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Abstract

Error Correcting Output Codes (ECOC) have
demonstrate to be a powerful tool for treat-
ing multi-class problems. Nevertheless, prede-
fined ECOC designs may not benefit from Error-
correcting principles for particular multi-class
data. In this paper, we introduce the Separability
matrix as a tool to study and enhance designs for
ECOC coding.
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1 Introduction

Multi-class classification tasks are problems in
which a set of N classes, categories or namely
brands are categorized. In the ensemble learn-
ing field, Error Correcting Output Codes (ECOC)
have demonstrated to be a powerful tool to solve
multi-class classification problems [DB95]. This
methodology divides the original problem of N
classes in n binary problems (2-class problems).
Commonly, the step of defining n binary partitions
of the N classes is known as coding. At this step,
a coding matrix MN×n ∈ {−1,+1} is generated.
The columns of M denote the n bi-partitions of
the original problem, and the rows of M , known
as codewords, identify each one of the N classes

of the problem uniquely. Once M is defined, a set
of n base classifiers {h1, . . . , hn} learn the n bi-
nary problems coded in M .
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Figure 1: (a) Feature space and trained boundaries
of base classifiers. (b) Coding matrix M , where
black and white cells correspond to {+1,−1}. (c)
Decoding step, where the predictions of classifiers,
{h1, . . . , h5} for sample s are compared to the
codewords {y1, . . . , yN}.

At the decoding step, a new sample s is tested
by each base classifier {h1, . . . , hn}, obtaining a
set of label predictions. The set of predictions xs
is compared to M using a decoding measure δ and
sample s is labelled as the class code at minimum
distance. In Figure 1, an example for coding and
decoding steps is shown for a 5−class toy problem.

The coding step has been widely studied in
literature [RK04], proposing either predefined or
random coding designs. Nevertheless, predefined



strategies may not be suitable for a given prob-
lem because they do not take into account the un-
derlying distribution of the classes. In this scope,
one can roughly find works on problem-dependent
strategies for coding designs. In this paper we in-
troduce the Separability matrix as a way to analyse
and study the properties of a certain ECOC coding
matrix. The Separability matrix explicitly shows
the pairwise separation between the codes of all
pairs of classes. With this tool in mind, we also
propose a new compact problem-dependent coding
design that shows the benefits of applying the sep-
arability criteria in a problem-dependent manner.

This paper is organized as follows: Section 2
introduces the Separability matrix, in Section 3
the novel problem-dependent coding design is pro-
posed and, Section 4 shows the experimental re-
sults and concludes the paper.

2 The Separability matrix

One of the main concerns of the ECOC framework
is to correct as many base classifiers errors as pos-
sible. In literature, the correction capability ρ of a
coding matrix M is defined as ρ =

min(δ(yi,yj))−1
2 ,

∀i, j ∈ {1, . . . , N}, i 6= j. Therefore, distance
between codewords and correction capability are
directly related. Given this close relationship be-
tween distance and correction capability, we define
the Separability matrix S, as follows:

Given an ECOC coding matrix MN×n, the Sep-
arability matrix SN×N contains the distances be-
tween all pairs of codes in M . Let {yi, yj} be
two codewords, the Separability matrix S at posi-
tion (i, j), defined as Si,j , contains the distance be-
tween the codewords {yi, yj}, defined as δ(yi, yj).
An example of Separability matrix estimation for
two coding designs is shown in Figure 2.

Usually, the increment in the correcting capa-
bility problem has been tackled by enlarging the
codeword length, and thus, the distance between
codewords. However, Rifkin et al. show in [RK04]
that if a classifier with high capacity is well opti-

mized, small codes such as One vs. All are also
suitable for solving the problem. Recently, follow-
ing the same principle as Rifkin et al., in [BEB10]
the authors propose to use a Compact ECOC ma-
trix, with a code length of dlog2(N)e, where d.e
round to the upper integer, which is optimized by
a Genetic Algorithm in a problem-dependent man-
ner.

If we analyse the Separability matrix S of prede-
fined ECOC coding designs [RK04], we find that
Si,j = ς ∀i, j ∈ {1, . . . , N}, i 6= j, where ς is a
constant separation value. This means that code-
words are equidistant, as shown in Figure 2(d).
Nevertheless, in problem-dependent coding strate-
gies the Separability matrix acquires a great value,
since it shows which codewords are prone to have
more errors due to the lack of error correction ca-
pability. For example, if we analyse the Compact
ECOC coding matrix M we find that codewords
are not equidistant and the distribution of sepa-
rability is not constant. An example of Compact
ECOC coding and its Separability is shown in Fig-
ure 2(a) and 2(b), respectively.
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Figure 2: (a) Compact ECOC coding matrix. (b)
Separability Matrix of a Compact ECOC. (c) One
vs. All coding matrix. (d) Separability matrix of
One vs. All coding.

3 Application of Separability ma-
trix for Extension coding

Problem-dependent coding strategies have not
been thoroughly studied in literature. In contrast to
classical approaches [RK04], problem-dependent
coding designs combine the error correcting prin-
ciples with a guided coding procedure which takes



into account the distribution of the data. In this
work we define a problem-dependent coding de-
sign based on the Separability matrix to enhance
the error correcting capabilities of the design.

In [BEB10] the authors propose a problem-
dependent Compact ECOC coding matrix of
length dlog2Ne. However, the resultant matrix M
has null correction capability since ρ = 0. On
the other hand, one would like to have at least
min(S) ≥ 3, to correct one error. This could
be done by extending the codewords {y1, . . . , yN}
of the coding matrix M until Si,j = 3 ∀i, j ∈
{1, . . . , N}, i 6= j. Therefore, we propose to ex-
tend the codewords of a non-optimized Compact
ECOC coding (Binary ECOC), which is the bi-
nary representation of the N classes of our prob-
lem. This means that the codeword yi of class ci
is the binary representation of a decimal value i
∀i ∈ {1, . . . , N}. This extension is calculated in
order to increase the distance δ between the most
confused codes, computing a problem-dependent
extension still with a reduced code length. The
proposed algorithm uses both Separability SN×N
and Confusion CN×N matrices of a Binary ECOC
to compute an extension of its coding matrix M ,
defined asEN×k where k is the number of columns
(base classifiers) of the extension.

The Confusion-Separability-Extension (CSE)
coding algorithm is an iterative algorithm that
looks for the most confused classes in C, i.e
{ci, cj} and codes an Extension matrix E that in-
creases its separability Si,j until a certain user-
defined separability value % is achieved. In addi-
tion, the Extension matrix E also increments the
separability for all the classes confused with ci or
cj . This extension is performed in order to in-
crease the correction with all the classes that are
prone to confuse with classes ci or cj . When no
classes are confused with {ci, cj} the coding is per-
formed taking into account the overall confusion
with all classes {c1, . . . , cN}. Once E is com-
pletely coded, the algorithm checks if any column
in E was previously on M . In that case, the al-
gorithm changes specific codewords. Let t be an

iteration of the algorithm, which codes Et, then at
iteration t+1,Mt+1 =Mt∪Et, the algorithm will
stop when in M , n ≥ N , this stop condition is de-
fined to upper bound the code length of the design
toN . In addition, we consider that if δ(yi, yj) ≥ %,
then Ci,j = 0. Therefore, another stop condition
for the algorithm is that ∀i, jCi,j = 0, because that
means that no confusion is left to treat. The CSE
algorithm is illustrated in the toy example of Fig-
ure 3.
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Figure 3: CSE example in a 5−class toy problem.

4 Experimental results

In order to present the results, first, we discuss the
data, methods, and evaluation measurements of the
experiments.

• Data: The first bench of experiments con-
sists of seven muti-class problems extracted
from the UCI Machine Learning Repository,
showed in Table 2. In addition, we test
our methodology over 3 challenging Com-
puter Vision multi-class problems. First, we
classify 70 visual object categories from the
MPEG dataset. Then, 50 classes of the AR-
Face database are classified. Finally, we test
our method in a real traffic sign categorization
problem consisting of 36 traffic sign classes.



Table 1: UCI classification results with SVM as base classifier.
One vs. All ECOC CSE ECOC % = 3 CSE ECOC % = 5 Dense Random ECOC

Data set Perf. Classif. Perf. Classif. Perf. Classif. Perf. Classif.

Vowel 55.0±10.5 11 66.9±7.8 9.2 69.8±6.3 10.6 67.9±8.3 11
Yeast 41.0±7.3 10 54.7±11.8 5.7 53.0±9.3 9.5 54.9±6.4 10
Ecoli 78.9±3.5 8 76.4±4.4 7 78.6±3.9 7.4 72.1±2.7 8
Glass 51.6±10.2 7 55.5±7.6 6 52.7±8.4 3 42.8±11.02 7

Segment 97.3±0.7 7 96.9±0.8 6.6 96.6±1.0 6.2 96.6±1.3 7
Derma 97.1±1.2 6 97.1±0.9 5.2 95.9±1.2 3 95.7±0.8 6
Vehicle 80.1±4.0 4 81.1±3.5 3 70.6±3.4 3 81.1±3.6 4

MPEG7 83.2±5.1 70 88.5±4.5 15 89.6±4.9 20.4 90.0±6.4 70
ARFaces 76.0±7.22 50 80.7±5.2 13.8 84.6±5.3 20.2 85.0±6.3 50
Traffic 91.3±1.1 36 95.7±0.92 12.2 96.6±0.8 19 93.3±1.0 36

Rank & # 3.0 20.8 2.2 8.8 2.3 10.3 2.5 20.8

Table 2: UCI repository data sets characteristics.
Problem #Training samples #Features #Classes

Dermathology 366 34 6
Ecoli 336 8 8

Vehicle 846 18 4
Segmentation 2310 19 7

Glass 214 9 7
Vowel 990 10 11
Yeast 1484 8 10

• Methods: We compare the One vs. All
[RK04] ECOC approach with the CSE cod-
ing design with separability value % = {3, 5}.
In addition, we also compare our results with
the Dense Random coding scheme using N
classifiers. The ECOC base classifier is the
libsvm implementation of a SVM with Radial
Basis Function kernel. The SVM ζ and γ pa-
rameters are tuned via Genetic Algorithms for
all the methods, minimizing the classification
error of a two-fold evaluation over the train-
ing sub-set.

• Evaluation Measurements: The classifica-
tion performance is obtained by means of a
stratified ten-fold cross-validation.

The classification results obtained for all the
data sets considering the different ECOC con-
figurations are shown in Table 1. In order to
compare the performances provided for each
strategy, the table also shows the mean rank
of each ECOC design considering the twelve
different experiments. The rankings are ob-
tained estimating each particular ranking rji
for each problem i and each ECOC configu-
ration j, and computing the mean ranking R

for each design asRj = 1
N

∑
i r
j
i , whereN is

the total number of data sets. We also show
the mean number of classifiers (#) required
for each strategy.

To conclude, results show that the proposed
method outperforms the One vs. All standard cod-
ing design in most cases, using far less number
of dichotomizers. This is caused by the fact that
the proposed algorithm focus the correcting capa-
bility in those classes more prone to be confused,
and thus, less redundancy is needed. Nevertheless,
when comparing Dense Random coding with our
method in terms of performance, no significance is
found since both methods have a comparable rank.
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