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Abstract

One of the first junctures in artificial intelligence and machine learning is to
increase the interactivity of intelligent systems with their environment. Most
of the actual strategies use sensors in order to simulate the data acquisition
process that we obtain by means of our senses. Once the information has been
extracted, one of the main challenges consists of developing suitable techniques
for the processing of huge amount of data. The aim of this process is to take
a decision between a wide set of possibilities. In this report, we propose a new
methodology capable of processing huge sets of data, being able to discriminate
between a wide set of categories. In particular, we focus on the error correcting
output codes framework, defining a logarithmic number of classifiers. Gene-
tic algorithms are used to define an optimum subset of problems as well as to
find the optimum parameters that increase the generalization capability of the
classifiers. The approach is tested over a wide number of the public machine
learning and computer vision community datasets, getting results that outper-
form state-of-the-art strategies, at the same time that significantly reduces the
computational cost.
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Chapter 1

Introduction and
Motivation

1.1 Introduction

Nowadays challenging applications of Pattern Recognition deal with changing
environments, online adaptations, contextual information, etc. In order to deal
with all these problems, efficient ways for processing huge amount of data are
often required. One clear example is the case of general Pattern Recognition
algorithms for classification, especially when the number of categories, namely
objects, people, brands, etc, is arbitrarily large. Usual machine learning strate-
gies are effective for dealing with small number of classes. The choices are limited
when the number of classes becomes large. In that case, the natural algorithms
to consider are those that model classes in an implicit way, such as instance
based learning (i.e. nearest neighbors). However, this choice is not necessarily
the most adequate for a given problem. Moreover, we are forgetting many al-
gorithms of the literature such as ensemble learning (i.e. Adaboost [FHT98])
or kernel based discriminant classifiers (i.e. support vector machines [SVM03])
that have been proven to be very powerful tools.

Most of state-of-the-art multi-class architectures need to deal with the discri-
mination of each class either by modelling its probability density function, or by
storing a classification boundary and using some kind of aggregation/selection
function to obtain a final decision. Another way to deal with this kind of pro-
blems is to use a divide-and-conquer approach. Instead of extending a method
to cope with the multi-class case, one can divide the multi-class problem into
smaller binary problems and then combine their responses using some kind of
committee strategy, such as voting. In literature, one can roughly find three
main lines of research in the last tendency: flat strategies, hierarchical classi-
fication, and Error Correcting Output Codes (ECOC). Flat strategies consist
of using some predefined problem partition followed by some kind of voting
strategy. Good examples of this line are strategies like one-against-all or all-
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pairs. Hierarchical classification relies on some similarity metric among classes
for creating a binary tree in which at each node a particular partition of the
classes is considered. Finally, ECOC encodes different partitions of the problem
in a matrix of codewords (one codeword per class) and the final decision is ob-
tained by looking at the most similar codeword at the test step. ECOC can be
regarded as a generalization of the former strategies since it allows the inclusion
of flat strategies as well as hierarchical classifiers [PRV06]. Moreover, the analy-
sis of the ECOC error evolution has demonstrated that ECOC corrects errors
caused by the bias and the variance of the learning algorithm [DK95]1. Howe-
ver, note that by construction or in order to obtain the desired performance,
most of the strategies need between N and N2 classifiers, given N different
classes. Although this is adequate and acceptable when the number of classes is
small, it becomes prohibitive when the number of classes becomes large. This
number of classifiers has been recently reduced in some ECOC designs, such as
the DECOC approach of [PRV06], that requires N − 1 classifiers. The Dense
Random and Sparse Random designs also reduce this number of classifiers to
15 · log2(N) and 10 · log2(N), respectively. However this kind of approaches
design the problems without taking into account the underlaying distribution
of the class characteristics.

On the other hand, since the very beginning evolution and genetics are
solving the problem of adapting living beings to the environment in which they
usually can be found. Evolution can be seen from a computational point of view
as a tool for finding solutions for a given problem in way which is not exhaustive
neither analytical. This way of treating the problem is based on the theorem
proposed by [Dar], in which the argumentation of how the adaptation to the
environment performed by a living being improves with the flow of generations.
In this sense, we could envisage an algorithm which aims to solve a problem,
treating it as an evolutive process in which a set of random possible solutions
for the problem are mixed in a strategic way, in order to improve the adaptation
to the environment, therefore, obtaining better solutions.

1.2 Definition of the problem and goals

As mentioned before, one of the main research fields of AI is to improve the
interactivity of expert or intelligent systems with their environment. In order
to reach this higher interactivity, a common approach is the use of sensors to
retain as much information of the environment as possible. Therefore, the major
breakthrough of IA is to find a way to process this huge amount of information
that the sensors are capable to obtain.

Very often the process of this information implies the classification or cate-
gorization of the data, where the number of classes is arbitrarily big.

1The bias term describes the component of the error that results from systematic errors of
the learning algorithm. The variance term describes the component of the error that results
from random variation and noise in the training samples and random behavior of the learning
algorithm. For more details, see [DK95].
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The goal of this thesis is to propose and evaluate different general ways of
making the multi-class pattern recognition problem tractable when the number
of categories makes most of the models computationally unfeasible. In parti-
cular, we are interested in methods that scale sub-linearly with the number of
classes, allowing their applicability in general Pattern Recognition problems.
The proposal relies on the Error Correcting Output Codes framework, reducing
the number of binary classifiers that have to be trained in the ensemble. Fo-
llowing the Occam razor principle, we propose a minimal ECOC design of size
log2(N) in terms of the number of classifiers. An evolutionary approximation, is
proposed for tuning the parameters of the classifiers and looking for a Minimal
design with high generalization capability. Moreover, this design is problem de-
pendent in the sense that the evolved ECOC fits the distribution of the object
characteristics. The novel Minimal ECOC is compared with the state-of-the-art
ECOC approaches, obtaining comparable (even better results) when classifying
several object categories in different Pattern Recognition applications with far
less cost.

1.3 State of the art on multi-class categorization
problems

Multi-classification problems have been a field of study of various researchers
during the past years, without achieving a solution both clear and efficient. In
this section we analyze the works that deal with this kind of problems.

1.3.1 Artificial Neural Networks

In the past fifty years the application of ANN has been deeply studied and
one of the most applied architectures was the Multi-layer Perceptron (MLP).
This architecture is based in the principal of usual neural networks. The MLP
consists at least of 3 fully connected layers, the input layer, the hidden layer and
the output layer. The reason of the use of this architecture is that, the MLP is
the minimal network which is a universal approximator of any function.

In any ANN there are three main parts:

• The neurons, which are the main units of process.

• The connection, which are the edges that connect neurons.

• The weights, which are the importance of each connection.
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Figure 1.1: Multi-layer Perceptron

For a MLP the type of output that generates the network is of the following
kind:

yk(x) = g(

W∑
i=0

wxiφi(x)) (1.1)

φ0(x) = 1 (1.2)

φi(x) = g(

n∑
j=0

vijxj) (1.3)

x0 = 1 (1.4)

To learn what are the sub-optimal weights for the ANN, usually the back-
propagation algorithm. Which is an gradient descent based algorithm and as a
matter of fact it inherits all the properties of the gradient descend, such as, fin-
ding sub-optimal results and convergence to local optima. In fact this algorithm
gives us the update rule for every node in the network. Let’s consider the error
produced in the output node k in the n−th data point as o ek(n) = ok(n)−pk(n),
where pk(n) is the predicted value of the perceptron and ok(n) is the real target
value of the n− th data point. Our goal is to minimize the energy of the output
error given by:

ε(n) =
1

2

∑
e2
k(n) (1.5)

By differential theory it can be demonstrated that the update rule is

4wki(n) = −η ∂ε(n)

∂vk(n)
pi(n) (1.6)

Where pi(n) is the value of the previous neuron and η is the learning rate.
Further analysis is very complex and is out of the scope of the thesis, as a final
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simplification it can be seen that in order to update the weight of a layer k we
must first update the weights in layer k − 1 with the previous updating rule.
Therefore this algorithm can be seen as the backpropagation of the error made
by every neuron.

1.3.2 Classification Trees

A Classification Tree is a predictive model which analyzes observations over an
item to reach some conclusion of its value. In this kind of trees, leaves represent
classifications and branches represent sets of features which have lead to this
classifications. Every leaf represents a value of the target variable calculated by
means of input variables (interior nodes) in the path from the leaf to the root.

The tree construction algorithms are based in choosing the feature of the
data that better allows the separation of the data in better subsets according to
the target value, in other words, the entropy of data is used, although another
metrics could be used. The selected feature to build the tree would b as good
as the separation of the data that it could do, according to the target variable.

One of the most used algorithms for this calculus is the information gain
algorithm.

Ie(f) = −
∑

fi log2 fi (1.7)

The most common algorithm in classification trees construction is the Itera-
tive Dichotomizer 3, which in a intuitive form will be presented as the following.

1. Take all the features and calculate its entropy with relation of the test set.

2. Choose the feature with maximum entropy, in other word, that maximizes
the information gain

3. Make the node of tree to contain this feature

1.3.3 Ensemble approaches

Mixture Of Experts

An approach with some similarities to Classification Trees is the Mixture Of
Experts model. It’s based on the idea that humans usually do when dealing with
a great complexity decision. For example, a doctor before diagnosing a terminal
disease, such as cancer, consults with various specialist on the particular theme,
such as oncologist and also before taking the final decision the doctor will have
the patient severally tested to make sure of the correctness of the diagnose.
Therefore, the mixture of expert model will behave on the same way.

This model contains a set of classifiers C1, ..., Ct which will constitute the
ensemble. The a second level classifier Ct+1 will assign weights every classifier
of the ensemble. The Ct+1 is also known as gated network because usually this
classifier is a ANN trained by expectation minimization. This weighted outputs
will go through a combination system that will give the final result.
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Figure 1.2: Mixture Of Experts model

As we can see in the figure 1.2, the model can be seen as a classification
algorithm where each first level classifier is an expert on a space of features of
the input sample x. The gated network will choose by means of weights, the
classifiers or the subset of classifiers most appropriated to each input sample.
Finally to generate the final prediction, the model can combine the weighted
output in several ways, for example, calculating the weighted sum of all the
ensemble or choosing the heaviest output or depending on the output type of
the experts (discrete or real).

Error Correcting Output Codes

In the last decade some studies have shown that represent the multi-class pro-
blem in the ECOC framework represents significant improvement when dealing
with problem dependent designs. The ECOC framework has been widely applied
in classical AI problems such as facial recognition [KGWM01] or hand-write re-
cognition [Gha02].

An Error Correcting Output Code can be seen as a matrix in which the
rows denote the classes to discriminate in our system and the columns to the
hypothesis which we have to distinguish those classes.

The ECOC framework consist mainly of two steps: in the first one, called
coding a codeword is assign to each class so it is univocally distinguish from the
other classes. On the second step, called decoding, each sample to classify is
compared to all codewords and a prediction of classification is obtained.
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One of the most known coding design to solve multi-class problems is one
versus one coding [RK04a], which consists of distinguish one class of the rest
of possible classes. This kind of codification implies the use of N hypothesis
to discriminate N classes. Yet using this number of hypothesis, the results
obtained when dealing with high cardinality problems usually didn’t reach the
random classification level, which is known to be 1/N where N is the number of
classes, as could be seen, this boundary shows the change between plain random
classification and not random classification.

Figure 1.3: Error Correcting Output Code for a 4− class problem

1.3.4 Base classification approaches

Introduction

As is shown previously, the idea of add various hypothesis or base classifiers to
obtain a tool capable of solve multi-classification problems is generally extended
and is one of the both most effective and robust learning strategies, as a matter
of fact Ensemble learning is a research field within machine learning that deals
with this techniques. The goal os this section is to describe the state of the art
in base classifiers (also known as hypothesis) which are the mechanisms to deal
with 2-class problems.

Bayes classifiers

Bayes classifiers were on the first base classifiers to appear, intending to reach
the Bayes error rule. All of them are built in a probabilistic base and the
distinction between the types are done based on the assumptions made when
developing them.

The strongest classifier in this particular section is the Quadratic Discrimi-
nant Analysis, which can find quadratic form boundaries around the data. The
development of this classifier is based on the assumption that all classes are
normally distributed.

X | Ci ∼ N(µi, εi) (1.8)
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Other approach of this Bayes classifiers is the Linear Discriminant Analysis,
which can only find linear form boundaries on data. In this type of classifier
besides the assumption that classes are normally distributed we also assume
that covariance matrices are equivalent.

ε1 = ε2 (1.9)

The final approach is call Naive Bayes Classifier in which besides the two
assumptions made before (normally distributed data, with equivalent covariance
matrices) conditional independence of the features of a sample x, given the
target of the sample tx. Which means that the probability of an observation
is the product of conditional probabilities.In other words, all the features of a
sample contribute independently to the probability of this sample to whether
belong to a category or not. Particulary this kind of classifiers are very robust
when the learning set is small because given that independence between variable
is assumed, only an estimation of the variance of each category is enough and
not the complete covariance matrix.

p(x) = p(ci)

m∏
j=1

p(Xj = xj | Ci) (1.10)

Usually this probability based classifiers estimate the parameters of the dis-
tribution of the 2 classes by means of Maximum Likelihood algorithm.

Adaptative boosting and Decision Stump classifiers

Within the state of the art of base classifiers, Decision Stump classifiers combi-
ned through Adaptative Boosting (AdaBoost) are widely applied. Proving its
performance on hard problems such as face detection [VJ01] or spam detec-
tion [Nic03] .

AdaBoost was formulated by Yoav Freund and Robert Schapire in 1997.
This algorithm is based on the Ensemble Learning paradigm, in which a complex
problem can be solved combining solutions of subproblems of less complexity
than the original one.

The idea behind AdaBoost is the combination of a set of linear classifiers
(also known as hypothesis). The aim of which is to generate a classifiers with a
high generalization capacity. To obtain such, an iterative process is required, in
which at every step weights corresponding to the performance on training data
of the linear classifiers (also called weak classifiers) are updated.

The main point of this algorithm is that poorly performed classifiers at step
n will increase their weight in step n+ 1, in such a way that in iteration n+ 1
more importance will be give to them, in order the algorithm to focus on the
most complex samples to classify.

There exists various versions of AdaBoost (discrete, real, gentile, etc.) but
only the way of calculating the weights of weak classifiers differ between them.
Therefore we only show the main part of the algorithm.
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1. Start with uniform distribution of weights wi = 1/N, i = 1, ..., N .

2. Repeat for m = 1, 2, ...M

• Fit the classifier fm(x) ∈ {−1, 1} using weights wi on training set

• Calculate errm = Ew[1y 6=fm(x)], cm = log((1− errm)/errm)

• Update wi ← wiexp[cm · 1y 6=fm(x)], i = 1, 2, ..., N and normalize so
that

∑
i wi = 1

3. Final classifier solution sign[
∑M

m=1 cmḟm(x)]

Where weak classifiers will be fm(x) and the weights will be cm. Generally
weak classifiers are implemented by means of Decision Stumps which are algo-
rithms of binary linear classification, which only have the restriction of giving a
better solution that the random one.

Figure 1.4: Adaptative Boosting visualization

Given its nature, AdaBoost is sensible to problems as noise in training data
or outliers which are atopic values with the general distribution of the data.
Which is a problem when dealing with a huge number of samples for category
is arbitrarily big.

Support Vector Machine classifiers

Support Vector Machines (SVM) where first formulated in 1992 by , Boser,
Guyon and Vapnik. This was a generalization of Optimal Hyperplane algorithm,
first proposed by Vapnik in 1963. The general idea of this classifiers is to take
the sample of both categories to a high dimension space, where both categories
will be separated with a distance the bigger the better.

In this high dimension space the SVM will construct a linear model to distin-
guish both categories, this model will be the one that maximizes the distances
with the closest samples of both categories, in order to obtain a high generali-
zation capability.

11



Lets suppose that we have 2 categories in our training set. The aim of our
SVM will be to decide to which category belongs each new point that arrives
to the system. Recalling that the SVM were constructed in a high dimensional
space, each point is seen as a p− dimensional vector.

The aim of the algorithm is to know if the two categories of the training set
can be discriminate with a (p − 1) − dimensional plane, commonly known as
hyperplane or linear classifier. Usually a large number of hyperplanes will have
the properties describe above but to select the better hyperplane we have to
focus on the distance with the closest point of both categories, in other words,
this distance has to be maximized in order to increment the generalization
capability.

Figure 1.5: Optimal hyperplane

More formally let S = {(x1, y1), ..., (xl, yl)} be the training set, then there
exists a function of the type g(x) = 〈w, φ(xi)〉 + b which comes determined
by a set of weights w and threshold b and there also exists a γ > 0 so that
ξi = (γ − yig(xi))+ = 0 for 1 ≤ i ≤ l. Which informally implies that the two
categories of the training set are linearly separated with a margin γ.

In most of the occasions the 2-class problem won’t be linearly separable in
the input space. As mentioned before, the machine maps the data in a high
dimension space, in other words, sees every point as p−dimensionalvector. To
generate this high dimension spaces, kernels are used which well-define a scalar
product. This kernel functions are common functions applied in the science
fields. Between other polynomial, gaussian and sigmoidal kernels are the ones
that have shown a better performance, increasing therefore the research interest
on them.
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Chapter 2

Methodology and strategies

The aim of this chapter is to deeply analyze, the methods and techniques used
to solve a multi-class categorization problem where the cardinality of categories
is arbitrarily big. As mentioned previously, the goal of the work is to describe a
new approach to efficiently solve very high cardinality categorization problems,
where previous approaches failed either because they try to use an unfeasible
number of classifiers or because of obtained results were not statistically signi-
ficant. The proposed solution stand in three main points:

1. Error Correcting Output Codes.

2. Support Vector Machine classifiers.

3. Genetic Algorithms.

Which are thoroughly analyzed in the following pages.

2.1 Minimal Error-Correcting Output Codes

In this section, we review the ECOC framework and propose a Minimal ECOC
design in terms of the number of classifiers.

2.1.1 Motivation

High cardinality problem suggest a huge quantity of data with probably very
complex distributions. In [Pol06] approaches based in Ensemble Learning are
suggested for this kind of frameworks. Given the Ensemble Learning approach
accomplish a set of features which very useful when dealing with great quantity
of data. There exists various reasons to use an ensemble based system.
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Statistical reasons

Readers familiarized with neural networks or other machine learning systems are
very aware that having good performance on the training set doesn’t mean to
have a good generalization capability. A set of classifier with good performance
over the training set may have distinct generalization capability. Even a set
of classifiers with a good generalization capability over the training set may
perform (and usually do) bad in the field, having its poorest performance if the
training set is not representative enough of the real distribution of the data. In
those cases, combining the output of classifiers in a smart way could decrease
the odds of choosing a particularly very poor generalization capability classifier.

Huge quantity of data

In some cases the volume of data to process is simply very high to be treated
by an only classifier. In those cases, partitioning the dataset in different subsets
training for each of them a classifier and combining the outputs tends to be
much more efficient.

Divide and conquer

Beside of the great quantity of data, some problems are just to complex to be
treated by an only classifier. Particularly, the boundary that discriminates 2
categories may be extremely difficult to approximate, or lay outside the scope
of the classifier.

Let’s assume to have access to a base classifier that can find elliptic or circular
boundaries in the data. Such classifier will not learn the boundary that is shown
in section (a) of the image 2.1. Let’s consider then, a boundary generated by
a set of classifiers pertaining to an ensemble such as the one in section (b). A
final prediction based in voting by an enough number of classifiers may learn
such a complex boundary as shown.
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Figure 2.1: Divide and Conquer strategy : real boundary (a), boundary appro-
ximated by the ensemble(b)

Mainly, the system suggest a ”divide and conquer” approach where instead
of learning the whole dataset, subset of lower complexity are treated. In this
sense, the complex original boundary can be approximated by a set of classifiers
smartly combined.

2.1.2 Error-Correcting Output Codes

Introduction

Error Correcting Output Codes, previously introduced, are an ensemble based
method which deals with multi-class categorization problems from a ”divide and
conquer” point of view. As previously mentioned, multi-class categorization
problems have been widely studied. Nevertheless, one of the main approaches
in dealing efficiently with those problems was the ensemble approach. In these
sense, Error Correcting Output Codes have been broadly applied in state of the
art problems, such as facial verification [KGWM01].

Given a set of N classes to be learnt in an ECOC framework, n different bi-
partitions (groups of classes) are formed, and n binary problems (dichotomizers)
over the partitions are trained. As a result, a codeword of length n is obtained
for each class, where each position (bit) of the code corresponds to a response of a
given dichotomizer (coded by +1 or -1 according to their class set membership).
Arranging the codewords as rows of a matrix, we define a coding matrix M ,
where M ∈ {−1,+1}N×n in the binary case. In Figure 2.2 we show an example
of a binary coding matrix M . The matrix is coded using five dichotomizers
{h1, ..., h5} for a 4-class problem {c1, ..., c4} of respective codewords {y1, ..., y4}.
The hypotheses are trained by considering the labeled training data samples
{(ρ1, l(ρ1)), ..., (ρm, l(ρm))} for a set of m data samples. The white and black
regions of the coding matrix M are coded by +1 and -1, respectively. For
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example, the first classifier is trained to discriminate c3 against c1, c2, and c4;
the second one classifies c2 and c3 against c1 and c4, etc., as follows:

h1(x) =

{
1 if x ∈ {c3}
−1 if x ∈ {c1, c2, c4}

, . . . , h5(x) =

{
1 if x ∈ {c2, c4}
−1 if x ∈ {c1, c3}

(2.1)

Figure 2.2: Binary ECOC design for a 4-class problem. An input test codeword
x is classified by class c2 using the Hamming or the Euclidean Decoding.

ECOC coding

The coding step of the ECOC framework is the step of finding the matrix
M which defines the codewords of every category in the problem. There are
different strategies depending on the number of symbols in the matrix.

The standard binary coding designs are the one-versus-all [PGCP65] strategy
with N dichotomizers and the dense random strategy [ASS02], with 10 log2N
classifiers. In the case of the ternary symbol-based ECOC, the coding matrix
becomes M ∈ {−1, 0,+1}N×n. In this case, the symbol zero means that a parti-
cular class is not considered for a given classifier. In this ternary framework, the
standard designs are the one-versus-one strategy [TR98] and the sparse random

strategy [ASS02], with N(N−1)
2 and 15 log2N binary problems, respectively.

The one-versus-all design is the most used. Consisting of distinguishing each
category from the rest. Given N classes, this design establish a number of N
classifiers, in other words, it has a code length of N bits. As can be seen this
is not a recommended design to deal with high cardinality problems provided
that the number of classifiers to train is the same as the number of classes.

On the other hand, there exists random based strategies, such as, ”dense
random”, in which a high number of coding matrices of length n are gene-
rated, where values −1,+1 are equiprobable. Works on the performances of
such matrices have suggested a codeword length of n = 10 ˙lg(N), where N is
the number of classes. Therefore by means of this technique a improvement
on computational cost is accomplished. The optimal matrix of the set is the
one that maximizes the Hamming distances, baring in mind that both values
{+1,−1} have to appear in each column.ç

Another coding design is known as one-versus-one. In such, a third symbol
is incorporated in the design of the M , the zero symbol, which implies that the
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categories affected by this symbol are not taken into account by the base classi-
fier. Nevertheless, independently of the performance, the use of three symbol in
this particular design implies the increment of the length of the codeword. As
a matter of fact, a trade-off between strategies may perform better that each of
them separately.

ECOC decoding

During the decoding process, applying n binary classifiers, a code x is obtained
for each data sample ρ in the test set. This code is compared to the base
codewords (yi, i ∈ [1, .., N ]) of each class defined in the matrix M , and the data
sample is assigned to the class with the closest codeword. In Figure 2.2, the new
code x is compared to the class codewords {y1, ..., y4} using Hamming [PGCP65]
and Euclidean Decoding [ASS02]. The test sample is classified by class c2 in
both cases, correcting one bit error.

In literature there roughly exists three different lines for decoding [EPP09]:
those based on similarity measurements, including the Hamming and Euclidean
decoding [PGCP65], probabilistic approaches [PPF04], and loss-functions stra-
tegies [ASS02].

• Hamming Decoding (HD): in this kind of decoding the Hamming dis-
tance between the predicted word of the ECOC classifiers and the distinct
matrix rows M id calculated. The final prediction is the one that minimi-
zes the distance.

HD(x, yi) =

n∑
j=1

(1− sign(xj · yji ))/2 (2.2)

• Euclidean Decoding (ED): this metric is based on calculating the Eucli-
dean distance between the ECOC classifiers response and each codeword
of the matrix M . Finally the prediction is the one that minimizes the
distance.

ED(x, yi) =

√√√√ n∑
j=1

(xj − yji )2 (2.3)

• Loss-based Decoding (LBD): This is the decoding design implemen-
ted in the system, therefore is deeply analyzed. The loss-based decoding
strategy chooses the label li that is most consistent with the predictions
f (where f is a real-valued function f : ρ → R, in the sense that, if the
data sample ρ was labeled li, the total loss on example (ρ, li) would be
minimized over choices of li ∈ l where l is the complete set of labels.

LB(ρ, yi) =

n∑
j=1

L(yji · f
j(ρ)) (2.4)
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Where L is a loss function that depends on the nature of the binary
classifier. The one used in the implementation of the system is L(θ) = −θ.
The final decision is achieved by assigning a label to example ρ according
to the class ci that obtains the minimum score.

As can be seen is next sections the new ECOC coding design implies often
the use of a third symbol, the zero symbol, which implies that certain classes
are not taking into account by the base classifier. Therefore, a ternary ECOC
decoding design has to be integrated. As said before the LBD decoding provide
us with a clear framework for ternary decoding design.

2.1.3 Minimal ECOC Coding

Although the use of large codewords was initially suggested in order to correct
as many errors as possible at the decoding step, high effort has been put into
improving the robustness of each individual dichotomizer so that compact co-
dewords can be defined in order to save time. In this way, the one-versus-all
ECOC coding has been widely applied for several years in the binary ECOC
framework (see Figure 2.3). Although the use of a reduced number of binary
problems often implies dealing with more data per classifier (i.e. compared
to the one-versus-one coding), this approach has been defended by some aut-
hors in the literature demonstrating that the one-versus-all technique can reach
comparable results to the rest of combining strategies if the base classifier is
properly tuned [RK04b]. Recently, this codeword length has been reduced to
N − 1 in the DECOC approach of [PRV06], where the authors codify N − 1 no-
des of a binary tree structure as dichotomizers of a ternary problem-dependent
ECOC design. In the same line, several problem-dependent designs have been
recently proposed [UW04, CS02, PRV06, EPP10]. The new techniques are ba-
sed on exploiting the problem domain by selecting the representative binary
problems that increase the generalization performance while keeping the code
length ”relatively” small. Figure 2.3 shows the number of dichotomizers requi-
red for the ECOC configurations of the state-of-the-art for different number of
classes. The considered codings are: one-versus-all [PGCP65], one-versus-one,
Dense random, Sparse random, DECOC, Forest-ECOC, Sub-class, and ECOC-
ONE [TR98,ASS02,PRV06,EPP10].

Although one-versus-all, DECOC, dense, and sparse random approaches
have a relatively small codeword length, we can take advantage of the infor-
mation theory principles to obtain a more compact definition of the codewords.
Having a N -class problem, the minimum number of bits necessary to codify and
univocally distinguish N codes is:

B = dlog2Ne (2.5)

where d.e rounds to the upper integer.
For instance, we can think in a codification where the class codewords corres-

pond to the N first Gray or binary code sequences of B bits, defining the Gray
or binary Minimal ECOC designs. Note that this design represents the minimal
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Figure 2.3: Minimum number of dichotomizers required for each ECOC confi-
guration and different number of classes.

ECOC codification in terms of the codeword length. An example of a binary
Minimal ECOC, Gray Minimal ECOC, and one-versus-all ECOC designs for a
8-class problem are shown in Figure 2.4. The white and black positions corres-
pond to the symbols +1 and -1, respectively. The reduced number of classifiers
required by this design in comparison with the state-of-the-art approaches is
shown in the graphic of Figure 2.3.

(a) (b) (c)

Figure 2.4: (a) Binary Minimal, (b) Gray Minimal, and (c) one-versus-all ECOC
coding designs of a 8-class problem.

The algorithm for Minimal ECOC coding is the following:
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Data: Number of categories of the problem N
Result: Minimal ECOC codeword matrix M
Generate a random permutation of numbers from 1 to N ;
while cannot split in iteration i the partitions generated in iteration i− 1
do

split the permutation/s breaking in the central point;
end
Codify the i− th level of the tree-structure as the i− th column of the M
matrix where left sons will have value 1 and right sons the value −1;

Algorithm 1: Minimal ECOC coding

Besides exploring predefined binary or Gray minimal coding matrices, we
also propose the design of a different minimal codification of M based on the
distribution of the data and the characteristics of the applied base classifier,
which can increase the discrimination capability of the system. However, finding
a suitable minimal ECOC matrix for a N−class problem requires to explore all
the possible N ×B binary matrices, where B is the minimum codeword length
in order to define a valid ECOC matrix. For this reason, we also propose an
evolutionary parametrization of the Minimal ECOC design.

2.1.4 Incremental ECOC Coding

Introduction

In the process of defining the Minimal ECOC coding, the issue of performance is
always present. It’s easily understandable that the definition of such a few num-
ber of classifiers per problem (sub-linear with the number of classes) can lead to
an under-fitting situation. In addition, when dealing with multi-class categori-
zation problems it’s completely understandable that treating this huge number
of categories with such a few number of classifiers may affect the performance
of the system.

Consider the following scenario in image 2.5 where the classes star and circle
are very confused in the left image, this confusion made by one of the minimal
ECOC classifiers, could lead to a lost of generalization on the whole system.
In the Minimal ECOC coding design a solution to this problem is introduced,
incrementing the ECOC matrix M by adding a base classifier that would be
focused on the problem that produced the greatest lost of generalization per-
formance. Therefore, some errors made by the original ECOC ensemble are
repaired.
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Figure 2.5: ECOC incremental step

Incrementing the ECOC matrix

Let’s assume that in some step of our genetic optimization an ECOC matrix is
evaluated, therefore, we can obtain the confusion matrix Conf ∈ [0,+ inf)N×N

for it. In this matrix we can see the real target value and the predicted target
value for every sample classified. When a good classification is done all values of
this matrix are contain in the diagonal, thus they’re correctly classified. Using
the properties of this matrix we can find the category which has less correctly
classified instances (it’s the most confused category ) and find with which cate-
gory this confusion is maximized. As a matter of fact, the confusion calculated
Cf is weighted by the number of examples on each category.

Cf =

∑
Conf∀j,i∑
Conf∀j,∀i

× (1− Confi,i)∑
Conf∀j,i

(2.6)

In this sense, at every evaluation a ECOC matrix in the evolutionary step,
the more complex problem (the one that generates maximum lost of perfor-
mance) is solve by adding a new base classifier focused on the categories that
maximize the confusion between them, as can be seen in the image 2.6.
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Figure 2.6: Confusion-based solver

This incremental step does not increment the ECOC matrix until infinitum,
it’s constrained not to increment the number of base classifiers more than twice
the length of the original Minimal ECOC coding number of classifiers. In addi-
tion, when a confusion is going to be solved, the new base classifier’s aim is to
discriminate between the most confused classes. But if in a previous step this
problem was treated, but in fact there was no correction of confusion the new
classifier will treat the same problem. In order not to introduce two equivalent
columns in the ECOC matrix M , the values not concerned with most confused
classes are randomly changed to 0, 1,−1 with equal probability.

Finally a parameter can adjust how much has the overall performance to
increment in order to include the new classifier.

Confusion solvers

When solving the confusion between two classes, various alternative are analy-
zed. Recalling the figure 2.5, is obvious that a wide set of classifiers could
be added to the ECOC matrix M in order to solve the maximum confusion
problem. Taking into account the global complexity of the multi-class categori-
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zation problem, two approaches are developed.

• One-vs-one solver: In this kind of coding, a new column is added to
the ECOC matrix M . This new base classifier only takes into account the
discrimination of the two categories that maximize the confusion between
them. An example can be seen in figure 2.5.

• Confusion-based solver: In the second approach not only the two clas-
ses that maximize confusion are included in the coding, but also, more
categories are taken into account. The general idea is to improve the
performance of the incremental codding by supporting the two more con-
fused classes with the ones that minimize the confusion between them. An
example is shown in figure 2.7. A parameter can control the percentage
of the total information that the classifier can include. In this sense, we
can control the number of categories that support each one of the two
most confused classes in order to increment the performance of the base
classifier when solving the confusion.

Figure 2.7: Confusion-based solver

2.2 Base classifier: Support Vector Machines
with RBF kernel

2.2.1 Introduction

Support Vector Machines (SVM) were formulated in 1992, by Boser, Guyon and
Vapnik, which was a generalization of the optimal hyperplane algorithm first
proposed by Vapnik in 1963. The general idea of this classifiers is taking the
samples of the training set to a high dimension space in where those categories
are separated for a distances the larger the better. In this high dimension space
the SVM will construct a model to discriminate those classes, this model will
maximize the distance with the closest sample of both categories in order to
maximize the generalization capability. Such classifiers have been applied over
a wide set of environments showing great performance results. For example,
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[BZ09] where the authors use SVM to predict the position of subcellular proteins.
Another interesting work is the application to image recognition [ACSS02].

2.2.2 Motivation

Large-scale problems and the minimal ECOC coding design proposed, suggest
the use of a very compact codeword, in other words, the ensemble of base
classifiers is very reduced. This reduction of the number of classifiers can be
done assuming the use of very robust classifiers, showing the higher performance
in the state of the art, provided that the ECOC coding design chosen is not able
to correct many errors.

Besides, SVM have an explicit dependency on the data (by mean of the
support vectors), in such a way that the model is easily interpretable, which is
a great point when dealing with great quantities of data.On the other hand, the
learning task of a SVM implies the optimization of a convex function, free of
relative minima and in which only exists a absolute minima.

The last point of using SVM is that few parameters have to be tuned, nor-
mally the soft margin constraint and the kernel parameter.

2.2.3 Methodology

Let’s suppose that we have two categories in our training set. The aim of our
classifier will be to decide in which category is classified every new sample. In
this sense, SVM see each sample as a p− dimensional vector.

The goal of the algorithm is to find out wether the two categories in the
training set can be discriminated with a (p−1)−dimensional plane, commonly
known as an hyperplane or linear classifier. Generally, there will exist a ar-
bitrarily huge number of such linear classifiers, therefore another constraint is
necessary to filter the set of classifier an obtaining the best one. This criteria
is that the best classifier has to maximize the distances between itself and the
closest points of each category, in other words, maximize the margin between
the hyperplane an the categories.

Linear cases in input space: Optimal Hyperplane

Let’s assume that the two categories are perfectly separable in the input space.
In other words, the can be separated by means of a linear classifier. Let 2.7 be
the dataset and xi y yi ∈ {−1,+1} their labels, then exists a linear function
2.8 weighted by w. In this sense, our decision boundary 2.9, keeps invariant to
both a normalization of both wi and b 2.10.

S = {(x1, y1), ..., (xn, yn)} (2.7)

g(x) = 〈w · xi〉+ b (2.8)

D(xi) = sign(〈w · xi〉+ b) (2.9)
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w → λw, b→ λb (2.10)

Once the decision boundary is obtained, the following step is maximize the
margin γ that is between the hyperplane and the closest point of each category.
Geometrically speaking, the margin is defined by the projection of the vector
x1 − x2 ( where x1 is a support vector belonging to +1 category and x2 is a
support vector the belongs to the class −1) on the normal of the linear classifier,
as we can see in the image 2.8

Figure 2.8: Margin of a Support Vector Machine

Formally the margin can be defined as:

γ = 1/‖W‖2 (2.11)

In this sense, the task of maximizing the margin formulated in 2.11 is equi-
valent to minimize 2.12 constrained by 2.13.

φ(w) =
1

2
(w · w) (2.12)

yi[(w · xi) + b] ≥ 1 (2.13)
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In other word, the problem is translated in finding an optima of the cost
function 2.14, where the alphai are the Lagrange multipliers.

L(w, b) =
1

2
(w · w) +

m∑
i=1

(αi[yi((w · xi) + b)− 1]) (2.14)

One of the most interesting aspects in the optimization of this functional, is
that the data (xi vectors) appear in a scalar product with the weights. There-
fore, the optimization process of such functional is independent of the dimen-
sionality of the data.

Usually is very difficult to find situations where the data is linearly separable,
for instance in out system, every classifier of the ensemble will take into account
2 wide sets of categories to discriminate, so we can assume that the distribution
will be very complex. Here’s where lays the power of SVM, because in situations
where a linear classification is unappropriated in the input space, SVM can map
the data in a higher dimension space, where as a matter of fact the data can be
linearly separable.

Non linear cases in input space: high dimension space mapping

As explained previously, in most of the cases the data will not be linearly se-
parable in the input space. By means of the property seen in 2.14 SVM can
map this data which are not linearly separable, into high dimension spaces (also
known as feature spaces) where the situation changes and a hyperplane can
easily discriminate these data.

Formally, to obtain a better representation of the data where is not linearly
separable in the input space, we can project them in a high dimension space by
means of 2.15. In other word, we use a map of 2.16 type.

xi · yj = φ(xi) · φ(yj) (2.15)

xi → φ(xi) (2.16)

The only constraint to perform the mapping, is that the feature space where
data is projected has to be an Hilbert space (although in some cases a pre-
Hilbert space could be enough). Such space is a n−dimensional generalization
of an Euclidean space. In which a dot product is well defined.

In this situations, the mapping function φ(xi) · φ(xj) is known as a kernel.
Therefore we can define a kernel as the dot product of two points projected in
the feature space 2.17.

K(xi, yj) = φ(xi) · φ(yj) (2.17)

In this sense, we don’t need to known the shape of the data mapping in the
feature space, because it would be implicitly defined in the calculus of the dot
product in such space.

There exists a variety of kernels but because of the scope of this study we
are only going to introduce the polynomial and the RBF Gaussian kernel, which
is deeply analyzed in the following sections.
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• Polynomial kernel: The polynomial kernel is one of the most used to
model a non linear problem. This kernel is based on constructing a poly-
nomial function of degree d (where d is the dimension of the feature space)
which accomplishes an acceptable classification of the input data. In 2.9
it can be seen how this kernel establishes a classification much more ac-
ceptable that any other linear classifier by its own. Nevertheless, in the
image it can be seen that this is not the best classification possible, it can
be improved.

K(x, x′) = (〈x, x′〉+ 1)d (2.18)

Figure 2.9: Decision boundary generated by a polynomial kernel

• Kernel RBF: Another type of kernels are the Radial Basis Function
kernels (RBF). This kind of kernels have accomplish an special attention
providing their high performance even in very complex situations, as for
instance, the one regarding this work. We focus on the Gaussian case,
where is required the fitting of an extra parameter, the γ parameter. It
can be seen in 2.10 that for the distribution of the data, the RBF kernel
has a similar or slightly better performance that a the polynomial kernel,
but generally in literature, the performance of the RBF is observed to be
better than a polynomial kernel.

K(x, x′) = exp(
−‖x− x′‖2

2σ2
) (2.19)
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Figure 2.10: Decision boundary generated by a RBF Gaussian kernel

Mathematically, for a kernel to be valid it has to accomplish the Mercer
condition, formally let K(x, x′) be a kernel, it will be valid if:∫

K(x, x′)g(x)g(x′) dxdx′ ≥ 0 (2.20)

In other words, the kernel has to be Positive Semi-defined (PSD) 2.21 and
2.22, then there exists a function 2.23 which generates a Hilbert space with well
defined dot product. ∑

i,j

K(xi, xj)cicj ≥ 0 (2.21)

{c1, ..., cn} ∈ R (2.22)

K(x, y) = φ(x) · φ(y) (2.23)

There exists some kernels, such as sigmoidals, which violate the Mercer
condition. There are considerated out of scope and therefore are not introduced.

Soft margin hyperplane

One of the most common problems to solve in machine learning task is overfit-
ting. This situation takes place where the system is trained very hard over a
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training set in such a way that it learns the idiosyncrasies of the distribution.
As we can seen in the image 2.11, where the black boundary represents a good
generalization measure, whereas the green boundary fits to much the outliers of
the data and therefore its generalization capability is diminishes.

Figure 2.11: Overtraining situation

Overfitting implies a great lost of generalization capability of the classifiers,
driving the system to poorly performance situations. Idiosyncrasies usually are
outliers that appear due to the noise in the data.

The strategy to deal with this problem in SVM is the introduction of a soft
margin, which can be modified to minimize the classification error, or in other
words, the overfitting to the training data.

Formally, we want to upper-bound the value of the Lagrange multipliers (the
value of which can be seen as the importance they have for the construction of
the hyperplane) αi by a value C, as in 2.24. To do so, a positive slack variable
ξi is introduced obtaining 2.25, having to reformulate the cost function to reach
2.26 where αi ≥ 0 and ri ≥ 0 are the Lagrange multipliers.

0 ≥ αi ≥ C (2.24)

yi(w · xi + b) ≥ 1− ξi (2.25)

L(w, b, α, ξ) =
1

2
(w·w)+C

m∑
i=1

ξi−
m∑
i=1

αi[yi((w·xi)+b)−1+ξi])−
m∑
i=1

ξiri (2.26)
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∂L

∂w
= w −

m∑
i=1

αixiyi = 0 (2.27)

∂L

∂b
=

m∑
i=1

αiyi = 0 (2.28)

∂L

∂ξi
= C − αi − ri = 0 (2.29)

Taking partial derivatives of the new cost function 2.29 we can obtain 2.24.
Therefore we obtained a hyperplane in which the maximum importance that
some points will have over it can be bound and as a direct implication overfitting
is controllable.

SVM with a Gaussian RBF kernel

In literature, SVM with a RBF kernel have obtained very good results. Par-
ticularly, Gaussian RBF kernels have reached the best performances in base
classification tasks. This is not a coincidence since, this types of function have
been widely applied in ANN for a long time.

A Radial Basis Function or RBF, is function of real valued which valued
only depend on the distance of the origin φ(x) = φ(‖x‖) or alternatively from
a source point c called center, φ(x, c) = φ(‖x − c‖). Any function φ(x) which
satisfies the property φ(x) = φ(‖x‖) is a RBF function. The metric for the
calculus of the distance is usually the Euclidean, although other metrics exists.
The most robust RBF function in SVM is the Gaussian, formulated in 2.30.

ϕ(r) = exp(−βr2) para β > 0 (2.30)

2.3 Evolutionary optimization

2.3.1 Introduction

When defining a minimal design of an ECOC, the possible lost of generalization
performance has to be taken into account. In order to deal with this problem
an evolutionary optimization process is used to find a minimal ECOC with high
generalization capability.

In order to show the parametrization complexity of the Minimal ECOC de-
sign, we first provide an estimation of the number of different possible ECOC
matrices that we can build, and therefore, the search space cardinality. We ap-
proximate this number using some simple combinatorial principles. First of all,
if we have an N−class problem and B possible bits to represent all the classes,
we have a set CW with 2B different words. In order to build an ECOC matrix,
we select N codewords from CW without reposition. That is, taking N from

a variation of 2B elements, which means that we can construct V N
2B = 2B !

(2B−N)!

different ECOC matrices. Nevertheless, in the ECOC framework, one matrix
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and its opposite (swapping all zeros by ones and viceversa) are considered as the
same matrix, since both represent the same partitions of the data. Therefore,
the approximated number of possible ECOC matrices with the minimum num-

ber of classifiers is ]M =
V N
2B

2 = 2B !
2(2B−N)!

. In addition to the huge cardinality,

it is easy to show that this space is non contiguous, because a change in just
one bit of the matrix may produce a wrong coding design.

In this type of scenarios evolutionary approaches are often introduced with
good results. Evolutionary algorithms are a wide family of methods that are
inspired on the Darwin’s evolution theory, and use to be formulated as op-
timization processes where the solution space is not differentiable or is not
well defined. On these cases, the simulation of natural evolution process using
computers results in stochastic optimization techniques which often outperform
classical methods of optimization when applied to difficult real-world problems.
Although the most used and studied evolutionary algorithms are the Genetic
Algorithms (GA), from the publication of the Population Based Incremental
Learning (PBIL) in 1995 by Baluja and Caruana [BC95], a new family of evo-
lutionary methods is striving to find a place in this field. In contrast with GA,
those new algorithms consider each value in the chromosome as a random varia-
ble, and their goal is to learn a probability model to describe the characteristics
of good individuals. In the case of PBIL, if a binary chromosome is used, a uni-
form distribution is learnt in order to estimate the probability of each variable
to be one or zero.

In this paper we experiment with both evolutionary strategies, GA and
PBIL.

2.3.2 Problem encoding

The first step in order to use an evolutionary algorithm is to define the problem
encoding, which consists of the representation of a certain solution or point in
the search space by means of a genotype or alternatively a chromosome [Hol75].
When the solutions or individuals are transformed in order to be represented
in a chromosome, the original values (the individuals) are referred as phenoty-
pes, and each one of the possible settings for a phenotype is the allele. In this
sense, an ECOC is defined as a structure with different parameters (coding
matrix,performance of each classifier, parameters of base classifiers and confu-
sion matrix). In next sections, we explain how this individual can perform on
crossover and mutation operations specifically defined for them.

2.3.3 Adaptation function

Once the encoding is defined, we need to define the adaptation function, which
associates to each individual its adaptation value to the environment, and thus,
their survivor probability. In the case of the ECOC framework, the adaptation
value must be related to the classification error.

Given a chromosome ζ =< ζ0, ζ1, . . . , ζL > with ζi ∈ {0, 1}, the first step
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is to recover the ECOC matrix M codified in this chromosome. The values of
M allows to create binary classification problems from the original multi-class
problem, following the partitions defined by the ECOC columns. Each binary
problem is addressed by means of a binary classifier, which is trained in order
to separate both partitions of classes. Assuming that there exists a function
y = f(x) that maps each sample x to its real label y, to train a classifier
means to find the better parameters w∗ of a certain function y = f ′(x,w),
in the manner that for any other w 6= w∗, f ′(x,w∗) is a better approximation
to f than f ′(x,w). Once the w∗ are estimated for each binary problem, the
adaptation value corresponds to the classification error. In order to take into
account the generalization power of the trained classifiers, the estimation of
w∗ is performed over a subset of the samples, while the rest of the samples are
reserved for a validation set, and the adaptation value ξ is the classification error
over that validation subset. The adaptation value for an individual represented
by a certain chromosome ζi can be formulated as:

εi(X,Y,Mi) =
∑
j

δj(xj ,Mi 6= yj) (2.31)

where Mi is the ECOC matrix encoded in ζi, X = 〈x1, . . . , xN 〉 a set of samples,
Y = 〈y1, . . . , yN 〉 the expected labels for samples in X, and δi is the function
that returns the classification label applying the decoding strategy.

2.3.4 Evolutionary process

Once the encoding and adaptation function have been defined, we use standard
implementation for GA and PBIL, in order to evolve the Minimal ECOC ma-
trices. In the case of GA, a new crossover operation designed specifically for
ECOC’s is used in order for each generation to perform better that the pre-
vious. In order to introduce variations to the individuals, we use mutation is
also designed specifically for this type of individuals. The new gene value is
clipped if it falls outside of the user-specified lower or upper bounds for that
gene. For PBIL, the best two individuals of each population are used to update
the probability distribution. At each generation, this probability distribution
is used to sample a new population of individuals. A uniform random noise is
applied to the probability model to avoid convergence to local minima.

Finally, in PBIL we adopt an Island Model evolution scheme in order to
exploit a more coarse grain parallel model. The main idea is to split a po-
pulation of K individuals into S sub-populations of K/S individuals. If each
sub-population is evolved independently from the others, genetic drift will tend
to drive these populations in different directions. By introducing migration, the
Island Model is able to exploit differences in the various sub-populations (this
variation in fact represents a source of genetic diversity). Each sub-population
is an island and there is a chance movement of genetic material from one island
to another.
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2.3.5 ECOC-specific crossover operator

Motivation

When defining ECOC individuals as explained in previous sections one must
take into account the possible lost of improvement due to the use of general
crossover and mutation operators. In this sense, if the crossover operator is
not specifically design or adapted to the type of population it can generate new
individuals that in best cases won’t perform as well as any of it’s parents and in
the worst cases the will generate individuals that may not respect the specific
non-avoidable characteristics of the individuals.

In the ECOC framework this can be explained very clearly. For such ex-
planation, first, we have to take into account the main property of the ECOC
coding matrix M .

1. Every codeword, that is, every row of the matrix, has to be different.

Let’s now consider a single point crossover operator. Let’s now consider a
codification in which the chromosomes are the columns of the M matrix. Now
let’s consider two parents P1 and P2 then by means of the single point operator,
both parents are divided by a random point and each one of the chains generated
is appended to the complementary chain of the other parent. It can be seen that
this type of crossover operator in most cases will generate individuals that not
maintain the specific ECOC property.

Crossover design

For the purpose of this thesis a new crossover operator specific for ECOC in-
dividuals are designed. The aim of a crossover operator is to combine the best
parts of each individual in order to generate an individual that combines the
best parts of his parents and it may perform better than both of them.

In this sense, we have to take into account that the better the performance
of each base classifier of the ensemble the better the performance of the ECOC.
So what we are seeking for is the best classifiers of each parents that can be
combined in it’s son. Before introducing the crossover algorithm we recall the
components involved in the crossover operator of the ECOC individual consists
of:

• The coding matrix M

• The performance of each classifier Perf

The algorithm is the following:
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Data: Two ECOC individuals ECOC1,ECOC2 sorted by the
performance of the best classifier on each ensemble

Result: ECOCout

Mout
i,1 ←MECOC1

i,max(PerfECOC1 ,1)
;

FollowingParent = ECOC2;
repetitionsAllowed← ceil(NClasses/2) ;
for k ← Classifiers in ECOC1 −1 do

j ← 1 ;

rep← NumberOfRepetitions(Mout
i,1 ,M

FollowingParent
i,max(PerfFollowingParent,j)

);

while rep > repetitionsAllowed and j < Classifiers in
FollowingParent do

j ← j + 1 ;

rep← NumberOfRepetitions(Mout
i,1 ,M

FollowingParent
i,max(PerfFollowingParent,j)

);

if rep < ceil(NumberOfClasses/2) then
found← true;
break ;

end

end

if found then

Mout
i,k+1 ←MFollowingParent

i,max(PerfFollowingParent,j)
;

Perfoutk+1 ← max(PerfFollowingParent, j);

else
Mout

i,k+1 ← generateV alidColumn(Mout, ceil(rep));

Perfoutk+1 ← 0;

end

if FollowingParent == ECOC2 then
FollowingParent = ECOC1;

else
FollowingParent == ECOC2;

end
repetitionsAllowed← ceil(repetitionsAllowed/2) ;

end
Algorithm 2: ECOC-specific crossover algorithm

Crossover explanation

In this section both a graphical and analytical analysis of the ECOC-specific
crossover operator will be performed. As said in previous sections the aim of
the crossover function is to find individuals more adapted to the environment
(in our case those who have a greater performance) than their parents.

In the ECOC framework will perform as better as the performance of each
base classifier, in other words, if the performance of the base classifiers improve,
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the overall performance of the ECOC will also improve. Therefore, to make an
ECOC individual to improve we have to provide it with the best performing
classifiers of his parents, but we have to take into account the restriction of
the ECOC framework exposed in 2.3.5. Taking this into account, the newly
designed algorithm look first looks for the best classifier of both parents and
then seeks for the best classifier of the complimentary father that can assure
that the ECOC property will be maintained.

Let’s consider the far known example of previous sections.

Figure 2.12: Crossover operator in a 4-class toy problem

In the image 2.12 we can see two graphical representation of a 4−class pro-
blem in which only 2 classifiers are needed by the coding design in order to solve
the problem for each one of the solutions. Let’s now consider the ECOC-specific
crossover operator in this scenario. As wee can see the classifiers that show a
greater performance are highlighted in red and dashed lines. This classifiers
would be the best candidates for building a new ECOC individual. Since the
ensemble produced by them does not break the ECOC property 2.3.5 (they uni-
vocally distinguish every class) they will form a ECOC offspring which performs
better than any of their parents.

Let’s now considerer a harder scenario, with a 5-class problem.
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Figure 2.13: Crossover operator in a 5-class toy problem

The figure 2.13 shows a harder scenario, in which, we will follow the crossover
operator flow. First we choose the best classifier of both parents, let it be the
red dashed line at the top left situation. Then we seek in the other parent (top
right situation) for a classifier that keeps the ECOC property starting by the
best classifier (the red dashed line) but as we can see this classifier doesn’t hold
the ECOC property, therefore is not included. Then we look for the second best
classifier (the light blue dashed line) and as a matter of fact hold the property,
therefore is included. Finally we return to the first parent and choose the final
classifier that keeps the property.

In both situations, we have assumed that there was always a classifier in
any of ECOC parents that hold the ECOC property. There could be the case
that there’s no such classifier, then the crossover operator is allowed to generate
a new classifier to make the ECOC hold its property and distinguish all the
classes univocally.

2.3.6 ECOC-specific mutation operator

Motivation

As explained previously, the crossover and mutation operators have to be spe-
cifically defined if the individuals that are codified have some type of properties
or constraints that must always hold. To define the mutation operator we have
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to take into account that a mutation is a random operation in which the indivi-
dual is not assure to be better adapted to the environment after the mutation.
Taking this into account an ECOC-specific mutation is operator by swapping
two random rows of the ECOC coding matrix M .

Mutation design

The ECOC-specific mutation algorithm is the following. In this operator, two
random rows are swapped.

Data: A ECOC individual ECOCmut

Result: The mutated ECOC, ECOCout

p←rand(1,Number of Classes);
k ←rand(1,Number of Classes);
Mout

k,j = Mmut
p,j ;

Mout
p,j = Mmut

k,j ;
Algorithm 3: ECOC-specific mutation algorithm

2.3.7 Training the base classifiers

In [RK04b], Rifkin concludes that the number of classifiers in the ECOC pro-
blem can be reduced using more accurate classifiers. Therefore, in this paper we
adopt the Support Vector Machines with Gaussian Radial Basis Functions ker-
nel (SVM-RBF). Training a SVM often implies the selection of a subset of data
points (the support vectors), which are used in order to build the classification
boundaries. In the specific case of Gaussian RBF kernels, we need to optimize
the kernel parameter γ and the regularizer C, which have a close relation to
the data distribution. While the support vectors selection is part of the SVM
learning algorithm, and therefore, is clearly defined, finding the best C and γ
is addressed in literature with various heuristic or brute-force approaches. The
most common approach is the use of cross-validation processes which select the
best pair of parameters for a discretization of the parameters space. Neverthe-
less, this can be viewed as another optimization problem. An therefore, it can
be faced using evolutionary algorithms. For each binary problem, defined by
one column of the ECOC matrix, we use Genetic Algorithms in order to find
good values for C and γ parameters, using the same settings than in [LdC08],
where individuals correspond to a pairs of genes, and each gene corresponds to
the binary codification of a floating point value.

Figure 2.14 illustrates an iteration of the evolutionary Minimal ECOC pa-
rametrization for a toy problem of three face categories. Given an input chro-
mosome ζ (up) that codifies a valid minimal matrix M , for each dichotomizer,
an evolutionary approximation of the classifier parameters (C, γ) is performed.
From left to right of the image, we show the Minimal ECOC matrix codifying
the 3-class problem, the feature spaces, and the search space of (C, γ). Each
decision boundary shows a possible certain solution given by the GA. In this
sense, the GA starts giving solutions (pairs C, γ) that do not fit a robust de-
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cision boundary at the beginning, but after convergence, the GA increases the
adjustment of these boundaries. The final parameters are those that minimize
the error over a validation subset. The evolution of the best individual is shown
in the toy error surface on the right of the image. Finally, the evolution of this
matrix returns the adaptation value ξ of the current individual (current minimal
configuration), estimated as the minimum classification error computed.

Figure 2.14: Evolutionary optimization for toy problem.

In order to save time, a historical of column codification and parameter
optimization is saved during the evolutionary parametrization process.
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Chapter 3

Technical development

In this chapter we are going to describe the technical development of the software
explained with detailed diagrams. First of all we’ve got to take into account
that the project is developed in the Matlab c©framework, which implies a pro-
cedural paradigm of programming, therefore interaction between functions are
described.

3.1 User case diagrams

Figure 3.1: User case diagram of the system
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3.2 Sequence system diagrams

In next images the DSS diagrams are shown. Each one of the corresponds to a
certain system event.

Figure 3.2: DSS1: User interacting with the user interface
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Figure 3.3: DSS2: Interaction of the interface with the system functions
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Figure 3.4: DSS3: Evolution of an ECOC minimal matrix
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Figure 3.5: DSS4: Evaluation of an ECOC matrix, with the corresponding
evolution of the base classifiers
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Figure 3.6: DSS5: Evolutions of the SVM-RBF parameters

Figure 3.7: DSS6: Evaluation of a SVM-RBF classifiers with fixed parameters

3.3 Collaboration diagram

In the image is shown the system collaboration diagram. All the function have
been implemented in Matlab c©, both the ones corresponding to the ECOC de-
signs and the ones corresponding to SVM classifiers (implemented in the OSU-
SVM library), for the genetic algorithms the standard Matlab c©library is used.
The diagram shows the interaction between the functions that implement the
system.

As can be seen, different notations are used by different colors. Red functions
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correspond to the user interface. Green functions are handlers which yellow
functions need. Blue functions are auxiliary functions edited in the same script.
Each white function has a concrete functionality and it’s isolated in a script
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Figure 3.8: Collaboration diagram
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3.4 Planning and costs

In this section we are going to describe the planning of the system development
as well as the general costs of the creation of the it. In the diagram we can see
the time required for every task.

Figure 3.9: Amount of time required by the thesis

In this sense, the plan to follow is the one that can be seen in the image
3.10.

Figure 3.10: Task planning

In the image can be observed how the most hard tasks where design and
writing. This situation is due to the complexity of the study and the academic
load that it implied

Now we are going to analyze the costs that would have generated the reali-
zation of this project. We have to take into account the license costs and the
costs of one analyst programmer per hour. The items that have done, as well
as, the necessary hardware. In the table 3.1 costs are shown.
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Ítem/Material Analyst Hours/Material price Annual license(Euros) Total (Euros)

Minimal ECOC codign 15 1000 0
OSU-SVM integration 20 0 0
SVM-RBF evolution 20 0 0

ECOC evolution 25 0 0
Test set 25 0 0

Personal computer 800 0 0
External hard drive 200 0 0

TOTAL 100×50 + 800 + 200 1000 7000

Table 3.1: Thesis cost table

Assuming that the price of an analyst programmer is 50 euros per hour, the
total cost will be 7000 euros.
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Chapter 4

Experimental results

4.1 Results

In order to present the results, first, we discuss the data, methods, and evalua-
tion measurements of the experiments.
• Data: The first data used for the experiments consists of twelve multi-

class data sets from the UCI Machine Learning Repository database [AN07].
The number of training samples, features, and classes per data set are shown
in Table 4.1. Then, we apply the classification methodology in five challenging
computer vision categorization problems. First, we use the data of the public
Labeled Faces in the Wild [HRBM07] dataset to perform the multi-class face
classification of a large problem consisting of 184 face categories. Second, we
use the video sequences obtained from a Mobile Mapping System [CMP+04]
to test the methods in a real traffic sign categorization problem consisting of
36 traffic sign classes. Third, 20 classes from the ARFaces [MB98] data set are
classified using the present methodology. Fourth, we classify seven symbols from
old scanned music scores, and fifth, we classify the 70 visual object categories
from the public MPEG7 data set [mpe].

Table 4.1: UCI repository data sets characteristics.
Problem #Training samples #Features #Classes

Dermathology 366 34 6
Iris 150 4 3

Ecoli 336 8 8
Vehicle 846 18 4
Wine 178 13 3

Segmentation 2310 19 7
Glass 214 9 7

Thyroid 215 5 3
Vowel 990 10 11

Balance 625 4 3
Shuttle 14500 9 7
Yeast 1484 8 10

•Methods: We compare the one-versus-one [TR98] and one-versus-all [PGCP65]
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ECOC approaches with the binary and evolutionary Minimal approaches. For
simplicity we omitted the Gray Minimal design. The Hamming decoding is
applied at the decoding step [DB95]. The ECOC base classifier is the OSU
implementation of SVM with Radial Basis Function kernel [SVM03]. The SVM
C and γ parameters are tuned via Genetic Algorithms and PBIL for all the
methods, minimizing the classification error of a two-fold evaluation over the
training sub-set.
• Evaluation measurements: The classification performance is obtained by

means of a stratified ten-fold cross-validation, and testing for the confidence
interval with a two-tailed t-test. We also apply the Friedman test [Dem06] in
order to look for statistical significance among the obtained performances.

4.1.1 UCI categorization

The classification results obtained for all the UCI data sets considering the
different ECOC configurations are shown in Table 4.2. In order to compare the
performances provided for each strategy, the table also shows the mean rank of
each ECOC design considering the twelve different experiments. The rankings
are obtained estimating each particular ranking rji for each problem i and each
ECOC configuration j, and computing the mean ranking R for each design as
Rj = 1

N

∑
i r

j
i , where N is the total number of data sets. We also show the

mean number of classifiers (#) required for each strategy.

Table 4.2: UCI classification results.
Binary Minimal ECOC Evol. Minimal ECOC one-vs-all ECOC one-vs-one ECOC

Data set Perf. Classif. Perf. Classif. Perf. Classif. Perf. Classif.

Derma 96.0±2.9 3 97.2±2.1 3 95.1±3.3 6 94.7±4.3 15

Iris 96.4±6.3 2 98.2±1.9 2 96.9±6.0 3 96.3±3.1 3

Ecoli 80.5±10.9 3 81.3±10.8 3 79.5±12.2 8 79.2±13.8 28

Vehicle 72.5±14.3 2 82.60±12.4 2 74.2±13.4 4 83.6±10.5 6

Wine 95.5±4.3 2 98.3±2.3 2 95.5±4.3 3 97.2±2.4 3

Segment 96.6±2.3 3 96.7±1.5 3 96.1±1.8 7 97.18±1.3 21

Glass 56.7±23.5 3 51.24±29.7 3 53.85±25.8 6 60.5±26.9 15

Thyroid 96.4±5.3 2 94.7±5.1 2 95.6±7.4 3 96.1±5.4 3

Vowel 57.7±29.4 3 80.3±11.1 3 80.7±11.9 8 78.9±14.2 28

Balance 80.9±11.2 2 87.1±9.2 2 78.9±8.4 3 92.8±6.4 3

Shuttle 80.9±29.1 3 83.4±15.9 3 90.6±11.3 7 86.3±18.1 21

Yeast 50.2±18.2 4 53.7±11.8 4 51.1±18.0 10 52.4±20.8 45

Rank & # 2.8 2.7 1.9 2.7 2.9 5.7 2.3 15.9

4.1.2 Computer Vision Applications

In this section, we test the methodology on five challenging Computer Vision
problems: faces in the wild, traffic sign, ARface, music scores, and MPEG7
categorization data sets.

Labeled Faces in the Wild categorization

This dataset contains 13000 faces images taken directly from the web from
over 1400 people. This images are not constrained in terms of pose, light,
occlusions or any other relevant factor. For the purpose of this experiment
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we used a specific subset, taking only the categories which at least have ten
or more examples, having a total of 184 face categories. Finally, in order to
extract relevant features from the images, we apply an Incremental Principal
Component Analysis procedure [HWZ03], keeping 99.8% of the information. An
example of face images is shown in 4.1.

Figure 4.1: Labeled Faces in the Wild dataset.

The results in the first row of Table 4.3 show that the best performance is
obtained by the Evolutionary GA and PBIL Minimal strategies. One important
observation is that Evolutionary strategies outperform the classical one-versus-
all approach, with far less number of classifiers (10 instead of 610). Note that in
this case we omitted the one-vs-one strategy since it requires 185745 classifiers
for discriminating 610 face categories.

Traffic sign categorization

For this second computer vision experiment, we use the video sequences obtained
from the Mobile Mapping System of [CMP+04] to test the ECOC methodology
on a real traffic sign categorization problem. In this system, the position and
orientation of the different traffic signs are measured with video cameras fixed on
a moving vehicle. The system has a stereo pair of calibrated cameras, which are
synchronized with a GPS/INS system. The result of the acquisition step is a set
of stereo-pairs of images with their position and orientation information. From
this system, a set of 36 circular and triangular traffic sign classes are obtained.
Some categories from this data set are shown in Figure 4.2. The data set contains
a total of 3481 samples of size 32×32, filtered using the Weickert anisotropic
filter, masked to exclude the background pixels, and equalized to prevent the
effects of illumination changes. These feature vectors are then projected into a
100 feature vector by means of PCA.

The classification results obtained considering the different ECOC configu-
rations are shown in the second row of Table 4.3. The ECOC designs obtain
similar classification results with an accuracy upon 90%. However, note that
the minimal methodologies use six times less classifiers than the one-versus-all
and 105 less times classifiers than the one-versus-one approach, respectively.
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Figure 4.2: Traffic sign classes.

ARFaces classification

The AR Face database [MB98] is composed of 26 face images from 126 different
subjects (70 men and 56 women). The images have uniform white background.
The database has from each person two sets of images, acquired in two different
sessions, with the following structure: one sample of neutral frontal images, th-
ree samples with strong changes in the illumination, two samples with occlusions
(scarf and glasses), four images combining occlusions and illumination changes,
and three samples with gesture effects. One example of each type is plotted in
Figure 4.3. For this experiment, we selected all the samples from 20 different
categories (persons).

Figure 4.3: ARFaces data set classes. Examples from a category with neutral,
smile, anger, scream expressions, wearing sun glasses, wearing sunglasses and
left light on, wearing sun glasses and right light on, wearing scarf, wearing scarf
and left light on, and wearing scarf and right light on.

The classification results obtained considering the different ECOC configu-
rations are shown in the third row of Table 4.3. In this case, the one-versus-one
strategy obtains significant superior results to the rest of approaches, and the
Evolutionary Minimal approaches clearly outperforms the one-versus-all ECOC
results.
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Clefs and accidental data set categorization

The data set of clefs and accidental is obtained from a collection of modern
and old musical scores (19th century) of the Archive of the Seminar of Bar-
celona. The data set contains a total of 4098 samples among seven different
types of clefs and accidental from 24 different authors. The images have been
obtained from original image documents using a semi-supervised segmentation
approach [FLS06]. The main difficulty of this data set is the lack 389 of a clear
class separability because of the variation of writer styles and the absence of a
standard notation. A pair of segmented samples for each of the seven classes
showing the high variability of clefs and accidental appearance from different
authors can be observed in Figure 4.4(a). An example of an old musical score
used to obtain the data samples are shown in Figure 4.4(b). The object images
are described using the Blurred Shape Model descriptor (BSM).

(a) (b)

Figure 4.4: (a) Object samples, (b) Old music score.

The classification results obtained considering the different ECOC configu-
rations are shown in the fourth row of Table 4.3. In this case, the results are
also comparable for all the strategies, with accuracies upon 80%.

MPEG7 categorization

The MPEG7 data set contains 70 classes with 20 instances per class, which
represents a total of 1400 object images. All samples are described using the
Blurred Shape Model descriptor. A couple of samples for some categories of
this data set are shown in Figure 4.5.

The classification results obtained considering the different ECOC configura-
tions are shown in the fifth row of Table 4.3. These results are very satisfactory
since one can see very similar results between the evolutionaries and one-versus-
one strategies, taking into account that the last approach requires near 350 times
the number of classifiers required by our proposal.
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Figure 4.5: MPEG7 samples.

Table 4.3: Computer Vision data sets classification results.
Binary M. ECOC GA M. ECOC PBIL M. ECOC one-vs-all one-vs-one

Data set Perf. # Perf. # Perf. # Perf. # Perf. #

FacesWild 26.4±2.1 8 31.7±2.3 8 30.02.4± 8 25.0±3.1 184 - 16836

Traffic 90.8±4.1 6 90.6±3.4 6 90.7±3.7 6 91.8±4.6 36 90.6±4.1 630

ARFaces 76.0±7.2 5 85.84.0±5.2 5 84.2±5.3 5 84.0±6.3 20 96.0±2.5 190

Clefs 81.2±4.2 3 95.6±9.3 3 81.7±8.2 3 80.8±11.2 7 84.2±6.8 21

MPEG7 89.29±5.1 7 90.4±4.5 7 90.1±4.9 7 87.8±6.4 70 92.8±3.7 2415

Rank & # 3.6 6.2 2.0 6.2 2.8 6.2 3.8 148.6 1.75 37800
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Chapter 5

Evaluation of results and
discussion

5.1 UCI Machine Learning repository results

In order to analyze if the difference between method ranks is statistically sig-
nificant, we apply a statistical test. In order to reject the null hypothesis that
the measured ranks differ from the mean rank, and that the ranks are affected
by randomness in the results, we use the Friedman test. The Friedman statistic
value is computed as follows:

X2
F =

12N

k(k + 1)

∑
j

R2
j −

k(k + 1)2

4

 (5.1)

In our case, with k = 4 ECOC designs to compare, X2
F = −4.94. Since this

value is undesirable conservative, Iman and Davenport proposed a corrected
statistic:

FF =
(N − 1)X2

F

N(k − 1)−X2
F

(5.2)

Applying this correction we obtain FF = −1.32. With four methods and
twelve experiments, FF is distributed according to the F distribution with 3 and
33 degrees of freedom. The critical value of F (3, 33) for 0.05 is 2.89. As the value
of FF is no higher than 2.98 we can state that there are no statistical different
among the ECOC performances. This means that all four strategies are suitable
in order to deal with multi-class categorization problems. This result is very
satisfactory and encourages the use of the Minimal approach since similar (or
even better) results can be obtained with far less number of classifiers. Moreover,
the GA evolutionary version of the Minimal design improves in the mean rank
to the rest of classical coding strategies, and in most cases outperforms the
binary Minimal approach in the present experiment. This result is expected
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since the evolutionary version looks for a minimal ECOC matrix configuration
that minimizes the error over the training data, increasing the generalization
capability of the system. In particular, the advantage of the evolutionary version
over the binary one is more significant when the number of classes increases,
since more minimal matrices are available for optimization.

On the other hand, possible reasons why the evolutionary Minimal ECOC
design obtains similar or even better performance results than the one-versus-
one and one-versus-all approaches with far less number of dichotomizers can be
the few classifiers considered for tuning, and the use of all the classes in balanced
binary problems, which can help the system to increase generalization if a good
decision boundary can be found by the classifier. Note that the one-versus-one
classifier looks for binary problems that split just two classes. In those cases,
though good and fast solutions could be found in training time, the use of less
data does not assure a high generalization capability of the individual classifiers.

In terms of testing time, since all the trained classifiers spend the same
time for testing, classification time is proportional to the number of trained
classifiers. The mean number of dichotomizers used for each strategy is shown in
the last row of Table 4.2. Observe the great difference in terms of the number of
classifiers between the minimal approaches and the classical ones. The Minimal
approaches obtain an average speed up improvement of 111% respect the one-
versus-all approach in testing time. Meanwhile in the case of the one-versus-one
technique this improvement is of 489%.

In the next section we test if the same behavior occurs classifying five cha-
llenging Computer Vision problems with several object categories.

5.2 Computer Vision results

Analyzing globally the results of the Computer Vision classification problems,
which mean ranks are shown in the last row of Table 4.3, one can see that
globally, the one-versus-one is the first choice, followed by the evolutionary
proposals. The last two positions are for the binary and one-versus-all coding
designs.

In this case, applying the Friedman statistic, we obtain a value of X2
F =

−3.71, and a corrected value of FF = −0.62. With five methods and five
Computer Vision experiments, FF is distributed according to the F distribution
with 4 and 16 degrees of freedom. The critical value of F (4, 16) for 0.05 is 3.01.
As the value of FF is no higher than 3.01 we can state that there are no statistical
different among the ECOC performances. This means that all five strategies
are suitable in order to deal with multi-class Computer Vision problems with
several categories. This result also encourages the use of the Minimal approach.
Note that for example, in the Faces in the Wild experiment the Minimal ECOC
approach requires 10 classifiers in comparison with the 185745 classifiers required
by the one-versus-one ECOC strategy.
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5.3 Conclusion

We presented a general methodology for the classification of several object cate-
gories which only requires dlog2Ne classifiers for a N -class problem. The met-
hodology is defined in the Error-Correcting Output Codes framework, designing
a minimal coding matrix in terms of dichotomizers which univocally distinguish
N codes. Moreover, in order to speed up the design of the coding matrix and
the tuning of the classifiers, evolutionary computation is also applied.

The results over several public UCI data sets and five multi-class Com-
puter Vision problems with several object categories show that the proposed
methodology obtains statistically equivalent results than state-of-the-art ECOC
methodologies with far less number of dichotomizers. For example, the Mini-
mal approach trained 10 classifiers to split 610 face categories, meanwhile the
one-versus-all and one-versus-one approaches required 610 and 185745 dichoto-
mizers, respectively.
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