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Abstract

A contextual rescoring method is proposed for improvingdéeection of body joints
of a pictorial structure model for human pose estimation.efAas mid-level parts is in-
corporated in the model, and their detections are used taadpatial and score-related
features relative to other body joint hypotheses. A tealmis proposed for the auto-
matic discovery of a compact subset of poselets that coveet af validation images
while maximizing precision. A rescoring mechanism is dedres a set-based boosting
classi er that computes a new score for body joint detecjagiven its relationship to
detections of other body joints and mid-level parts in thege This new score comple-
ments the unary potential of a discriminatively trainedqi@l structure model. Exper-
iments on two benchmarks show performance improvements whiesidering the pro-
posed mid-level image representation and rescoring apprioecomparison with other
pictorial structure-based approaches.

1 Introduction

Given an image of a person, the problem of human pose estimegin be brie y described
as localizing the position and orientation of the body limbke complexity of the problem
comes from issues like background clutter, changes in \vé@wpchanges in appearance,
self-occlusions of body parts, etc.

Among the various methods proposed for human pose estimatiodels based on pic-
torial structures tend to provide superior performanag, eecently [, 13]. The rst works
on pictorial structures for human pose estimatigjremployed a tree-structured model com-
posed by parts representing the human body (e.g., left imogr left leg, etc.), connected
following the kinematic constraints of the human body (eleft foot is connected to left
leg). More speci cally, the body parts are modeled as regles) parametrized by position,
orientation, and size.

In contrast, L8] proposed a discriminatively trained pictorial structtinat models the
body joints instead of limbs, thus simplifying the formudat and reducing the complexity
of inference. Speci cally, the body joints are modeled asiatane of small HOG lters
capturing a small neighborhood around them. While attgitietter results than previous
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(d)

Figure 1: (a) Detection score map for the right shouldergisirclassical sliding-window
detection approach with a linear SVM trained on HOG featu®} Rescored version of
(a) produced by our context-based rescoring. The origiregd &) has a strong score on
the actual shoulder location, but also in other regions file hips. In contrast, with our
proposed rescoring, we get a more spatially-consistemésoap, showing a high response
near the correct shoulder location, and suppression of fadsitive locations. In addition,
our rescoring method can hallucinate the location of a jgagt, foot (d) even if there is not
a high-scoring region in the original map (c).

works, such small HOG templates can be sensitive to noisessidt in several false positive
detections at test time, either confusing a part with thégamund or with another part (see
Fig. 1). Moreover, sliding-window detection approaches likestbhe can fail to recover

joints in the presence of occlusions, unless the appeardrare occluded part is explicitly

modeled, e.g., by adding a new mixture component.

In this work, we propose a new method for obtaining robust gatections in a picto-
rial structure formulation for human pose estimation. Matgd by the fact that small local
HOG templates modelling the body joints (“basic parts” froow on) are sensitive to noise,
we introduce a method for the automatic discovery of a corngetoof discriminative pose-
lets [4] that offers both high detection precision and a coveringhef different poses in a
given validation dataset. Using the evidence of these nedvieviel parts, we rescore the
basic part detections in order to obtain a more robust bastaetection, and thus improve
the inference of human pose.

Experimental evaluation is conducted on two benchmarkslQJ$ports 7] and Leeds
Sports [LO]. In the experiments, pose estimation accuracy improvesmwdur proposed
rescoring functions are included in the unary potential pfctorial structure model, using
our mid-level part representation. In particular, among different mid-level part repre-
sentations in our comparative analysis, the automaticodesy of poselets with covering
attains the best results in both datasets. In addition, perte gain in the pose estimation
performance comparable to the oneld,[12], while reducing the size of the mid-level rep-
resentation by an order of magnitude (40-50 poselets in pproach vs. more than 1000
in[11, 12)).

2 Related work
In the context of human pose estimation, Yang and Ramab@rpfoposed a simple yet

ef cient model that outperformed previous state of the ppirmaches. However, in addition
to the dif culties of modelling small image patches for thedy joints, the performance of
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their method is also compromised by the use of a tree-stredttmnodel. Although trees
permit ef cient and exact inference on graphical model® thstricted edge structure is
insuf cient for capturing all the important relations beten parts. As a consequence, tree-
structured pictorial structures suffer from the so-cafigouble-counting” phenomenon.

In order to overcome these problems, many extensions ofitherial structure model
have been proposed. Tian and Sclardff][augmented the tree model by adding a smal
set of edges, and presented an ef cient inference algorfdmtheir model. Dantone, et
al. [5] focused on obtaining less noisy appearance-based unaéeptfads from each part
detector. The formulation incorporates color and skinct@ia, in addition to HOG features.
Regressors are employed to estimate the position of aegoiat, given the appearance and
location of the other joints. A bridge between human posenesion and object detection
was proposed by Yao and Fei-F&}.[ They model mutual contextual information between
poses and objects for a certain set of human-object intereattivities, like “tennis serve”.
The results indiciate that pose estimation can help objtetation and vice versa.

Other works introduced higher-level parts in the model, €gselets3, 4], to improve
the results. In17], the authors proposed a loopy graph model that incorpsealeerarchical
Poselet decomposition of the human body to the existing Ipadtg. In contrast, Pishchulin
et al. [11, 17] de ned a tree-structured model in which the unary and p&iexerms are
conditioned on Poselets evidence. Similarly, Fang and.8]i #lso included mid-level body
parts in their tree model, but they propose an algorithm fecalering the best possible tree
topology that connects all the parts.

Cinbis and Sclaroff§] proposed an approach for rescoring detections of difteobn
jects, introducing the notion of sets of contextual relagi®etween object detections in an
image. Each detection from a certain object class is repteddy its context, de ned as a
set containing detections from every other object deteétfier that, a feature vector is ex-
tracted from each contextual detection, encoding spatations, relative scores and class-
related relations. Finally, a generalization of the welblvn Adaboost algorithm, called
SetBoost, is used for rescoring an object detection giwseit-based context representation

In our work, we recast the pictorial structure formulatioorfi [18] in order to include
information from a mid-level representation of the imager®speci cally, we follow [L2]
and de ne the unary potential of the pictorial structure aseaghted combination of two
unary potentials, encoding information from basic and teige! parts, respectively. How-
ever, in contrast tol[2], we de ne our mid-level unary potential as a rescoring fiimre [8],
instead of modelling it as a Gaussian distribution. As ouwt-teivel representation, we for-
mulate and test a method for automatic discovery of a congeaif poselets, which maxi-
mize precision while enforcing coverage of the poses in afsatlidation images.

3 Approach

An overview of the proposed formulation is shown in EigWe are motivated by the afore-
mentioned limitations of basic, low-level part detectdrattare commonly used in pictorial
structure models, e.g., HOG patches centered at body jdidtsIn our formulation, we de-

ne and learn an additional set of mid-level body part detesthat improve the localization
of the basic ones. Mid-level and basic part detectors arepoted in order to extract a set
of pairwise contextual features between each pair of baslaa@d-level part hypotheses. A
classi er for a certain basic part class will compute a nearsedor its detections, based on
the set of contextual features computed between the badimatilevel parts. The original
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Figure 2: Proposed pipeline for human pose estimation. rGare input image, a set of

basic and mid-level part detections is obtained. For easltIparti detection, a contextual

representation is built based on mid-level part detectissch is used for rescoring the

former. The original and rescored detections for all baaitgare then used in inference on
a pictorial structure (PS) model to obtain the nal poseraste.

and rescored detections for all basic parts are then usederence on a pictorial structure
model to obtain the nal pose estimate.

3.1 Pictorial structure formulation

Letus de neG(V;E) as agraph, wheié is the set of nodes representing the basic partsin the
pictorial structure model, arf is the set of edges connecting them. We del i@s an image,

pi as the position of basic pairtt; as its mixture component, argl = pf piywii hazs

as its bounding box including the widthi;, heighthg, scalez and detection scorg. In

f1;:::;Png. The score of a pose is given by:

ti ;tj

SM;pit) = S<t)+_§v W F(p)+ i RI(CY) +§Ewi,- vy p); (D)
i 1]
sty = b+ 4 nl 2)
i2Vv ij2E

wherey (pi  pj) = [ dx d¥ dy dy] encodes the spatial offsets between parts Stjdntro-
duces bias factorlgti and bfij'tj encoding a prior knowledge favoring particular type assign
ments for part and particular co-ocurrences of part types, respectividig. unary potential
(rst summation in Eq.1) is where we extend the original formulation. In additiorHOG
featured-(I; p;) weighted byw}‘, we de ne an extra term weighted Iw}‘ " This new term is

de ned as a rescoring functidﬁi :C! R, thatreceives as inpnut aoset of contextual feature

vectorscg’i' associated to a basic part detectiyrand a seM = B’J.l ; of mid-level

n=1;j=1
contextuaj detections, whelg, denotes the number of detections taken from a certain mid-
level partj. In order to simplify the optimization of the model, the apart detections;

used for the computation mgf are obtained by independently trained basic part detectors

using a rstinitialization of the Weightssf,v}i by means of Linear SVM optimization.

3.2 Mid-level part representation

In order to improve basic part detection in the context of axf®8el, we de ne a contextual
model based on a set of mid-level body parts. Since highet-Body parts model a larger
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Figure 3: (a) Body joint annotations (blue stars) and déférmid-level parts (bounding
boxes). (b) Clustering examples for the lower body. (c) SanRoselet templates. Body
joints are shown with colored dots, and estimated Gausssanbaitions as blue ellipses.
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image portion than just a small local patch as in the case sitlparts, it is expected they
will perform better in terms of object detection. We rst dee a baseline that utilizes a
manually-de ned set of mid-level parts, which are de neddsierarchical decomposition of
the human body. Then we propose a weighted “set cover” posslkction method to de ne
a second mid-level representation, which outperforms #selne in our experiments.

Hierarchical decomposition: We de ne a mid-level parf as a bounding box contain-
ing a certain set of body joints, e.g. lower body, upper badgven the whole body (see
Fig. 3(a)). Because of the large variability these parts can haeealso de ne mid-level
parts as a mixture, as in the case of basic parts: we rstetuke training sample‘sljﬁ‘gﬁz 1
into Kg; groups based on the aspect ram'ili=he?, and apply a second clustering based or
appearance following the work fron3]] More speci cally, this methodology uses Linear
Discriminant Analysis (LDA) to compute what they called “idned” HOG features a.k.a.
WHO features. The main advantage of these features is aabthtain more visually mean-
ingful clustering results than simple HOG features. Finalcuts [L4] is applied with a
certainKypp value indicating the number of clusters we want to createterAerforming
both clustering steps, the total number of mixture comptmfem a mid-level part becomes
Km= Kar Kapp.

Poselet-based partsin this case, we use a similar methodology to the one propoged
Bourdev et al. 4] to de ne our mid-level part§. We generate a large number (thousands
of random seed windowB? from the training set imaged"g\. ;, and for each one of them
we collect similar [t)atches from other training images bycRustes alignment on the body
joint annotationspg from the ground-truth. For each seed window and its assatisgt of
similar examples, we train a mid-level part deteator Additionally, we model the spatial
distribution of the keypoint& that fall inside each seed window as Gaussian distributior
(n’f,S'jf), that we use to look for True Positives (TP) and False Resit{FP) when testing
each detectow- in a validation set. In order to do that, we use the same witexrs the PCP
metric, widely used for evaluating human pose estimatiothods. More speci cally, we
consider a detection as a TP if:

dist(nfipf)  ki8k2 By; (3)

wherek is a threshold value, i.e. we classify a detection as a TReifliktance between the
body joint estimationsn’lf and their corresponding ground-truth annotatipﬂtsis below a

thresholdk, for all the jointsk contained in the poselet. On the contrary, we consider a F
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|  Feature | Value | Feature | Value |
detection score [0;:::;0;51;0;::5;.0] distance k(pi ppk
relative position| (p¥ p’J.S):ha, (p p’l_ﬁ)=ha overlap (Bi\ B)=(Bi[ By)
relative size hg :hejA, wii=vvijr score ratio S=S;
relative scale z=z; score difference S S

Table 1: List of contextual features includedi s,

if none of the keypoint& ful Il the condition above. Since the seed windows are geitel
randomly, some of them will be redundant, or some others tiiglie poor performance,
so we need to select a subset of relevant poselets. Thigiealetreated as a “set cover”
problem in Hf]; poselets are selected in a greedy manner so as to “cova® mxamples,
i.e. the poselets that found TP detections in a larger numbgaining images. However,
this methodology does not prioritize poselets with goodqremance if they only re in
a little subset of training images. In order to overcome fhrigblem, we propose using a
weighted version of the “set cover” problem, in which thegig®n of the selected poselets is
maximized, while ensuring coverage of the images in a vatidalataset. We de ne a binary
matrix A, - to keep track of which poselgt res in which n-th validation image. Finally, we
formulate this weighted “set cover” problem with the follioy integer programming:

minimize § (1 Pregj))x; subjectto § x; 18 x;2f0;1g; (4)

J jZAnJ-C 1

where Pre€) computes the precision of a poselet. The solutiamds the subset of poselets
flgs.t X;= 1, i.e. aset of poselets ensuring that in every validaticajenthere is at least
one poseletthat res. The constraints of the integer pnogeaforce each validation image

to be covered by at least one poselet, but also the bestrpenfpones are prioritized, since
we are minimizing1 Pred)). In orderto nd the solution, we use a Linear Programming
relaxation(y; 2 R o;y; 1) and round the solutiop to obtainx.

Classi er training: The same LDA-based framework we used in our baseline miel-lev
representation also allows us to train a different deteftioeach mid-level par{, much
faster than using a classical SVM framework. More speclycdearning a classi er for a
certain partj is as simple as computing the mean HOG veapamong the samples in it.
SinceS andmg are related to the negative set of samples, they are justa@apnce, and
reused for learning the classi ers for all clusters. Figalhese detectors are then run over
the images, obtaining the set of detectidhsised for computin@B'V'i.

3.3 Contextual rescoring

We build our contextual model on top of the mid-level partresggntation presented in Sec-
tion 3.2 More speci cally, we want to model underlying spatial arzbre-related rela-
tionships between basic and mid-level part detections. @&@pglthis, a certain mid-level
part detection would be able to determine a hypothesis ferldbation of a certain ba-
sic pagt. For this task, we de ne the context of a given basitt pletectionB; as a set

C,“a’i' = cBi;BJ,j 8B;2M , composed by contextual feature vecto&sC. These contextual

feature vectors encode spatial, score-related and class-related resdtionbetween a ref-
erence basic part detecti@ and a contextual mid-level detecti@). We use the same set
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(b)

Figure 4. Sample poselets from UIUC Sports dataset. (a)&sseith highest precision. (b)
Poselets discovered by our selection method, maximiziagigion and enforcing covering.

@)

of features asq], with the addition of the relative scale. The speci c sef@dtures we use
is summarized in Tablé. Finally, the rescoring function given a set of contextwdttire
vectorsC is then de ned as:

Q
RO = a Q(C); Q0= aq a k dq(0); (5)
q:]_ c2C

whereQq is a weak set classi er, angl, is a weak item classi er, weighted tg,. The term
ke introduces an additional weight related to the relevandé®item. In practicel. is set
to its corresponding detection scag andqq functions are de ned as decision trees with

leaf f are computed following the SetBoost algorith@h [

In order to train the rescoring functid?}‘ for basic part and typet;, we run its corre-
sponding basic part detector on a set of images, as well astibke set of mid-level part
detectors. Then, for each basic part detectiBp we compute the corresponding mid-level
contextual feature sélg’i', and assign a binary labgh 2 1;1g, whether the overlapping
O(Bi;Bj) = Bi\ Bj=Bi[ Bj is below or above a threshold valtieThe complexity of rescor-
ing a basic part detection B(jMj).

4 Experiments

In order to present the results, we rst describe the datavatidation procedure used in our
experiments, the different methods and parameters, araadicmn measures.

Data: We conducted experiments with two publicly available afvadiing datasets: UIUC
Sports [L7], which contains 1299 annotated images of people playing 18 different sport:
and Leeds Sports (LSPL{], which comprises by D00 images of people playing 8 dif-
ferent sports. The annotations for both datasets consist giosition labels, one for each
body joint: left/right2 ankle, knee, hip, wrist, elbow anldosilder, neck and head top. In
the case of LSP, the annotations are observer-centridefi#ight labels on the limbs are
de ned as the left-most/right-most limb in the image regpety. In contrast, the labels in
UIUC Sports are person-centric, i.e. left/right labels@lated to the actual left/right limbs
of the person in the image. We divided each one of these datase three subsets, namely
training, validation and test. The training set contain%e5@f the images and is used for
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(a) UIUC Sports dataset
| Method | Torso| Upper Leg | Lower Leg | Upper Arm [ Forearm |Head|[Mean|
YR [18] 85.62|62.12 56.2560.62 49.06| 40.94 45.0026.25 29.0676.56|| 53.22
Ours-prede ned 85.31|62.50 60.00|58.75 49.6941.25 47.50|26.56 29.06| 78.13|| 53.88
Ours-poselets M.P.| 85.00{63.12 57.81| 60.00 51.25/40.00 44.6923.44 27.1975.62|| 52.81
Ours-poselets cov. | 85.62(62.50 59.0659.06 50.6243.75 47.5026.25 30.31| 75.62|| 54.03
b) LSP dataset
| Method | Torso| Upper Leg | Lower Leg [Upper Arm | Forearm |Head||Mean
YR [1§] 83.00|66.40 67.6063.60 62.20/50.00 49.2031.00 29.2076.60|| 57.88
Ours-prede ned 82.80|66.40 68.00/65.00 62.0051.40 47.0030.00 30.40| 77.60|| 58.06
Ours-poselets M.P.| 83.60({67.80 67.8065.20 61.20/51.20 49.0030.00 29.8()77.20|| 58.28
Ours-poselets cov. | 83.80(69.80 67.40| 65.20 61.80/53.60 50.6031.20 28.60( 78.00|| 59.00

Table 2: Comparison of pose estimation results (PCP) féerdift mid-level representations.

learning the PS model. The validation set contains 25% oftlagies and is used in learning
the rescoring functionﬁfi. Finally the test set contains the remaining 25% of images.

Method and validation: For our manually-de ned mid-level representation, we daeo
pose the human body into three parts: full body, upper bodylaner body (see Fig3(a)
for an example of these parts). More speci cally, we Kgt= 5 andKspp= 3, so we have
atotal of 3 Ky Kapp= 45 mid-level detectors in our manually-de ned mid-levebre-
sentation. In practice, some aspect ratios for certairs paettoo skewed so we discard them
and get a total oR,, = 42 mid-level detectors. We chose these parameters in arderep
our contextual model as simple as possible, but being aldagture the variabilities present
in the data. Our poselet selection method automaticallgctel43 and 50 poselets in the
UIUC Sports and LSP datasets respectively, from an inigalo§ 2,000 poselet proposals
(see Fig4). In order to de ne the sel of contextual detections, we take tNg = 2 best
detections from each mid-level part detector. Each resgdtinctionR(C) is de ned as a
forest ofQ = 20 decision tree weak classi ers, each one of them havingxdman number
V = 150 of leaf nodes. In addition, we use= 0:01 andt = 0:6.

Evaluation measurement: We use the Percentage of Correctly-placed Parts (PQP) [
as the evaluation measure, like most recent works in humsa @stimation.

Human pose estimation:Our PS model for these experiments is composdd, ef 14
different parts, where each part is de ned as a mixture With= 6 components. Tabl2
shows a performance comparison of the original PS model Yang and Ramanari§]
against our rescoring-based extension, with three difterenually-de ned mid-level rep-
resentations: (1) the hierarchical decomposition de netthe beginning of Se@.2 (Ours-
prede ned), (2) a set 0P, poselets maximizing precision (Ours-poselets M.P.) andh@
set of poselets obtained with our selection algorithm (€paselets cov.). In case (2) we X
Pm= éijn which is the number of poselets selected by (3). Our poselettion method
that enforces a covering performs the best in both dataséts,a PCP improvement of
+0:81% and+ 1:12% in UIUC Sports and LSP datasets, respectively. In bothasess, the
main improvement comes from the upper arm:8% and+ 2:5% in UIUC Sports;+ 3:6%
and+ 1:4% in LSP), while other parts perform equal or slightly worse the case of the
LSP dataset we attain somewhat better performance impmvetman in the UIUC Sports
dataset; in addition to the great improvements in the uppesawe also obtain PCP in-
creases of+ 3:4% for the upper legst 1:6% for lower legs, and 1:4% for the head (all
w.r.t. [18]). This could be explained by the fact that ground-truthaations for LSP are
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Figure 5: Qualitative results for the UIUC Sports datasetv§ 1-2) and LSP dataset (rows
3-4). Leftimage from each pair of images shows the resutbffdd] and right image shows
our results. Last column show failure cases.

observer-centric, so our rescoring functions can gerserddéetter the relative locations of
left/right basic parts with respect to mid-level parts.

Fig. 5 shows some qualitative results in both datadetés we can see, the proposed
method can better localize the arms in some cases whér&jls. Additionally, our method
can also recover from the “double counting” problem in sortieepcases. However, there
are still some hard cases where our method cannot fully sdciceestimating a pose that
matches the ground-truth (see last column in Bjgln order to solve this without increasing
the number of mid-level parts, we would need to run our micklleletectors at different
orientations, in order to capture large rotations of the animody.

Finally, we retrained and tested the PS model from Pisholedkl. [L1] with and without
their mid-level Poselet representation. When includingehet information, they obtain a
PCP improvement of 1:06%, comparable to our 1:12%. It is worth to note that their
mid-level representation is formed by1000 poselets, while ours contains just 50 poselets

5 Conclusion

We have proposed a contextual rescoring methodology forawipg human pose recov-
ery?. In order to obtain more accurate basic part detections,sgealcontextual rescoring
mechanism based on detections of higher level body partsdéte a simple and compact
mid-level body part representation modelling each micl@art as a mixture, clustering the

1Additional qualitative results and rescored maps can bedadn the supplementary material.
20ur implementation is available http://www.cvc.uab.cat/~ahernandez/contextual.html
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samples using aspect ratio and appearance features. tinaddie propose a method for au-
tomatically discovering a set of discriminative poseletsé richer mid-level representation.
Using spatial and score-related features extracted froeh af snid-level part detections, we
rescore the body joints hypothesis and combine them witlotiggnal scores in the unary
potential of a PS model.

The experiments with two standard benchmarks demonsirattby including contextual
information from mid-level part detections, we can obtaibedter part localization, espe-
cially for joints with a more constant relative position amgahe mid-level parts. Moreover,
when poselets are chosen so as to cover a validation segdtaining using our proposed
formulation, experiments show that it is possible to get PE@Rormance gains comparable
to the ones of11, 17], while using substantially fewer poselets in our modeb(end 50 in
our model vs. more than 1000 in the model GfL[17)).
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