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Abstract. The pairwise classification approach tends to perform better
than other well-known approaches when dealing with multiclass classifi-
cation problems. In the pairwise approach, however, the nuisance votes
of many irrelevant classifiers may result in a wrong prediction class. To
overcome this problem, a novel method, Local Crossing Off (LCO), is
presented and evaluated in this paper. The proposed LCO system takes
advantage of nearest neighbor classification algorithm because of its sim-
plicity and speed, as well as the strength of other two powerful binary
classifiers to discriminate between two classes. This paper provides a
set of experimental results on 20 datasets using two base learners: Neu-
ral Networks and Support Vector Machines. The results show that the
proposed technique not only achieves better classification accuracy, but
also is computationally more efficient for tackling classification problems
which have a relatively large number of target classes.

Keywords: Multiclass, Pairwise classification, Neural Networks, Sup-
port Vector Machines

1 Introduction

A common task in many real world pattern recognition applications is to dis-
criminate between instances that belong to multiple classes. In contrast to this,
most of the established classification algorithms, such as Support Vector Ma-
chine (SVM) 3 and Multi-Layer Perceptron (MLP), work better facing two-class
problems. The predominant approach to overcome this problem is to recast the
multi-class problem into a series of smaller binary classification tasks, which is
referred to as ”class binarization” [13]. In this way, two-class problems can be
solved by binary classifiers and the results can then be combined so as to provide
a solution to the original multiclass problem. Among the proposed methods for
approaching class binarization, three techniques are well-known including one-
versus-one[14], one-versus-all [6, 2], and Error Correcting Output Codes (ECOC)
[8]. In one-versus-all, the multiclass problem is decomposed into several binary

3 Indeed, the SVM algorithm is specifically designed for problems with only two target
classes
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problems in the following way: for each class a binary classifier is trained to
discriminate among the patterns of the class and the patterns of the remaining
classes. In the one-versus-one approach, one classifier is trained for each possible
pair of classes. In both approaches, the final classification prediction is obtained
by means of a voting or committee procedure. Dietterich and Bakiri [8] presented
a general framework for class binarization approaches in order to enhance gener-
alization ability of binary classifiers, which is known as Error Correcting Output
Codes (ECOC). The ECOC scheme is split in two main steps: coding and decod-
ing. At the coding step a set of binary classifiers splitting groups of classes are
defined and codified in an ECOC coding matrix, where each row represents the
code for a particular class. At the decoding step, the outputs of the individual
binary classifiers are computed for a test pattern, and the sample is classified
by the class with the code at minimum distance given a particular decoding
measurement.

Among the three approaches, one-versus-one and one-versus-all are the two
most commonly used, mainly because of their clarity in comparison with the
ECOC approach. However, both the one-versus-one and one-versus-all methods
have their drawbacks. In the one-versus-all method, each binary classifier is
trained on an unbalanced training set,f tending to produce a negative output for
all classifiers [5]. Some recent studies have also shown that this method generally
performs worse than the other methods [13][15].

Concerning the one-versus-one method, one of its main drawbacks is the
problem of incompetent classifiers, which seems to be ”inherent to the one-
versus-one approach” and may result in an incorrect prediction class [12] [19].
That is, many of the binary classifiers are forced to give nuisance votes for many
instances because each classifier must assign every instance to one of the two
classes used in its training set [12] [19]. Suppose that a new instance belongs to
class ci. To classify this instance, it is presented to all the pairwise classifiers.
Therefore, all the classifiers that are not trained with the data from class ci
will cast wrong votes. Consequently, using irrelevant classifiers to determine the
target class is very likely to deteriorate the classification accuracy and confidence.
The problem is that the actual class of the instance is obviously unknown a priori,
and thus the meaningful classifiers cannot be selected a priori. The experimental
results of [12] demonstrate that the percentage of times when an instance is
misclassified and the classifiers for the correct class give accurate answers is
relatively high.

Some strategies have been proposed in the past in order to improve the
simple aggregation of base binary classifiers in the one-versus-one structure,
such as weighted voting strategy [16], decision directed acyclic graph (DDAG)
[23], QWeighted [22], classification by pairwise coupling [14] , the combination
of one-versus-all and one-versus-one [21] [12] [19], binary tree of classifiers [10],
and probability estimates by pairwise coupling approach (PE) [26].

In this paper, we present a simple, but efficient, technique to enhance the
classification performance of the one-versus-one method. The strategy is to only
choose the relevant binary classifiers based on the target classes using the nearest
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neighbor rule. In this way, we select only a few binary classifiers to classify a
new test pattern. Experimental results show that the proposed approach receives
better performance among all considered methods and is computationally more
efficient than one-versus-one strategy.

The rest of this paper is organized as follows: Section 2 briefly reviews the
three main class binarization methods. The proposed method for binary classifier
selection is explained in detail in Section 3. Section 4 reports and analyses the
experimental results. Finally, Section 5 concludes the paper.

2 Related work

The following briefly describes some notations used in this paper:

– T = {(x1, y1), (x2, y2), . . . , (xm, ym)}. A training set; where xi ∈ Rn; and
each label,yi, is an integer belongs to Y = {ω1, ω2, . . . , ωc}, where c is the
number of classes

– h = {h1, h2, . . . , hL} : A set of L binary classifiers.

The goal of class binarization methods it to get a feature vector,x, as its in-
put, and to assign it to a class label from Y . As we mentioned before, the methods
for multiclass problems can be generally categorized into three approaches:
One-versus-all(OVA): The one-versus-all method constructs c binary classi-
fiers, one for each class. The ith classifier, hi, is trained with data from class i
as positive instances and all data from the other classes as negative instances. A
new instance is classified in the class whose corresponding classifier output has
the largest value.
One-versus-one (OVO): The one-vs-one method, also called pairwise classifi-
cation, constructs c(c− 1)/2 classifiers [18]. Classifier ij, hij , is trained using all
data from class i as positive instances and all data from class j as negative in-
stances, and disregarding the remaining data. To classify a new instance, x, each
of the base classifiers cast a vote for one of the two classes used in its training.
Then, the one-vs.-one method applies the majority voting scheme for labeling
x to the class with the most votes. Ties are usually broken arbitrarily for the
larger class. More complicated combination methods have also been proposed
[22] [26].

Ko and Byun proposed a method based on combination of the one-versus-all
method and a modification of the one-versus-one method using SVM as a base
learner [19]. This method first obtain the top two classes whose corresponding
classifiers have the highest confident based on the outputs of all one-versus-all
classifiers. In a recent paper [12], very similar idea is presented and named A&O.
However, in both these methods, the learning algorithm which finds the two most
likely classes is the same as the final classification algorithm. Consequently, it
is very likely that some classification errors will be common, arising from the
limitation of base learner on certain patterns. Furthermore, it has been shown
theoretically that the one-versus-all approach is more complex than the pairwise
approach [11] because even though it has a linear number of binary classifiers,
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the individual problems that are needed to train on are significantly larger. In
addition, the problems are usually more difficult to learn in one-versus-all, as
the classes have more overlapping instances. Thus, the one-versus-all approach
and the overall system use to be computationally more expensive, especially for
classifiers such as neural networks and SVMs.
Error Correcting Output Codes (ECOC):The basis of the ECOC frame-
work consists of designing a codeword for each of the classes. This method uses
a matrix M of {1,−1} values of size c×L, where L is the number of codewords
codifying each class. This matrix is interpreted as a set of L binary learning
problems, one for each column. That is, each column corresponds to a binary
classifier, called dichotomizer hj , which separates the set of classes into two meta-
classes. Instance x, belonging to class i, is a positive instance for the jth classifier
if and only if Mij = 1 and is a negative instance if and only if Mij = −1. When
testing an unlabeled pattern, x, each classifier outputs a ”0” or ”1”, creating a
L long output code vector. This output vector is compared to each codeword in
the matrix, and the class whose codeword has the closest distance to the output
vector is chosen as the predicted class. The process of merging the outputs of
individual binary classifiers is usually called decoding. The most commonly de-
coding methods are the Hamming distance. This method looks for the minimum
distance between the prediction vector and codewords. The ECOC method was
then extended by Allwein et al. [1] using a coding matrix with three values,
1, 0,−1, where the zero value means that a given class is not considered in the
training phase of a particular classifier. In this way, a class can be omitted in the
training of a particular binary classifier. This extended codeword is denominated
sparse random code and the standard codes (binary ECOC) were named dense
random codes.

Hsu and Lin [15] compared different approaches for multiclass SVM prob-
lems, including one-versus-one, one-versus-all, and DDAG. Using ten benchmark
datasets, the authors claimed that the one-versus-one method is superior to the
other approaches. Pedrajas and Boyer’s prominent paper [13] later presented
an in-depth critical assessment of the three basic multiclass methods. One of
the main paper’s conclusions states that ECOC and one-versus-one are the best
choices for powerful learners and for simpler learners, respectively. However,
in the ECOC approach, since the ensemble system usually has more individ-
ual classifiers than one-versus-one and one-versus-all, it usually requires more
computation, especially for the training phase. Regarding the one-versus-one
method, as mentioned before, many of the binary base classifiers are forced to
give wrong votes for a given test pattern. Consequently, using irrelevant classi-
fiers to determine the target class is very likely to deteriorate the classification
accuracy. Given this problem, some authors tried to include extra information
to the binary classifiers of the one-versus-one scheme in the ECOC framework
without retraining the binary problems [9]. The main idea of [9] is to include
information about classes not included in each pairwise partition by using the
confusion in the training data. However, performance improvement is not al-
ways guarantee, and the computationally complexity of the method is slightly
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increased. Some works have also used the idea of irrelevant classifiers to prune
classifiers in ensemble schemes based on the low confidence output of binary
classifiers [25].

Taking these facts into account, this paper proposes an effective strategy to
the class binarization problem. The method is based on an idea that omitting
the irrelevant classifiers and only using the votes of meaningful classifiers will
outperform the one-versus-one method. The proposed classification technique is
named ”Local Crossing off (LCO)”, as it excludes some classes and focuses on
the most probable classes in the neighborhood space.

3 The proposed LCO method

In this section, the new technique for multiclass classification problems of c
classes,c > 2, is proposed. The LCO technique works as follows:

In the training phase, for each pair of classes, an individual classifier is trained
using the training data of the corresponding two classes (as in OVO). Therefore,
we have built classifiers that produce a better class separation for a specific pair
of classes in comparison with the one-versus-all approach.

In the test phase, the main aim is to avoid the wrong votes of irrelevant
binary classifiers. To do this, the concept of local neighborhood is applied. That
is, for any test pattern, the LCO method simply finds its nearest K neighbors
in the training set, figures out which classes are the most frequent in those
neighbors, and then uses these classes as a guide to choose the related classifiers
for classifying a given pattern. In this step, two versions of the LCO method
have been proposed:

LCO-Version 1: In the first version, the two most frequent classes of the
nearest K neighbors in the training set of each test pattern are found. These two
classes are considered as the two most probable classes for each test pattern.
Given a test pattern,x, supposing that the two most probable classes are ci and
cj , i, j : 1, . . . , c , i 6= j, classifier hi,j is nominated to predict the final target
class of x. In this scheme, only one binary classifier is selected to classify each
test pattern.

LCO-Version 2: In this phase, all target classes of the nearest K neighbors
in the training set of each test pattern are found. All these classes are considered
as the probable classes for the given test pattern. Classifiers that correspond to all
pairwise combinations of these classes are then nominated to predict the target
class. Each nominated binary classifier casts a vote for one of the two classes
used in its training and the majority voting strategy is applied for labeling x to
the class with the most votes. More formally, if the set of classes of the nearest k
neighbors of x is P = {ω1, ω2, . . . , ωp}, ct ∈ {1, . . . , c}, the nominated classifiers
would be {hij |i, j ∈ P, i 6= j}. If P = {ωt}, ωt ∈ {1, . . . , c} the predicted class
would be ωt. As an example, consider a 5-class classification problem (c = 5)
and the nearest k neighbors of a given test pattern, x, are from ω2, ω3, and ω5.
So, h23 ,h25, and h35 are nominated to label the x.



6 Mohammad ali Bagheri, Qigang Gao, and Sergio Escalera

3.1 Modified K-Nearest Neighbor method:

The conventional K-nearest neighbor (KNN) is among the simplest classifica-
tion techniques. In addition to its simplicity, it can generate a good, highly
nonlinear classification boundary. KNN classifies each unlabeled pattern into
the most frequent class among k nearest training patterns based on a distance
measure. This classification method can be considered as a local estimation
of the posterior probabilities of classes based on the relative frequency of the
class labels in a neighborhood (defined by the k-nearest training samples). Let
Y = {ω1, ω2, . . . , ωc} be a set of c class labels. Given an unlabelled test pattern,
suppose that {k1, k2, , kc} denotes the numbers of nearest neighbors for the c
classes. The estimate of the posterior probabilities is obtained as:

P (ωi|x) ' ki
K

(1)

In the classic KNN algorithm, x is classified in the class m if its posterior
probability is the largest, i.e.

ωm = arg max
ωi

P (ωi|x) (2)

In the case of LCO-ver1, the two most probable classes are found by choosing
the two largest P (ωi) , which are equivalent to the two most frequent classes
among the neighbor instances. For the second version of LCO, all P (ωi) > 0,
i ∈ {1...c} are chosen as probable classes.

4 Experimental comparison

4.1 Experimental settings

In order to present the results, first, we discuss the experimental settings of the
experiments. In order to investigate the relative performance of our proposed
method, an empirical study was conducted. We compared our proposed method
with OVO, OVA, A&O, and ECOC methods on 20 multiclass datasets from
the UCI machine learning repository [3], which are summarized in Table 1. We
considered random codes of 10log2(c) and 15log2(c) bits for dense and sparse
ECOC, respectively [1].The class of an instance in the ECOC schemes is chosen
using the Hamming distance.

As mentioned before, a modified k-nearest neighbor algorithm was chosen to
determine the most probable classes. Based on a preliminary set of experiments,
the value of k was set to K = 5. The next decision was which base classifier
to use. In this study, two base learners were chosen: Support Vector Machines
(SVMs) using linear kernel and a Multilayer Perceptron (MLP). The SVM, MLP,
and KNN classifiers cannot handle the missing values, so the instances with
missing values were removed. For the MLP neural network, we chose 10 hidden
nodes and the hyperbolic tangent transfer function and for linear SVM, we set
C = 10. The experiments were all implemented in MATLAB software. For SVM
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Table 1. Summary of the used datasets

Dataset # instances # features # classes

1 Abalone 4177 8 3
2 Balance 625 4 3
3 Car 1728 6 4
4 Cmc 1473 9 3
5 Derm 366 34 6
6 Ecoli 336 7 8
7 Glass 214 10 7
8 Iris 150 4 3
9 Isolet 7797 34 26
10 Lymph 148 18 4
11 Optdigits 5620 64 10
12 Page 5473 10 5
13 Pendigits 10992 16 10
14 Sat 6435 36 6
15 Vehicle 846 18 3
16 Vowel 990 10 11
17 Waveforms 5000 40 3
18 Wine 178 13 3
19 Yeast 1484 8 10
20 Zoo 101 16 7

implementation, we used the LIBSVM package (version 3.1) developed by Chang
and Lin [4]. For performance evaluation, we utilized 10-fold cross-validation to
improve the reliability of the results. In order to have a fair comparison, the
training and test sets of all methods were the same for each repetition of the
experiments.

4.2 Experimental results

The average accuracy of the six methods as well as the original KNN classifier
for the 20 datasets is presented in Table 2 and Table 3. In theses tables, the
means of prediction accuracy over 10 runs (expressed in %) are reported for each
classification method on the considered datasets, where the values following± are
their respective standard deviations. Comparing the two versions of LCO, we can
see that both achieve a similar performance, whereas LCO.ver1 is slightly inferior
to LCO.ver2 on the current datasets. Due to the advantage of the second version
over the first version, we usually compare other rival methods with LCO.ver2 in
the following analysis.

In order to see whether the proposed method is significantly better or worse
than other methods, statistical analysis is necessary. According to the recom-
mendations of Demsar [7], we consider the use of non-parametric tests. Non-
parametric tests are safer than parametric tests, such as ANOVA and t-test,
since they do not assume normal distribution or homogeneity of variance. In
this study, we employ the Iman-Davenport test. If there are statistically signifi-
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cant differences in the classification performance, then we can proceed with the
Nemenyi test as a post hoc test, which is used to compare six methods with each
other.

To do that, we first rank competing methods for each dataset. The best
performing method getting the rank of 1, the second best ranked 2, so on and
so forth. A method’s mean rank is obtained by averaging its ranks across all
datasets. Then, we use the Friedman test [7] to compare these mean ranks to
decide whether to reject the null hypothesis, which states that all considered
methods have equivalent performance. Iman and Davenport [17] found that this
statistic is undesirably conservative, and proposed a corrected measure. Applying
this method, we can reject the null hypothesis, that is, there exists significant
statistical difference among the rival methods.

Further, to compare rival methods with each other, we apply the Nemenyi
test, as illustrated in Fig. 1. In this figure, the mean rank of each method is
indicated by a square. The horizontal bar across each square shows the critical
difference. Two methods are significantly different if their corresponding average
ranks differ by at least the critical difference value. That is, their horizontal bars
are not overlapping.

In addition, to compare each pair of methods across multiple datasets, we
show the win/lose/tie comparison record, as reported in Table 5 and Table 6
using MLP and SVM, respectively. Each record represents the number of datasets
in which a method in the cloumn, respectively, wins over, loses to, or ties with the
method of the corresponding row. To do that, we performed the non-parametric
Wilcoxon signed rank test at 95% confidence level.

The results in Tables 2 and Table 3, along with the statistical tests presented
in Table 4 and Table 5 and Fig. 1 indicate that overall, LCO.v2 receives the best
performance among all six methods. We analyze these results in the next section
using the commented statistical analyses.

2 2.5 3 3.5 4 4.5 5 5.5 6

1vs1

1vsAll

A&O

dense ECOC

sparse ECOC

LCO_v2

(a) MLP

1 1.5 2 2.5 3 3.5 4 4.5 5

1vs1

1vsAll

A&O

dense ECOC

sparse ECOC

LCO_v2

(b) SVM

Fig. 1. Comparison results of rival methods using the Nemenyi test (a) and (b)
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Table 2. Classification accuracies of different methods with MLP Neural Network

OVO OVA1 AO dense ECOC sparse ECOC LCO1 LCO2 KNN
Abalone 67.87 ± 1.47 63.76 ± 1.30 67.73 ± 1.39 66.94 ± 1.12 67.54 ± 1.08 67.27 ± 1.27 67.97 ± 1.27 62.03
Balance 91.59 ± 0.87 89.37 ± 0.97 92.86 ± 0.92 92.38 ± 0.47 91.43 ± 1.06 89.84 ± 0.50 91.90 ± 0.83 83.38
Car 96.42 ± 0.62 94.05 ± 0.25 96.53 ± 0.44 95.26 ± 0.24 96.88 ± 0.23 97.11 ± 0.52 97.11 ± 0.52 93.60
Cmc 49.59 ± 1.35 50.47 ± 0.64 49.80 ± 1.00 52.16 ± 0.74 52.30 ± 0.57 49.59 ± 0.81 50.68 ± 0.81 46.83
Derm 90.00 ± 1.02 85.83 ± 0.94 91.39 ± 0.98 96.11 ± 0.40 97.22 ± 0.29 93.33 ± 0.48 94.17 ± 0.48 94.36
Ecoli 85.00 ± 1.33 84.41 ± 0.74 85.59 ± 1.04 88.82 ± 0.99 89.41 ± 0.80 87.94 ± 1.12 87.65 ± 1.04 86.28
Glass 56.82 ± 2.82 47.73 ± 2.45 62.27 ± 2.64 65.00 ± 2.56 63.64 ± 1.44 62.73 ± 2.54 66.82 ± 2.16 61.39
Iris 94.00 ± 1.29 94.67 ± 1.44 94.00 ± 1.37 95.33 ± 0.91 94.67 ± 0.64 94.00 ± 1.30 94.00 ± 0.97 93.05
Isolet 96.18 ± 0.24 96.50 ± 0.18 96.35 ± 0.21 97.13 ± 0.29 97.62 ± 0.15 95.88 ± 0.26 95.11 ± 0.25 83.52
Lymph 72.67 ± 2.88 63.33 ± 1.62 74.00 ± 2.25 80.67 ± 1.55 77.33 ± 1.51 76.67 ± 2.12 77.33 ± 2.09 77.95
Optdigits 96.98 ± 0.49 92.28 ± 0.65 96.74 ± 0.57 98.01 ± 0.43 97.63 ± 0.39 98.75 ± 0.37 99.02 ± 0.31 98.27
Page 96.72 ± 0.49 96.48 ± 0.73 96.93 ± 0.61 96.93 ± 0.63 96.90 ± 0.64 96.66 ± 0.45 96.79 ± 0.44 95.54
Pendigits 99.01 ± 0.25 97.06 ± 0.22 98.96 ± 0.24 99.17 ± 0.19 99.28 ± 0.16 99.49 ± 0.17 99.53 ± 0.17 99.18
Sat 88.49 ± 1.19 86.01 ± 1.17 88.73 ± 1.18 89.57 ± 0.86 89.66 ± 0.96 90.96 ± 0.69 91.32 ± 0.72 90.22
Vehicle 83.41 ± 1.05 78.00 ± 1.20 83.88 ± 1.13 81.76 ± 0.67 83.18 ± 0.42 83.53 ± 1.17 83.76 ± 0.97 72.72
Vowel 92.83 ± 1.33 75.09 ± 1.18 92.26 ± 1.26 94.91 ± 0.85 96.04 ± 1.07 97.92 ± 0.88 98.11 ± 0.76 80.22
Waveform 85.90 ± 1.01 85.34 ± 1.27 85.98 ± 1.14 84.20 ± 0.83 86.16 ± 1.02 85.98 ± 1.14 85.98 ± 1.05 78.97
Wine 91.67 ± 1.39 94.44 ± 1.01 93.33 ± 1.20 95.00 ± 0.82 96.67 ± 0.80 95.00 ± 1.31 95.00 ± 0.96 95.32
Yeast 58.86 ± 0.90 42.75 ± 0.62 59.93 ± 0.76 58.39 ± 0.41 60.87 ± 0.57 59.80 ± 0.98 60.13 ± 0.57 57.04
Zoo 86.36 ± 3.40 88.18 ± 2.66 90.00 ± 3.03 96.36 ± 2.32 94.55 ± 1.15 93.64 ± 1.93 93.64 ± 1.50 88.96
Average 84.02 ± 1.27 80.29 ± 1.06 84.86 ± 1.17 86.21 ± 0.86 86.45 ± 0.75 85.81 ± 1.01 86.30 ± 0.90 81.94

Table 3. Classification accuracies of different methods with linear SVM

OVO OVA AO dense ECOC sparse ECOC LCO.v1 LCO.v2 KNN
Abalone 65.65 ± 1.58 65.10 ± 1.44 65.50 ± 1.51 65.74 ± 1.20 65.60 ± 1.20 65.62 ± 1.21 66.22 ± 1.39 61.75
Balance 92.38 ± 0.03 89.21 ± 0.24 89.05 ± 0.14 92.38 ± 0.03 92.38 ± 0.03 89.52 ± 0.29 92.22 ± 0.59 87.10
Car 85.43 ± 0.25 80.06 ± 0.31 84.28 ± 0.28 81.68 ± 0.37 83.01 ± 0.84 88.67 ± 0.34 92.95 ± 0.26 93.34
Cmc 52.16 ± 0.45 49.12 ± 0.83 51.96 ± 0.64 47.30 ± 0.26 52.09 ± 0.26 51.28 ± 0.66 53.58 ± 0.84 48.35
Derm 98.61 ± 0.35 98.06 ± 0.24 98.61 ± 0.30 98.33 ± 0.26 98.33 ± 0.39 98.61 ± 0.38 98.61 ± 0.42 96.19
Ecoli 85.88 ± 0.81 86.47 ± 0.57 86.76 ± 0.69 83.53 ± 0.77 86.47 ± 0.63 87.06 ± 0.66 86.76 ± 0.63 85.17
Glass 68.18 ± 1.45 57.73 ± 1.51 64.55 ± 1.48 60.45 ± 2.67 66.82 ± 2.05 72.27 ± 1.16 73.64 ± 1.39 63.83
Iris 97.33 ± 0.34 96.00 ± 0.61 97.33 ± 0.48 97.33 ± 0.64 97.33 ± 0.64 97.33 ± 0.34 97.33 ± 0.45 95.50
Isolet 96.03 ± 0.17 93.40 ± 0.25 95.32 ± 0.21 82.71 ± 0.60 90.26 ± 0.52 91.54 ± 0.30 96.15 ± 0.23 79.21
Lymph 80.67 ± 1.45 82.00 ± 1.68 80.67 ± 1.57 80.67 ± 1.96 80.67 ± 1.96 82.00 ± 1.05 82.00 ± 1.07 78.76
Optdigits 97.98 ± 0.54 92.27 ± 0.55 94.18 ± 0.55 90.35 ± 0.76 95.05 ± 0.70 97.99 ± 0.55 98.69 ± 0.23 97.57
Page 95.89 ± 0.52 95.24 ± 0.51 95.58 ± 0.52 94.95 ± 0.51 94.74 ± 0.51 95.60 ± 0.47 96.28 ± 0.56 95.54
Pendigits 98.11 ± 0.17 92.88 ± 0.39 96.45 ± 0.28 84.89 ± 0.50 88.28 ± 0.52 99.14 ± 0.15 99.56 ± 0.13 99.06
Sat 86.75 ± 0.66 83.12 ± 0.72 85.98 ± 0.69 78.42 ± 0.80 83.29 ± 0.79 90.53 ± 0.46 90.87 ± 0.54 89.81
Vehicle 78.24 ± 0.60 76.12 ± 0.51 78.59 ± 0.56 78.12 ± 0.77 78.00 ± 0.77 78.47 ± 0.52 78.59 ± 0.68 71.75
Vowel 82.08 ± 0.70 43.77 ± 1.22 54.15 ± 0.96 35.28 ± 1.01 52.26 ± 1.35 91.89 ± 0.39 95.85 ± 0.42 80.49
Waveform 86.92 ± 1.00 86.88 ± 1.17 86.92 ± 1.09 81.16 ± 1.16 87.14 ± 0.95 87.00 ± 0.96 86.96 ± 1.03 79.70
Wine 93.89 ± 0.38 96.11 ± 0.23 93.89 ± 0.31 95.56 ± 0.97 93.89 ± 0.81 94.44 ± 0.38 95.00 ± 0.15 94.52
Yeast 58.39 ± 0.24 56.64 ± 0.54 58.12 ± 0.39 54.03 ± 0.52 57.65 ± 0.35 59.80 ± 0.48 60.27 ± 0.32 56.33
Zoo 95.45 ± 0.74 93.64 ± 1.55 95.45 ± 1.15 94.55 ± 1.75 94.55 ± 1.72 95.45 ± 0.74 95.45 ± 0.74 88.83
Average 84.80 ± 0.62 80.69 ± 0.75 82.67 ± 0.69 78.87 ± 0.88 81.89 ± 0.85 85.71 ± 0.57 86.85 ± 0.60 82.14

Table 4. Rival methods’ win/lose/tie records using MLP Neural Network

OVO OVA A&O dense ECOC sparse ECOC LCO.v2
OVO 0 /12 /8 2 /0 /18 6/2/12 9 /0 /11 9 /0 /11
OVA 14 /0 /6 14 /0 /6 15 /0 /5 14 /0 /6
A&O 5/2/13 7 /0 /13 6 /0 /14
dense ECOC 3 /0 /17 6 /0 /14
Sparse ECOC 4 /0 /16
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Table 5. Rival methods’ win/lose/tie records using Linear SVM

OVO OVA A&O dense ECOC sparse ECOC LCO.v2
OVO 0 /10 /10 0 /8 /12 0 /9 /11 1/6/13 6 /0 /14
OVA 9 /0 /11 3/7/10 4/3/13 12 /0 /8
A&O 1/9/10 2/5/13 11 /0 /9
dense ECOC 9 /0 /11 10 /0 /10
Sparse ECOC 9/1/10

4.3 Experimental result analysis

As can be seen in Tables 2-5, the proposed approach is generally able to out-
perform all the other methods for the two types of base learners. As a general
conclusion, the advanced performance of the LCO method does not differ much
depending on the base classifier. Compared to the one-versus-one method, the
average accuracy improvement is 2.28% and 2.06% for MLP and linear SVM,
respectively. The other finding is that the one-versus-all method generally per-
forms poorly in the present experiments, especially for MLP neural network.

An analysis of the results shows a somewhat clearer picture. Using SVMs
as the base learners, LCO.ver2 can indeed outperform the other methods. In
addition, the win/lose/tie results show that LCO.v2 also outperforms the rival
methods more often than not. The Nemenyi test in Fig. 1 also demonstrates that
the rank of LCO.v2 is much better than that of the other method using SVM
learner.

However, the case for MLP is somewhat different. Using MLP neural net-
work as the base learner, LCO.v2 works significantly better than one-versus-
one, one-versus-all, and A&O methods. Comparing the results of the LCO and
ECOC methods, however, we can see that the classification accuracy of the LCO
method tends to be slightly better than that of both ECOC methods, but does
not significantly outperform ECOC methods. These results are consistent with
the observations from Pedrajas and Boyer’s paper [12]. Their results show that
the performance of the ECOC method using a neural network as a base learner
will significantly increase as the number of classifiers increases. The reason be-
hind this improvement is that the effectiveness of the ECOC approach strongly
depends on the independency of the binary classifiers, a term which is known
as classifier diversity in ensemble classification literature . This literature proves
that if each classifier makes different errors, then the total errors can be reduced
by an appropriate combination of these classifiers. Due to the instability of neu-
ral networks, they are suitable candidates to be used in the ECOC approach.
However, the ECOC approach is more computationally expensive than the LCO
method. On the other hand, stable classifiers such as support vector machines
cannot take advantage of the ECOC approach. Consequently, the results of the
ECOC method are even worse than that of one-versus-one and LCO. This is
consistent with the extensive comparison results of [24] [20], which show that
a single SVM classifier performs better than SVM ensemble methods in many
cases.
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5 Conclusions

In this paper, we presented a novel strategy for pairwise classification approach
to deal with multiclass classification problems. The proposed technique is based
on omitting the votes of irrelevant binary classifiers, in order to improve fi-
nal classification accuracy. For this task, the proposed LCO method finds its
nearest K neighbors in the training set, figures out which classes are the most
frequent in those neighbors, and then uses these classes as a guide to choose the
related classifiers for classifying a given pattern. The experimental evaluation
over several UCI Machine Learning repository datasets shows that performance
improvements can be obtained compared to the one-versus-one, one-versus-all,
A&O, and ECOC methods. The main reason behind this improvement is that
the LCO approach can benefit from efficient nearest neighbor rule as a prepro-
cessing step in pairwise structure and the strength of powerful binary classifiers
(Neural Networks and Support Vector Machines in our present experiments).
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