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Abstract. Pose Recovery (PR) and Human Behavior Analysis (HBA)
have been a main focus of interest from the beginnings of Computer Vi-
sion and Machine Learning. PR and HBA were originally addressed by
the analysis of still images and image sequences. More recent strategies
consisted of Motion Capture technology (MOCAP), based on the syn-
chronization of multiple cameras in controlled environments; and the
analysis of depth maps from Time-of-Flight (ToF) technology, based
on range image recording from distance sensor measurements. Recently,
with the appearance of the multi-modal RGBD information provided by
the low cost KinectTM sensor (from RGB and Depth, respectively), clas-
sical methods for PR and HBA have been redefined, and new strategies
have been proposed. In this paper, the recent contributions and future
trends of multi-modal RGBD data analysis for PR and HBA are reviewed
and discussed.

Keywords: Pose Recovery, Human Behavior Analysis, Depth Maps,
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1 Introduction

Pose Recovery (PR) uses to be a first step of most Human Behavior Analy-
sis (HBA) systems. However, detecting humans and recovering their pose in
images or videos is a challenging problem due to the high variety of possible
configurations of the scenario (such as changes in the point of view, illumina-
tion conditions, or background complexity) and the human body (because of its
articulated nature). In the past few years, some research on PR has focused on
the use of Time-of-Flight range cameras (ToF) [1–4]. Nowadays, several works
related to this topic have been published because of the emergence of inexpensive
structured light technology, reliable and robust to capture the depth information
along with their corresponding synchronized RGB image. This technology has
been developed by the PrimeSense [5] company and released to the market by
Microsoft� XBox� under the name of KinectTM.
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With the recent wide use of the depth maps introduced by the Microsoft�

KinectTM device, a new source of information has emerged. With the use of
depth maps, 3D information of the scene from a particular point of view is eas-
ily computed, and thus, working with consecutive frames, we obtain RGBDT
information, from Red, Green, Blue, Depth, and Time data, respectively. This
motivates the use of multi-modal data fusion strategies to benefit from the new
data representation in PR and HBA applications. While these tasks could be
achieved by inter-frame feature tracking and matching against predefined ges-
ture models, there are scenarios where a robust segmentation of human limbs
are needed, e.g. observing upper limb anomalies or distinguishing between fin-
ger configurations while performing a gesture. In that respect, depth informa-
tion appears quite handy by reducing ambiguities due to illumination, colour,
and texture diversity. Many researchers have obtained their first results in the
field of human motion capture using this technology. In particular, Shotton
et al. [6] presented one of the greatest advances in the extraction of the hu-
man body pose from depth images, an approach that also is the core of the
KinectTM human recognition framework. Moreover, new devices offering multi-
modal RGBD + audio information are appearing [7], improving the 320×240
and 640×480 resolution of KinectTM Depth and RGB images, consolidating the
field of research, and opening the possibilities for a new broad range of
applications.

Currently, there exists a steady stream of updates and tools that provide
robustness and applicability to the device. In December 2010, OpenNI [8] and
PrimeSense [5] released their own KinectTM open source drivers and motion track-
ing middleware for PCs runningWindows (7, Vista, and XP), Ubuntu, and Ma-
cOSX. Then, the middleware FAAST (Flexible Action and Articulated Skeleton
Toolkit) was developed at the University of Southern California (USC) Insti-
tute for Creative Technologies to facilitate the integration of full-body con-
trol within virtual reality applications and video games when using OpenNI-
compliant depth sensors and drivers [9, 10]. In June 2011, Microsoft� released a
non-commercial KinectTM Software Development Kit (SDK) forWindows that in-
cludes Windows 7-compatible PC drivers for the KinectTM device [11]. Microsoft�

SDK allows developers to build KinectTM enabled applications in Microsoft� Vi-
sual Studio 2010 using C++, C# or Visual Basic. Microsoft� has released a
commercial version of the KinectTM for Windows SDK with support for more
advanced device functionalities. There is also a third set of KinectTM drivers
for Windows, Mac and Linux PCs by the OpenKinect (libFree- Nect) open
source project [12], adapted by libraries commonly used on Computer Vision
as OpenCV. Code Laboratories CL NUI Platform offers a signed driver and
SDK for multiple KinectTM devices on Windows XP, Vista, and 7 [13]. As a con-
sequence of the new data representation obtained from Microsoft� KinectTM, new
libraries to process depth maps have emerged, such as the Point Cloud Library
(PCL) [14].
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Some examples of applications that have benefited from RGBD representa-
tion are: reconstruction of dense surfaces and 3D object detection [15], improved
descriptors and learning for object recognition [16, 17], augmented reality [18],
SLAM [19], or PR-HBA, just to mention a few. In this paper, recent literature
on PR and HBA using depth maps is reviewed. Once PR is robustly performed
using RGBD representation, standard techniques for HBA can be consequently
improved. HBA is extremely challenging because of the huge number of pos-
sible configurations of the human body that defines human motion. Common
approaches to model sequential data for gesture recognition are based on Hidden
Markov Model (HMM) [20], which consist of learning the transition probabilities
among different human state configurations, and, more recently, there has been
an emergent interest in Conditional Random Field (CRF) [21] for the learn-
ing of sequences. However, all these methods assume that we know the number
of states for every motion. Other approaches make use of templates or global
trajectories of motion, being highly dependent of the environment where the
system is built. In order to avoid all these situations, Dynamic Time Warping
framework (DTW) [22] allows to align two temporal sequences taking into ac-
count that sequences may vary in time based on the subject that performs the
gesture. The alignment cost can be then used as a gesture appearance indica-
tor. In comparison to classical 2D approaches, the authors of [23] show that an
improved PR description based on 3D skeletal model from RGBD data allows
to compute feature variability, and include this measure in DTW for improved
HBA recognition.

The rest of the paper is organized as follows: Section 2 reviews the most recent
achievements and proposals in PR based on depth maps to improve the accuracy
of standard HBA systems and Section 3 concludes the paper, discussing future
trends in this field.

2 Pose Recovery Using Depth Maps

One of the main advantages of the KinectTM device is its ability to obtain an
aligned representation of RGBD data using a cheap and reliable sensor. Different
technologies for capturing depth maps, including the structured light technol-
ogy of Microsoft� KinectTM, are summarized in Figure 1. The KinectTM infrared
sensor displays a structured/codified matrix of points through the environment.
Then, each depth pixel is computed by sampling the derivative of the higher
resolution infrared image taken in the infrared camera. This value is inversely
proportional to the radius of each gaussian dot, which is linearly proportional to
the actual depth. Given the extra image dimension offered by the KinectTM sen-
sor, new approaches taking benefit of this issue have been proposed for improving
PR. The most recent and relevant approaches are described below.
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Fig. 1. Different technologies for the acquisition of depth maps

One of the first contributions for PR in depth maps is the approach of [6],
which also is part of the core of the KinectTM device software. The method is
based on inferring pixel label probabilities through Random Forest (RF) based
on learning offsets of depth features. Then, mean shift is used to estimate human
joints and representing the body in skeletal form. An example of the synthetic
generated samples for training the system and two trees of the forest are shown in
Fig. 2(a). Using the same philosophy, the authors of [24] optimize the results of [6]
including a second optimization layer to the RF probabilities in a multi-label
Graph Cuts optimization procedure. The scheme and results of this approach
are shown in Fig. 2(b). The Graph Cuts theory was previously applied to PR in
RGB computer vision approaches [25, 26] as well as other image modalities [27]
with successful results.

The skeletal model defined by previous approaches is being used in combi-
nation with other techniques in different HBA approaches. For instance, the
authors of [28] use the skeletal model in conjunction with computer vision tech-
niques to detect complex poses in situations where there are many interacting
actors.

The authors of [29] propose an hybrid approach as an alternative to the
Graph Cuts optimization of [24] to static pose estimation, called Connected
Poselets. This representation combines aspects of part-based and example-based
estimation, first detecting poselets extracted from the training data. The method
applies a modified Random Decision Forest to identify Poselet activations. By
combining keypoint predictions from poselet activations within a graphical model,
the authors infer the marginal distribution over each keypoint without using
kinematic constraints. An example of the procedure is illustrated in Fig. 2(c).

In the scope of Probabilistic Graphical Models, different approaches have
been proposed. In [33], the authors propose a method for learning shape models
enabling accurate articulated human pose estimation from a single image. The
authors learn a generative model of limb shape which can capture the wide
variation in shape due to varying anatomy and pose. The model is learnt from
silhouette, depth, and 3D pose data.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Different approaches for PR. (a) Random Forest (RF) [6]; (b) Graph Cuts
optimization of RF probabilities [24]; (c) Multiscale scanning window. Each window
is evaluated by a Random Forest classifier to detect poselet activations [29]. Each
activated poselet makes local predictions for the body parts it was trained on. The
overall configuration is inferred by combining keypoint predictions within a graphical
model, and finding the maximum over the marginal distributions; (d) Gabor filter
over depth maps at multiple scales for hand detection in a multi hand pose Random
Forest approach for American Sign Language (ASL) recognition [30]; (e) Left: keypoint
detection over depth map. Right: inferred body parts from a graphical model [31]; and
(f) Normal vectors of segmented objects from depth maps [32].
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Obviously, a relevant aspect of the RGBD representation is the definition of
new descriptors based on 3D point clouds. On the one hand, recent publications
regarding image descriptions are related to the distribution of surface normal
vectors [14]. On the other hand, standard computer vision descriptors are used
over depth maps instead of RGB data. For instance, the authors of [30] have re-
cently proposed an approach for American Sign Language recognition applying
Gabor filters over depth maps of hand regions. Hand-shapes corresponding to
letters of the alphabet are characterized using appearance and depth images and
classified using Random Forests. An example of the descriptors is shown in 2(d).
The authors of [31] propose a novel keypoint detector based on saliency of depth
maps which is stable to certain human poses and they include this novel detec-
tor in a probabilistic graphical model representation of the human body. The
interest points, which are based on identifying geodesic extrema on the surface
mesh, can be classified as, e.g., hand, foot, or head using local shape descrip-
tors. This approach also provides a natural way of estimating a 3D orientation
vector for a given interest point. This can be used to normalize the local shape
descriptors to simplify the classification problem as well as to directly estimate
the orientation of the body parts in space. An example of the use of this ap-
proach is illustrated in Fig. 2(e). The surveillance system proposed in [32] uses
the orientation-invariant Fast Point Feature Histogram [14] based on distribu-
tion of normal vectors to identify the robbery of objects in outdoor and indoor
environments. An illustration of normal vectors computed from depth maps of
image objects is shown in 2(f). In citeKD and [34] the authors use Kernel De-
scriptors (KD) and Hierarchical Kernel Descriptors (HKD) to avoid the need for
pixel attribute discretization, being able to turn any pixel attribute into compact
patch-level features. Using KD over multi-modal RGBD, the similarity between
two patches is based on a kernel function, called match kernel, that averages
over the continuous similarities between all pairs of pixel attributes in the two
patches. This method has been recently applied to multiple object recognition in
RGBD data with successful results [34]. With a similar idea, the authors of [35]
propose the Wave Kernel Signature (WKS) descriptor for 3D keypoint matching,
where WKS is represented as the average probability of measuring a quantum
mechanical particle at a specific location.

Following the description based on the Geodesic maps from [31], the authors
of [36] compute 3D geodesic maps in depth maps for learning distances corre-
sponding to body parts. First, the approach detects anatomical landmarks in
the 3D data and, then, a skeleton body model s fitted using constrained inverse
kinematics. Instead of relying on appearance-based features for interest point
detection, which can vary strongly with illumination and pose changes, the au-
thors build upon a graph-based representation of the depth data that allows the
measurement of geodesic distances between body parts. As these distances do
not change with body movement, one can localize anatomical landmarks inde-
pendent of pose. For differentiation of body parts that occlude each other, the
authors also use motion information obtained from optical flow. An example of
the computed geodesic maps are shown in Fig. 3(a).
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(a) (b) (c) (d)

Fig. 3. Different approaches for PR. (a) Geodesic maps over segmented subjects in [36];
(b) Probabilistic graphical model of [37]; (c) Up: Hand labeled model of [38]. Down:
Hand Shape Templates of [39]; (d) Linear Programming matching based on kernel
descriptors of [40].

Another approach in the scope of graphical models is the probabilistic MO-
CAP approach of [37]. The authors combine a generative model with a discrimi-
native model that feeds datadriven evidence about body part locations. In each
filter iteration, the authors apply a type of local model-based search that exploits
the nature of the kinematic chain. As fast movements and occlusion can disrupt
the local search, they utilize a set of discriminatively trained patch classifiers to
detect body parts. This noisy evidence about body part locations is propagated
up the kinematic chain using the unscented transform. The resulting distribu-
tion of body configurations allows to reinitialize the model-based search, which
in turn allows the system to recover from temporary tracking drift. An example
of the graphical model and the inferred pose configuration for a test sample is
shown in Fig. 3(b).

Since the description of body posture may vary from each particular appli-
cation, it is common to find methods that focus on particular limbs to perform
a more detailed local description. This is the case of head and hand regions,
which described using RGBD data become a very useful tool for different real
applications, such as Human Computer Interaction systems (HCI). In the top
Fig. 3(c) an example of a hand parts model defined in [38] to train a Random
Forest approach is shown. The bottom of Fig. 3(c) shows the shape templates
proposed in [39] to look for different hand configurations in a HCI system.

Although most of previous approaches do not require from a previous back-
ground extraction step, several methods in literature use to start with an initial
background extraction step based on depth information. However, background
substraction can lead with several foreground objects from which persons should
be identified. In this sense, the authors of [41] present a method for human detec-
tion and segmentation based on contouring depth images, applying 2D Chamfer
match over silhouettes. Other classical and recent approaches used for shape
analysis and matching of point clouds are Active Shape Models, Shape Context,
Template Matching, or Linear Programming Approaches [40]. Fig. 3(d) shows an
example of body shape matching using the linear programming approach of [40].
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(a) (b)

(c) (d)

Fig. 4. Some applications of the Human Pose Recovery and Behavior Analysis group
(HuPBA) [42]. (a) Multi-modal surveillance system of [32]. Up: Outdoor scenario,
user is identified, theft is recognized, and different objects, included a small cup, are
detected. Down: Users and objects are correctly identified and classified/recognized.
User-object membership relations are defined. Different users can be identified simulta-
neously by the system; (b) System for static pose and range of movement estimation in
physiotherapy, rehabilitation, and fitness condition; (c) Behavior modeling of children
with Attention Deficit Hyperactivity Disorder diagnosis; And (d) General modeling of
actions and gestures by multi-modal spatio-temporal Bag-of-Visual-and-Depth-Words
model. Left: Salient points based on depth maps are detected and labeled to differ-
ent clusters. Right: Depth descriptors are combined with RGB data descritors, and a
Spatio-Temporal Bag-of-Visual-and-Depth-Words for action recognition is defined.



290 S. Escalera

3 Conclusion

In this paper, the recent literature related to Pose Recovery and Human Behavior
Analysis from multi-modal RGBD data was reviewed. In particular, the main
benefits from the multi-modal RGBD from Microsoft� KinectTM were described.
Among the broad range of applications related to the devices, those particular
methodologies related to PR for improved Human Behavior Applications were
discussed.

We saw recent approaches based on background substraction and body part
models detection and segmentation, using both discriminative and generative
approaches, including hybrid approaches. Moreover, classical descriptors and
techniques from 2D computer vision methodologies have been redefined and ex-
tended using the extra dimension provided by the KinectTM device. This has lead
to the design of new descriptors, use of normal vectors of surfaces, geodesic paths
in 3D spaces, clustering of point clouds, etc. As a result, several non-invasive ap-
plications have become real. In Fig. 4 some applications of our research group
using RGBD data representation are briefly described [42].

Besides the high performance of current methods for PR and HBA using
RGBD data, several issues remain opened and require further attention. For in-
stance, background extraction in complex scenarios still becomes difficult when
the foreground object is close to artifacts belonging to the background. In those
cases, the use of depth information is not straightforward, and more sophisti-
cated approaches are required. In the case of PR, though one can benefit from
the high discriminative power of RGBD representation, more accurate recogni-
tion of poses under different appearance and points of view are also necessary
for some real applications. This requires dealing with the whole set of human
body deformations, including occlusions and changes in appearance produced,
for example, by clothes and non-controlled environmental factors. Furthermore,
some real applications also need higher resolution of depth maps to be applied in
real environments and deal with the reflectance deviations of the infrared light
for particular materials. On the other hand, significant advances are expected to
appear in the next years regarding the hardware capabilities.
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