different established
body parts instead of a map that includes all of them. Each map Pc

contains, at each position Pc
ij, the probability of pixel at the entry ði; jÞ

of belonging to the body part class c, where cAf1;2;…;6g. This

probability is computed as the proportion of detections at point ði; jÞ
over all detection for class c. For multi-limb segmentation we used the
alpha-beta Graph-Cut implementation,6 where we set a 8�8 neigh-
boring grid, 7 labels (6 body-parts þ background) and tuned the λ
parameter in range [1, 103] with a stepping of 10.

Fig. 10. Multi-limb segmentation results for the three methods, for each sample, we also show the RGB image and the ground-truth (GT).

5 LIBSVM: http://www.csie.ntu.edu.tw/ cjlin/libsvm/. 6 gco-3.0: http://vision.csd.uwo.ca/code/.
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Fig. 11. Multi-limb segmentation results for the three methods, for each sample, we also show the RGB image and the ground-truth (GT).
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For the action recognition experiments the cost-threshold and the
action/gesture model for both DTW experiments was obtained by
cross-validation on training data, using a leave-one-sequence-out
procedure. For HMM method, each HMM and its corresponding
probability-threshold were obtained by cross-validation on training
data, using a leave-one-sequence-out procedure.

4.3. Validation measurement

In order to evaluate the results for the three different tasks: binary
segmentation, multi-label segmentation and gesture/action recogni-
tion, we use the Jaccard Index of overlapping (J ¼ A⋂B=A⋃B) where A
is the ground-truth and B is the corresponding prediction.

4.4. Experimental results

In this section we show results for the three different tasks: binary
segmentation, multi-label segmentation and action/gesture recognition.

4.4.1. Binary segmentation results
In Fig. 9 we can see an example of the person/background

segmentation obtained by the compared methodologies. In parti-
cular, we can see in Fig. 9(d) how the segmentation obtained by
the Person DetectorþGbCut method yields a poor result, segment-
ing dark regions of the image. Furthermore, when comparing
Fig. 9(e) and (f), the improvement in the body-like probability map
obtained by the ECOCþGbCut approach over the cascade
classþGbCut method is clearly significant.

In order to evaluate the performance of the compared methodol-
ogies, Table 4 shows the mean overlapping obtained on the whole
dataset together with the standard deviation. From the results one can
see that the ECOCþGbCut method outperforms the compared meth-
odologies at least by 5%. This improvement is the effect of two causes.
The former is the Error-Correcting capabilities of the ECOC framework.
The latter is the tree-structure definition of the coding matrix, which
allows base classifiers to obtain accurate results.

4.4.2. Multi-limb segmentation results
For the Multi-limb segmentation task, we show in Figs. 10 and 11

qualitative results for some samples of the HuPBA8kþ dataset. When

Fig. 12. Jaccard Indexes for the different limb categories from (a) to (f). (g) Mean Jaccard Index among all limb categories.
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comparing the qualitative results we can see how the FMP method
[8,9] performs worse than its counter parts. In addition, one can see
how IPP and our method obtain similar results in most cases.
However, the IPP lacks a good person/background segmentation.

Furthermore, we provide quantitative results in terms of the
Jaccard Index. In Fig. 12 we show the overlapping performance
obtained by the different methods, where each plot shows the
overlapping for a certain limb. In addition, we use a ‘Do not care’
value which provides a more flexible interpretation of the results.
Consider the ground truth of a certain limb category in an image as a

binary image, which pixels take value 1 when those pixels are labeled
to belong to such limb. Then, the ‘Do not care’ value is defined as the
number of pixels which are ignored at the limits of each one of the
ground truth instances. Thus, by using this approach we can compen-
sate the pessimistic overlap metric in situations when the detection is
shifted some pixels. In this sense, we analyze the overlapping per-
formance as a function of a ‘Do not care’ value that ranges from 0 to 4.

When analyzing quantitative results, we see how our method
outperforms the compared methodologies for some limb cate-
gories. In particular, for the head region both methods obtain

Fig. 13. Jaccard indexes for the different action categories from (a) to (k). (l) Mean Jaccard Index among all action categories.
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similar results, which is intuitive since the method used to detect
the head is the well known face detector. Finally, we see how FMP
method is in almost all cases obtaining the worst performance. As
shown in Fig. 12(g), for the mean overlapping considering all the
segmented limbs our method outperforms the rest of the
approaches up to 3 pixels of “Do not care” evaluation.

4.4.3. Action recognition results
In this section we show the quantitative results obtained by the

different gesture recognition methods in terms of the Jaccard Index.
Furthermore, to allow a deeper analysis of the proposed methodolo-
gies, in our evaluations we use a ‘Do not care’ value which provides a
more flexible interpretation of the results. Consider the ground truth
of a certain action category in a video sequence as a binary vector,
which activates when a sample of such a category is observed in the
sequence. Then, the ‘Do not care’ value is defined as the number of bits
(frames) which are ignored at the limits of each one of the ground
truth instances. Thus, by using this approach we can compensate the
pessimistic overlap metric in situations when the detection is shifted
some frames. The Jaccard Index as a function of the ‘Do not care’ value
for the 11 action categories and the mean Jaccard Index among action
categories are shown in Fig. 13.

When analyzing quantitative results we see how the DTW
Mean methods outperforms for most action categories the stan-
dard DTW Random and HMM methods. In addition, when com-
puting the mean Jaccard Index among all gesture categories the
DTW Mean approach also ranks first, obtaining a mean Jaccard
Index of 0.20. This good result is due to the use of information
from all action samples which encodes the intra-class variability of
the gesture categories. Finally, we can see how in all cases Hidden
Markov Model achieves the lowest performance.

5. Conclusions

In this work, we introduced the HuPBA8Kþ dataset, which rep-
resents the largest available multi-limb dataset on RGB data up to
date, with more than 120 000 manually labeled limb regions. In
addition, we proposed a novel two-stage method for human multi-
limb segmentation in RGB images. In the first stage, we perform a
person/background segmentation by training a set of body parts
using cascades of classifiers embedded in an ECOC framework. In the
second stage, to obtain a multi-limb segmentation we applied multi-
label Graph-Cuts to a set of limb-like probability maps obtained from
a problem-dependent ECOC scheme.

We compared our proposal with state-of-the-art pose-recovery
approaches on the novel dataset, obtaining very satisfying results
in terms of both person/background and multi-limb segmentation
steps. For completeness, the novel dataset was also labeled with
different human actions drawn from an 11 gesture/action diction-
ary, including isolate and collaborative behaviors. In this sense, we
also provided action recognition baseline results on the novel
dataset considering DTW and HMM strategies.
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