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Abstract 
 

Artificial Intelligence for Autonomous robots is a growing line of interest for 

researchers. Computer Vision techniques for Object Detection and Recognition are 

widely applied in this domain to increase to robots interaction. In this paper, we present 

a generic Object Detection System for autonomous robots simulated in the Aibo robot 

of Sony. The detection process is done by means of cascades of classifiers using the 

Gentle Addaboost with Haar-like features estimated over the integral image. The system 

has been tested in different environments to test the Aibo interaction and behaviors. The 

system works at real-time and has been applied to other real applications, such as the 

traffic sign detection problem. The system has been exposed in different social events 

with great interest. 

 

 

Resumen 
 

La inteligencia artificial de robots autónomos es un campo de amplio interés para los 

investigadores. Las técnicas de visión por computador para la detección y 

reconocimiento de objetos se aplican ampliamente en este dominio para conseguir 

mayor interacción robótica. En este artículo presentamos un sistema genérico de 

detección de objetos para robots autónomos, el cual hemos integrado en el Aibo de 

Sony llamado Aibo. El proceso de detección se realiza mediante cascadas de 

clasificadores utilizando Gentle Adaboost con características Haar-like calculadas sobre 

la imagen integral. El sistema ha sido testeado en diferentes entornos para probar la 

interacción y el comportamiento del robot.Este sistema trabaja a tiempo real y ha sido 

utilizado en otras aplicaciones reales tales como el problema de detección de señales de 

tráfico. El sistema ha sido expuesto en diversos acontecimientos sociales despertando 

gran interés. 

 

 

Resum 
 

La intel·ligència artificial de robots autònoms és un camp de gran interés per als 

investigadors. Les tècniques de visió per computador per la detecció i reconeixement 

d'objectes s'apliquen àmpliament en aquest domini per assolir una major interacció dels 

robots. En aquest article presentem un sistema genèric de detecció d'objectes per a 

robots autònoms, el qual hem simulat amb un robot de Sony anomenat Aibo. El procés 

de detecció es realitza mitjançant cascades de clasificadors utilitzant Gentle Adaboost 

amb característiques Haar-like estimades sobre la imatge integral. El sistema ha estat 

testejat a diferents entorns per provar la interacció i el comportament del robot.Aquest 

sistema treballa a temps real i ha estat utilitzat en altres aplicacions reals tals com el 

problema de la detecció de senyals de trànsit. El sistema ha estat exposat en diversos 

esdeveniments socials despertant gran interès. 
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Generic Object Detection for Autonomous

Robots

Carlos Gallardo Garćıa

Informatics, ETSE, UAB, Campus UAB, 08193 Bellaterra, Spain

Resum

Artificial Intelligence for Autonomous robots is a growing line of interest for
researches. Computer Vision techniques for Object Detection and Recognition are
widely applied in this domain to increase to robots interaction. In this paper, we
present a generic Object Detection System for autonomous robots simulated in the
Aibo robot of Sony. The detection process is done by means of cascades of classifiers
using the Gentle Adaboost with Haar-like features estimated over the integral image.
The system has been tested in different environments to test the Aibo interaction
and behaviors. The system works at real-time and has been applied to other real
applications, such as the traffic sign detection problem. The system has been exposed
in different social events with great interest.

Key words: Autonomous Robots, Aibo, Artificial Intelligence, Computer Vision,
Object Detection, Adaboost.
PACS:

1 Introduction

From the beginning of the civilization, humans has tried to delegate hard
tasks to other people instead of do them by ourself. Without any doubt, the
human ambition has increased practically at same time that the technology.
Slowly, robots are replacing tasks that we have always done manually, such
the industry assembly line.

On of the main problems for autonomous robots is its ability to interact with
its environment. Computer Vision is a wide line of research that treats to
deal the problem of visual perception. Object detection and recognition is a
pervasive activity in our lives. We are constantly looking for, detecting and
recognizing objects: people, streets, buildings, tables, chairs, desks, sofas, beds,



automobiles, etc. It still remains a mystery how we perceive objects so accu-
rately and with so little apparent effort. In order to recognize an object, one
must know, at least, something about the object. The central problem is how
to deal with a huge amount of variation in visual appearance. That is, how
we can obtain a universal representation of an object that is able to cope with
both, the variation within the object and with the diversity of visual imagery
that exist in the world.

In most robot applications, a robot continuously searches for objects in images
acquired by a camera. In object-based video annotation, video frames are
automatically labelled with symbolic descriptions which may be connected to
the presence of certain objects in the sequence. Recognition may be also useful
to catalogue searching in art, trademark and other commercial applications.
Recently, web-based systems have been developed, searching on the internet
for images showing desired objects.

The Aibo robot from Sony (fig.1) is a perfect tool to implement and test
artificial intelligent techniques in robotics. The AIBO robot combines a body
(hardware) and mind (the Aibo Mind 3 software) that allow it to move, think,
and display the lifelike attribute of emotion, instinct, learning and growth. It
establishes communication with people by displaying emotions, and assumes
various behaviors (autonomous actions) based on information which it gathers
from its environment. The Aibo robot is not only a robot, but an autonomous
robot with the ability to complement your live. While living with you, the
behavior of the Aibo robot patterns develops as it learns and grows. Also, it lets
you to implement new complex behaviors depending on the environment. So it
is the best tool to try and test a signs recognition system in real environments.
There is no other so developed technology embedded in a simple but intelligent
robot.

Figura 1. Sony AIBO robot
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Object recognition process basically is composed by three steps: detection of
a region of interest (ROI), model matching, and classification. Each of these
steps can be done by a great different number of algorithms. Depending on the
object we want to recognize, different techniques offer different performance
depending on the domain. Adaboost [1] has been at last years one of the most
used technique for object detection, feature selection, and object classification.
Usually, the problem of object recognition (e.g. person identification) needs
a previous addressing the category detection (e.g. face location). According
to the way objects are described, three main families of approaches can be
considered [2]: part-based, patch-based and region-based methods. Part-based
approaches considered that an object is defined as a specific spatial arrange-
ment of the object parts. An unsupervised statistical learning of constellation
of parts and spatial relations is used in [3] In [4] and [5] a representation
integrating Boosting with constellations of contextual descriptors is defined,
where the feature vector includes the bins that correspond to the different
positions of the correlograms determining the object properties. Patch-based
methods classify each rectangular image region of a fixed aspect ratio (shape)
at multiple sizes, as object (or parts of the target object) or background. In [6]
objects are described by the best features obtained using masks and normal-
ized cross-correlation. Finally, region-based algorithms segment regions of the
image from the background and describe them by a set of features that provide
texture and shape information. In [4], the selection of feature points is based
on image contour points. Model matching normally is adapted depending on
the domain we are working on, and finally, object classification involves a lot
of techniques to solve the problem of discriminability between different types
of objects (classes).

In this paper, we present a generic object detection system applied to au-
tonomous robots. In particular, we use the Aibo Robot of Sony to test the
techniques. The generic detection system is based on learning a set of object
categories by means of a cascade of classifiers. The classifier used is the Gen-
tle Adaboost with decision stumps and the Haar-like features estimated on
the integral images. As we show, this technique is very suitable for real-time
detection problems and quit robust to object variations in the scene. Besides,
we generate a simulation environment in which an interface shows to robot
vision and object detection. The robot interacts depending on the presence of
objects in the scene and shows different behaviors. We exposed the system is
social and scientific events with great success and interest. Besides, the system
was tested in a real detection problem: the detection of traffic signs.

The paper is organized as follows: section 2 comments the Aibo robot used to
simulate the system. Section 3 comments the detection methodology applied
in the present architecture, and section 4 explains the whole system. Finally,
experimental results are shown in section 5 and section 6 concludes the paper.
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2 Aibo Robot

2.1 What is the AIBO R© Entertainment Robot?

The AIBO robot is the name which Sony R© has given to its family of entertain-
ment robots, robots that are designed with the goal of presenting a vision for
a new type of lifestyle in which human beings derive enjoyment from mutual
existence with robotic creatures. The name itself is a play on the words ”arti-
ficial intelligence”(AI) and ”robot”, or a robot with eyes. In its home country,
Japan, the word ”AIBO”also means ”partner”or çompanion”. 1 See fig.29

2.2 Autonomous activities of the AIBO robot

The AIBO robot combines a body (hardware) and mind (the AIBO MIND
3 software) that allow it to move, think, and display the lifelike attributes
of emotion, instinct, learning, and growth. It establishes communication with
people by displaying emotions, and assumes various behaviors (autonomous
actions) based on information which it gathers from its environment, the AIBO
robot’s behavioral patterns will develop as it learns and grows,the AIBO robot
undergoes changes in spirit that display themselves in the form of emotional
expression. The AIBO robot possesses the following five basic instincts: Love
instinct,Search instinct,Movement instinct,Recharge instinct,Sleep instinct.It
really seems to be an electronic life.

2.3 The AIBO R© COLOR CAMERA

About the pictures o Pictures are stored on the ”Memory Stick”media in JPEG
format. o The picture resolution is 416 x 320 pixels. o Depending on lighting
conditions at the time the picture is taken, flicker (horizontal stripes) may
appear in pictures, or pictures may have red or blue hues. o Fast movement
may result in distortion of pictures. See fig.2

1 For the latest information on the AIBO robot, visit the following Web site:
http://www.aibo.com
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Figura 2. Sony AIBO Robot

3 Object Detection

In this chapter, we explain the techniques used to solve the object detection
step.

3.1 Adabost Detection

Gentle Adaboost (fig.3) is a modified version of the Real AdaBoost algorithm,
using Newton stepping rather than exact optimization at each step [13].Gentle
Adaboost is the most frequently used variants of Adaboost and improves the
other ones.

The conventional AdaBoost procedure can be easily interpreted as a greedy
feature selection process.Consider the general problem of boosting, in which
a large set of classification functions are combined using a weighted majority
vote. The challenge is to associate a large weight with each good classification
function and a smaller weight with poor functions. AdaBoost is an aggressive
mechanism for selecting a small set of good classification functions which nev-
ertheless have significant variety. Drawing an analogy between weak classifiers
and features, AdaBoost is an effective procedure for searching out a small num-
ber of good ”features”which nevertheless have significant variety. One practical
method for completing this analogy is to restrict the weak learner to the set of
classification functions each of which depend on a single feature. In support of
this goal, the weak learning algorithm is designed to select the single rectangle
feature which best separates the positive and negative examples.[12]

In order to compute these features very rapidly at many scales we introduce
the integral image representation for images (the integral image is very similar
to the summed area table used in computer graphics [10] for texture mapping).
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The integral image can be computed from an image using a few operations per
pixel. Once computed, any one of these Harr-like features can be computed at
any scale or location in constant time.

Within any image sub-window the total number of Harr-like features is very
large, far larger than the number of pixels. In order to ensure fast classifi-
cation, the learning process must exclude a large majority of the available
features, and focus on a small set of critical features. Motivated by the work
of Tieu and Viola, feature selection is achieved through a simple modification
of the AdaBoost procedure: the weak learner is constrained so that each weak
classifier returned can depend on only a single feature. As a result each stage
of the boosting process, which selects a new weak classifier, can be viewed as
a feature selection process. AdaBoost provides an effective learning algorithm
and strong bounds on generalization performance [11].

The speed of the detector by focussing attention on promising regions of the
image increases combining successively more complex classifiers in a cascade
structure.The notion behind focus of attention approaches is that it is often
possible to rapidly determine where in an image an object might occur. More
complex processing is reserved only for these promising regions. The key mea-
sure of such an approach is the ”false negative”rate of the attentional process.
It must be the case that all, or almost all, object instances are selected by the
attentional filter. Now, we discuss the Haar-like features and the cascade of
classifiers structure.

Figura 3. Gentle Adaboost algorithm
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3.2 Haar-like features

In order to obtain a robust detector, instead of using directly the image pix-
els, we use Haar-like features, which are differences between the sum of all
the pixels in some contiguous rectangular regions of the image. This type of
features are robust in front of the noise and illumination changes.

Our object detection procedure classifies images based on the value of simple
features. There are many motivations for using features rather than the pixels
directly. The most common reason is that features can act to encode ad-hoc
domain knowledge that is difficult to learn using a finite quantity of training
data. For this system there is also a second critical motivation for features:
the feature-based system operates much faster than a pixel-based system.

In [7] Lienhart and Maydt extended the Haar-like features set used by Viola
and Jones, adding the rotated versions of each feature type fig.4. All these
features can be calculated using the integral image or SAT1 and the 45o
rotated integral image or RSAT2. Both auxiliary images can be calculated
using only one pass from left to right and top to bottom over all pixels. In the
SAT image, each pixel SAT(x, y) contains the sum of all pixels of the upright
rectangle ranging from the top-left corner to the bottom-right corner at (x, y)
fig.5. The RSAT image is defined as the sum of the pixels of a 45o rotated
rectangle with the bottom most corner at (x, y) and extending upwards till the
boundaries of the image fig.5. Given a training window size, our feature set
will be composed by all the possible features that we can put on this window
changing the size and position.

Using the integral image any rectangular sum can be computed in four array
references fig.5. Clearly the difference between two rectangular sums can be
computed in eight references. Since the two rectangle features defined above in-
volve adjacent rectangular sums they can be computed in six array references,
eight in the case of the three-rectangle features, and nine for four-rectangle
features. One alternative motivation for the integral image comes from the
“boxlets” work of Simard, et al. [9]. The authors point out that in the case of
linear operations,(e.g.fog) any invertible linear operation can be applied to f
or g if its inverse is applied to the result.

3.3 Detectors Cascade

The most important contribution of Viola and Jones work was the definition of
the Attentional cascade. It is a degenerated decision tree where at each stage
a detector is trained to detect almost all objects of interested while rejecting
a certain fraction of the non-objects patterns fig.6.
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Figura 4. Extended set of Haar-like features. The white rectangle corresponds to
the positive region and the black one to the negative.

Figura 5. Definition of (a) Summed Area Table (SAT) and (b) Rotated Summed
Area Table (RSAT).

Figura 6. The attentionat cascade

Detection systems must accomplish hard restrictions both, on hit and false
alarm ratios. If we train a simply detector with this restrictions, the number
of hypotheses that the boosting method must combine to obtain the committee
is enormous. Using the cascade structure, the false alarm ratio restriction is
shared along false alarm of the detectors cascade will be FORMULA , where f
is the false alarm ratio fixed for each stage of the cascade and n is the number
of stages. The same can be applied to the hit ratio.

Each stage analyzes only the objects accepted by the previous stages, and
thus, the non-objects are analyzed only until they are rejected by a detector.
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The number of applied classifiers is reduced exponentially due to the cascade
architecture. We use GentleAdaboost to learn each stage of the cascade, and
change the rejected objects by other non-objects that the previous trained
stages classify by correct objects.

4 System

To explain the system architecture of the detection process see the fig.10. Our
propose is to detect a set of objects and test the system in the Sony Aibo robot.
The detection steps are: generate a training set of positive samples, train a
classifier for each group of objects, use the input frames from the Aibo robot
to detect objects in the scene, use the process of [8] to classify by the object
category, and finally control the Aibo behavior depending on the detected and
classified object.

4.1 Generating the training set

To obtain a robust classifier, first we need to define a representative training
set that contain the high variability of object appearance. For our implemen-
tation, we designed the set of objects of fig.7, categorized in two main groups,
circular and triangular. The training set images were obtained by recording
video sequences of the Aibo robot at different environments that contain the
generated objects.

Figura 7. Designes

4.2 Training classifiers

We trained two detectors, one for the triangular objects, and the other for the
circular ones. Each of these two groups were trained using a set of positive
regions that contains samples of the objects, and also a negative set of samples
selected randomly from images that do not contain the desired objects. Same
examples of the set of positive and negative images used to train the cascades
of classifiers are shown in fig.8.
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Figura 8. Positive regions

4.3 Object detection

Object detection step consists on applying a windowing strategy over the Aibo
frames and test the trained cascades in order to classify each image region as
object or non-object. In this way, robust trained cascades rejects regions that
do not contain the object, and detect as positive the regions with instances of
the object trained by the cascade.

4.4 Object classification

Once we have the detected regions, detected as circular or triangular group,
next step is to classify the contain based in the approach of [8].

4.5 Aibo behavior

The final step consists in to generate physic behaviors to the Aibo robot
depending on the detection and classification steps of the frames captured by
the Aibo video camera.

The Aibo robot provides a set of implemented behaviors, such as dancing,
singing, etc. We take use from this set of states to easily identify the output
of our system. We defined a set of behaviors that Aibo runs depending of the
detected and classified object of fig.9 by our system.To deal with this problem,
we have updated the state machine integrated in the Aibo robot to define the
execution of the robot depending on the results obtained by our system .Our
machine of states are commented in the chapter of the results.
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Figura 9. State Machine of the Aibo robot
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Figura 10. System Architecture
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5 Results

Before showing the results, first, we comment the parameters of our system.
The cascades of classifiers are trained using a set of 1000 positive samples
of (32 x 32 pixel resolution) for each group, and 2000 negative samples at
each stage of the cascade. In particular, we have experimentally tested that
generating 6 cascade levels obtains good results. The classifier used to train
the cascade is 50 runs of Gentle Adaboost with decision stumps using the
Haar-like features estimated over the integral image.

The experiments are divided in: Aibo sign detection, traffic sing categorization,
and exhibitions of the system.

5.1 Aibo detection:

To test the system in the Aibo robot, we designed a C++ interface as shown
in fig.13(a). Testing the trained cascades with the parameters commented
before in a video set of total 2000 frames labeled manually we obtained the
results shown in fig.14(a) for triangular and circular signs. The results are
very high, being able to detect signs with low resolution (in 416 x 320 pixel
frames) at different conditions, such as illumination changes, partial occlusions
or rotation, obtaining results are upon 97% for both, circular and triangular
signs.

Figura 11. Our Test’s interface

Our behavior architecture using the internal Aibo machine state is shown in
fig.12. Different behaviors: dance, bark, Alarm, slad, eat, etc. are considered in
the machine state.For more details of the Aibo machine state architecture see
Apendix A.To illustrate the behaviors integration, in fig.13 the Aibo interface
an example of the Aibo behavior in its environment is shown.
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Figura 12. Aibo State Machine

(a) Aibo Interface (b) Aibo

Figura 13. System behavior

5.2 Traffic sign detection:

We used the video frames from the Institute Cartographic of Catalonia [16]
to test our detection system on other real applications. We used a wide set
of classes (fig.15 and reffig:trianClasses) to train the circular and triangular
cascades. The parameters of the cascade are the same than in the previous
experiments.The detection results are shown in fig.14(b). In this case, we are
also able to detect the traffic signs with results upon 90% for the two types of
signs.

14



(a) (b)

Figura 14. (a) Aibo system detection results. (b) Traffic detection results

(a) (b)

Figura 15. (a) Circular classes. (b) Speed group.

Figura 16. Triangulares classes

15



(a) Aibo environment (b) Aibo interface

Figura 17. Pictures of exhibition

5.3 Discussion

In this chapter, we comment different exhibitions of the present system on
different social event.

5.4 ”Apropat a la ciencia”

Robotics is a focus of attention for a high number of scientists. Now, so years
after the birth of the Artificial Intelligence, we presented during the year
2006/2007 in the ”Apropa’t a la Ciència”event organized by the Generalitat
de Catalunya, a simulation of the Aibo robot using our system. Different
illustrations from the event are shown in figures fig. 17. For more details of
the event see Appendix X or enter in website
http:www10.gencat.net/probert/catala/exposicio/ex14 ciencia.htm

5.4.1 ”Redes”

Beside, our work was emitted of a part of the documental ”REDES”of TV2
from the little ”programs emotions”, in date of 7.1.2007 .Different images from
the show are shown in figures fig.18.For more details enter in website
http:www.rtve.es/tve/b/redes/semanal/prg418/index.html

6 Conclusions

In this paper, we presented a real-time system for generic object detection
applied to autonomous robots. The detection process is done by means of a
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(a) Program logo (b) Aibo

Figura 18. Redes TV program

cascade of classifiers using Gentle Adaboost with the Haar-like features esti-
mated over the integral image. The system was tested in the Aibo robot of
Sony. Real simulations showed the high robustness of the robot on detecting
objects in uncontrolled environments and adverse conditions with great suc-
cess. Besides, the system was applied to a different real detection problem: the
detection of traffic signs.
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Referències

[1] Yoav Freund and Robert E. Schapire. ”A decision-theoretic generalization
online learning and an application to boosting,” Computational Learning
Theory: Eurocolt ’95, pages 23-37. Springer-Verlag, 1995.

[2] K. Murphy, A.Torralba and W.T.Freeman, Üsing the Forest to See the Trees: A
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8 Apendix A Manual de XABSL

El llenguatge XABSL és un llenguatge especificat en l’equematica XML.

Els disseny del llenguatge XABSL ens assegura:

• interoperabilitat amb els editors i eines de XML.
• Que no necessitem cap altre validadror o compilador que no sigui l’estandard

XSLT.
• Una escabilitat de les solucions dels comportmaents. Els agents dels com-

portaments són fàcils d’extendre.
• Gran velocitat de validació i compilació.

8.1 Modularitat

Els agents de comportament de XABSL són distribuits en diversos fitxers,
això ens ajuda a gruardar una descripció sobre els agents grans, aix́ı com la
possibilitat de treballar en paral·lel.

La figura 19 mostra els diferents fitxers que formen part dels agents de com-
portament del XABSL

Figura 19. Els diferents tipus de fitxers en l’esquema de XABSL

• Els fitxers de śımbols contenen les definicions dels śımbols. Aquest śımbols
són utilitzats en els opcions.

• Els fitxers de comportaments bàsics conten els prototips per els comporta-
ments aix́ı com també els seus paràmetres. Els comportaments són referen-
ciats des dels estats que tenen un subseqüent comportament bàsic.

• El fitxers d’opcions contenen les opcions senzilles.
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Figura 20. Relació entre les classes de XABSL

• El fitxer ’options.xml’ defineix el prototipus de cada opció i els seus paràmetres.
Aquests prototips són necessaris per comprovar en el fitxer d’opcions, quan
una existeix una referència subseqüent.

• El fitxer ’agents.xml’ inclou tots els fitxers d’opcions. Els agents i les opcions
principals es defineixen aqúı.

Aix́ı com els agents pot ser distribüıt en molts fitxers, els esquemes també
estàn modularitzats:

• xabsl-2.1.agent-collection.xsd Element principal del comportament XABSL.
Definició de l’agent.

• xabsl-2.1.basic-behaviors.xsd Prototipus per el comportament bàsic.
• xabsl-2.1.expressions.xsd Arxiu per les expressions decimals i booleanes.
• xabsl-2.1.option-definitions.xsd Prototipus per les opcions.
• xabsl-2.1.option.xsd Definićı de l’opció.
• xabsl-2.1.parameter.xsd Parametres per les opcions, comporatments bàscis

i altres funcions.
• xabsl-2.1.symbols.xsd Definició dels simbols.
• xinclude-1.0.xsd Esquema simplificat per l’estàndard XInclude.
• xmlbase.xsd Esquema simplificat pel XML estàndard.

La figura 20 ens mostra les relacions que tenen les diferents classes de XABSL.

8.2 Definició dels simbols

Tots els śımbols que siguin utilitzats dins les opcions primer ha de ser definits
en un fitxer apart. Per exemple el fitxer ’my-symbols.xml’ pot ser aix́ı:

<?xml version="1.0" encoding="ISO-8859-1"?>

<symbols xmlns="http://www.ki.informatik.hu-berlin.de/XABSL2.1"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.ki.informatik.hu-berlin.de/XABSL2.1

xabsl-2.1.symbols.xsd"

id="my-symbols" title="My Symbols"

description="My most used symbols">

<boolean-input-symbol name="something-wrong" description="a boolean symbol"/>

<decimal-input-symbol name="foo" description="a decimal symbol" measure="mm"/>
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Figura 21. L’estructura del l’element śımbol

<decimal-input-function name="abs" description="the absolute value of a number"measure="">

<parameter name="abs.value" measure="" range="decimal" description="The value for that abs() is calculated"/>

</decimal-input-function>

<enumerated-input-symbol name="type-of-recognized-pet" description="Which pet was seen by the robot">

<enum-element name="dog"/>

<enum-element name="cat"/>

<enum-element name="guinea-pig"/>

</enumerated-input-symbol>

<enumerated-output-symbol name="op-mode" description="The mode how fast the robot shall act">

<enum-element name="op-mode.slow"/>

<enum-element name="op-mode.fast"/>

<enum-element name="op-mode.very-fast"/>

</enumerated-output-symbol>

<constant name="pi" description="The value of pi"

measure="rad" value="3.14"/>

...

</symbols>

Els atributs dels śımbols són:

• ’id’: Un identificador per la col·lecció de śımbols. Ha de ser identic que el
fitxer però sense la extensió.

• ’title’: Un titul per la documentació.
• ’description’: La descripció és requerida per la documentació.

La figura 21 mostra l’estructura dels śımbols. Tenim 6 tipus diferents de
śımbols dins de l’element śımbol.

• boolean-input-symbol: El śımbol per a les funcions booleanes.
• decimal-input-symbol: El śımbol per a les variables o funcions decimals.
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• decimal-input-function: El prototip per a les funcions decimals para-
metritzades.

• enumerated-input-symbol: Un śımbol per poder enumerar variables o
funcions. Cada element enum ha de ser definit com un un śımbol de fill del
enum.

• enumerated-output-symbol: Aquest śımbol pot ser utilitat per influir a
l’agent mentres estem executatnt algun comportament bàsic. Aix́ı com el
enumerated-input-symbol també té elements fill.

• constant: Defineix una costant decimal.

8.3 Prototipus dels comportaments bàsics

Per a cada comportament bàsic, hem de definir un prototipus. En el fitxer
següent es mostra un exemple del que pot ser un comportament bàsci:

<?xml version="1.0" encoding="ISO-8859-1"?>

<basic-behaviors xmlns="http://www.ki.informatik.hu-berlin.de/XABSL2.1"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.ki.informatik.hu-berlin.de/XABSL2.1

xabsl-2.1.basic-behaviors.xsd"

id="my-basic-behaviors" title="My Basic Behaviors" description="My common basic behaviors">

<basic-behavior name="move-to" description="Lets the agent move to a point">

<parameter name="move-to.x" measure="mm" range="-1000..1000" description="X of destination position"/>

<parameter name="move-to.y" measure="mm" range="-1000..1000" description="Y of destination position"/>

</basic-behavior>

<basic-behavior name="wait" description="The agent performs no action"/>

</basic-behaviors>

Els atributs per els basic-behaviors són:

• ’id’: Un identificador per la col·lecció de comportaments bàsics. Ha de ser
identic que el fitxer però sense la extensió.

• ’title’: Un t́ıtol per la documentació.
• ’description’: La descripció és requerida per la documentació.

8.4 Prototipus per a les opcions

Cada opció pot ser encapsulada dins el seu propi fitxer. Per tal de validar
una opció śımbol, hem de tenir un prototipus per a totes les altres opcions.
Per tant, en cada agent de comportaments de XABSL he de tenir un fitxer
anomenat ’options.xml’. Serà semblant a aquest.

<?xml version="1.0" encoding="ISO-8859-1"?>

<option-definitions

xmlns="http://www.ki.informatik.hu-berlin.de/XABSL2.1"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.ki.informatik.hu-berlin.de/XABSL2.1xabsl-2.1.option-definitions.xsd">
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Figura 22. L’element opció

<option-definition name="nice-behavior" description="A nice behavior"/>

<option-definition name="move-around" description="A behavior for randomly moving around">

<parameter name="move-around.speed" measure="mm/s" range="0..500"

description="The speed with that the robot shall move"/>

</option-definition>

...

</option-definitions>

8.5 Opcions

Cada opció ha d’estar definida en un fitxer separat. Això seria un fitxer d’op-
cions:

<?xml version="1.0" encoding="ISO-8859-1"?>

<option-definitions

xmlns="http://www.ki.informatik.hu-berlin.de/XABSL2.1"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.ki.informatik.hu-berlin.de/XABSL2.1xabsl-2.1.option-definitions.xsd">

<option-definition name="nice-behavior" description="A nice behavior"/>

<option-definition name="move-around" description="A behavior for randomly moving around">

<parameter name="move-around.speed" measure="mm/s" range="0..500"

description="The speed with that the robot shall move"/>

</option-definition>

...

</option-definitions>

L’element opció és l’element root de l’arxiu d’opcions, té els següents atributs:

• ’name’: El nom de l’opció. Ha de ser igual que el fitxer però sense l’extensió.
• ’initial-state’: El nom de l’estat inicial. Aquest està serà activat quan entrem

per primer cop des de l’execució del graf s’opcions.

Hem d’incloure tots els fitxers de definicions, de comportaments bàsics, i les
definicions de les opcions. Com mostrem en l’exemple, podem declarar tot els
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Figura 23. L’element estat

fitxers com a fitxers externs en el principi del document.

Després d’incloure els śımbols, els comportaments bàsics i la definició d’op-
cions, podrem incloure un arbre de decisió comú.

Si tenim transicions amb les mateixes condicions en cada estat, aquestes condi-
cions les podem posar dins un arbre de decisió comú. Aquestes condicions seran
realitzades abans d’activar algun estat. Si cap de les condicions de l’arbre com
és certa, continuarem aqúı fins que alguna es compleixi.

8.6 Els estats

L’element estat (Figura 23 representa un estat simple de la màquina d’estats

<state name="first-state" is-target-state="true">

<subsequent-basic-behavior ref="move-to">

<set-parameter ref="move-to.x">

<decimal-value value="42"/>

</set-parameter>

</subsequent-basic-behavior>

<set-output-symbol ref="op-mode" value="op-mode.fast"/>

<decision-tree>

<if>

<less-than>

<decimal-input-symbol-ref ref="foo"/>

<decimal-value value="14"/>

<less-than>

<transition-to-state ref="second-state"/>

</if>

<else>

<transition-to-state ref="first-state"/>

</else>

</decision-tree>

</state>
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Figura 24. L’element arbre de decisió

Cada estat té una opció subsequent o be un subseqüent comportament bàsic.
Això determina quina acció serà executada si entrem en aquest estat.

Si tenim un comportament que té un paràmetre, però en aquest estat no
inicialitzem el paràmetre, el motor l’inicialitzara a 0.

8.7 Arbres de decisió

Cada estat té un arbre de decisió. La tasca d’aquest arbre de decisió s deter-
minar la transició a un altre estat depenent del śımbols d’entrada. Per tant
les fulles de l’arbre de decisió són transicions.

Si l’element conte sempre un bloc de if/else-if/else o una transició a un estat.
Un bloc if/else-if/else consisteix amb un element if, un element else-if opcional
i un element else. La condició d’elements té una expressió booleana.

8.8 Expressions booleanes

Les expresions booleanes poden ser un dels element que mostrem en la figura
25.

• boolean-input-symbol-ref : Una referència a un śımbol booleà.
• enumerated-input-symbol-comparison: Compara el valor de un enumerated-

input-simbol amb el valor donat.
• and, or: L’operador booleà i (&&) i o (— —).
• not: L’operador booleà de negació (!).
• equal-to, not-equal-to, less-than, less-than-or-equal-to, greater-than,

greater-than-orequal- to: Els operador igual, diferent, major que, menor
que, major o igual que, i menor o igual que. Compraren dos elements.
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Figura 25. Les expresions booleanes

• subsequent-option-reached-target-state: Aquesta sentencia serà certa
quan l’estat subsequent de la opció sigui una opció o bé quan l’estat actiu
de la subsequent opció sigui una opció. En cas contrari serà fals.

8.9 Expressions decimals

La expresió decimal pot ser utilitzade dins d’una expressió booleana i per a la
prametrització dels comportamnts subsequents. Pot ser un dels elements de la
figura 26

• decimal-input-function-call: Crida a una funció decimal.
• constant-ref: Una referència a una costant que va està definida dins la

col·lecció de śımbols.
• decimal-value: Un valor decimal.
• plus, minus, multiply, divide, mod: Les operacions aritmètiques de

suma, resta, multiplicació, divisió i mòdul.
• time-of-state-execution: El temps en que l’estat ha estat actiu aquest

estat. Aquest cop és resetejat quan aquest estat no fos actiu des de l’execució
del motor.

• time-of-option-execution: El temps en que aquesta opció esta sent activa.
Aquest temps serà resetejat quant aquesta opció no sigui activa en l’ultima
execució del motor.

• conditional-expression: Aquesta opció funciona com el una l’operador de
C. La condició és comprovada, si és certa, retornem l’expressió decimal 1 en
cas contrari l’expressió decimal 2. Els elements de la condició contenen una
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Figura 26. Les expresions decimals

expressió booleana i dues expressions decimals.

8.10 Agents

El fitxer ’agents.xml’ és el fitxer principal del document XABSL. Ell inclou
totes les opcions i defineix els agents. Aqúı teniu un exemple d’aquest fitxer:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE options [

<!ENTITY options SYSTEM "options.xml">

]>

<agent-collection xmlns="http://www.ki.informatik.hu-berlin.de/XABSL2.1"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.ki.informatik.hu-berlin.de/XABSL2.1

xabsl-2.1.agent-collection.xsd"

xmlns:xi="http://www.w3.org/2001/XInclude">

<title>My XABSL behavior application</title>

<platform>My robot/agent platform.</platform>

<software-environment>My software platform</software-environment>

<agent id="default-agent" title="Default" description="The default agent behavior" root-option="foo"/>

<agent id="test-behavior" title="Test" description="A test environment for the option bla" root-option="bla"/>
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Figura 27. L’element agent

...

&options;

<options>

<xi:include href="Options/foo.xml"/>

<xi:include href="Options/bla.xml"/>

...

</options>

</agent-collection>

8.11 Integració de la màquina al codi C++

El següent pas és la integració d’aquest màquines d’estat escrites en XML
en el nostre codi C++. Hem de tindre hem compte que s’han definir tots els
comportaments bàsics, registrar els śımbols dels comportaments, registrar els
śımbols de consulta del WorldState, i associar les funcions de C++ amb aque-
sts śımbols.

BasicBehaviors (Comportaments).

Comencem per els comportaments bàsics:

Hem de definir una classe per a cadascun dels comportaments on aquests
heretin de la classe Xabsl2BasicBehavior i tinguin implementat el mètode vir-
tual execute(), en aquesta funció hem de posar el valor de l’acció a executar
en la variable action.

El nom del basicBehavior de l’arxiu XML l’hi hem de passar al constructor
de la classe base, com podem veure en l’exemple ”standUp”
.

class BasicBehaviorEstatStandUp : public Xabsl2BasicBehavior
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{

public:

BasicBehaviorEstatStandUp(Xabsl2ErrorHandler& errorHandler,

WorldState& worldState, int& action)

: Xabsl2BasicBehavior("standUp",errorHandler),

worldState(worldState),

action(action)

{

}

virtual void execute();

private:

WorldState& worldState; // el world state on es basa l’acció

int& action; // l’accio a ser generada

};

void BasicBehaviorEstatStandUp::execute()

{

//printf("void BasicBehaviorEstatStandUp::execute() \n");

action=6;

}

Veure exemple MyBasicBehavior

En l’arxiu ../AiboXabsl/xml/my-basic-behaviors.xml

Hem de definir cadascun dels basic-behaviors.

Exemple:

<basic-behavior name="standUp" description="el gos s’aixeca de

l’estació de recarrega"/>

WorldState (estat de l’entorn)

Aquesta classe ha d’heretar de la classe Xabsl2FunctionProvider. Aqúı defińırem
totes les funcions necessàries per conèixer des de les maquines d’estat l’estat
en que es troba el gos AIBO. S’ha d’entendre aquesta classe com la classe que
té la informació de tots els sensors, la posició i tots els aspectes rellevants de
la visió del robot AIBO. Quan l’AIBO detecti un canvi en el seu estat ha de
fer-ho saber-ho a aquesta classe, per tant hem de tenir un mètodes per actu-
alitzar cadascuna de les variables. Aquesta classe també donarà la informació
a la màquina d’estats aix́ı com ella ho vagi sol·licitant, per tant també s’ha de
tenir uns mètodes per poder recollir cadascuna de les variables.

En l’arxiu ../AiboXabsl/xml/my-symbols.xml , defińırem cadascun dels śımbols
que utilitzarem , després explicarem com associar aquests śımbols amb la fun-
ció corresponent del WorldState.
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<boolean-input-symbol name="cara" description="Hay cara"/>

<decimal-input-symbol name="tecla-apretada" description="Valor de

la tecla apretada" measure="px"/> <decimal-input-symbol

name="fiBallar" description="Variable que ens indica si ha acabat

de ballar" measure="px"/> <decimal-input-symbol name="fiCaminar"

description="Variable que ens indica si ha acabat de ballar"

measure="px"/> <decimal-input-symbol name="estatAibo"

description="Variable que ens indica si el gos esta en l’estació

de recarrega" measure="px"/> <decimal-input-symbol name="x"

description="The x position of the player" measure="px"/>

En aquest arxiu també definirem les constat que ens serviran per les compro-
vacions, per exemple:

<constant name="FIBALLAR" description="ens indica si s’ha acabat

de ballar" measure="int" value="11"/> <constant name="FICAMINAR"

description="ens indica si s’ha acabat de ballar" measure="int"

value="12"/>

PROCÉS.

Finalment en el nostre programa principal hem de fer les següents coses:

stat = new WorldState(); //Fem una instancia del WordlState.

int nextAction; //Variable on ficarem el valor de l’acció a

ejecutar. MyErrorHandler myErrorHandler;

//Definim cadascun del BasicsBehaviors

BasicBehaviorGetBehindBall

basicBehaviorGetBehindBall(myErrorHandler, worldState,

nextAction); BasicBehaviorGoTo basicBehaviorGoTo(myErrorHandler,

worldState, nextAction); BasicBehaviorSimpleAction

basicBehaviorSimpleAction(myErrorHandler, worldState, nextAction);

BasicBehaviorEstat2 basicBehaviorEstat2(myErrorHandler,

worldState, nextAction); BasicBehaviorEstatPara

basicBehaviorEstatPara(myErrorHandler, worldState, nextAction);

BasicBehaviorEstatSaluda basicBehaviorEstatSaluda(myErrorHandler,

worldState, nextAction); BasicBehaviorEstatBalla

basicBehaviorEstatBalla(myErrorHandler, worldState, nextAction);

BasicBehaviorEstatAnarEstacioRecarga

basicBehaviorEstatAnarEstacioRecarga(myErrorHandler, worldState,

nextAction); BasicBehaviorEstatNothing

basicBehaviorEstatNothing(myErrorHandler, worldState, nextAction);

BasicBehaviorEstatStandUp

basicBehaviorEstatStandUp(myErrorHandler, worldState, nextAction);

//Cream un nou motor

pEngine = new Xabsl2Engine(myErrorHandler, &getCurrentSystemTime);

// Registrem tots els BasicBehaviors amb el nostre motor.

pEngine->registerBasicBehavior(basicBehaviorGetBehindBall);

pEngine->registerBasicBehavior(basicBehaviorGoTo);

pEngine->registerBasicBehavior(basicBehaviorSimpleAction);

pEngine->registerBasicBehavior(basicBehaviorEstat2);

pEngine->registerBasicBehavior(basicBehaviorEstatPara);

pEngine->registerBasicBehavior(basicBehaviorEstatSaluda);

pEngine->registerBasicBehavior(basicBehaviorEstatBalla);

pEngine->registerBasicBehavior(basicBehaviorEstatAnarEstacioRecarga);

pEngine->registerBasicBehavior(basicBehaviorEstatNothing);

pEngine->registerBasicBehavior(basicBehaviorEstatStandUp);

// Registrem els sı́mbols que utilitzarem i els diem quina serà la funció del WorldState que

// utilitzaran per poder obtenir el valor.
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pEngine->registerDecimalInputSymbol("tecla-apretada", &worldState,

(double (Xabsl2FunctionProvider::*)())&WorldState::getTeclaApretada);

pEngine->registerDecimalInputSymbol("fiBallar", &worldState,

(double (Xabsl2FunctionProvider::*)())&WorldState::getFiBallar);

pEngine->registerDecimalInputSymbol("fiCaminar", &worldState,

(double (Xabsl2FunctionProvider::*)())&WorldState::getFiCaminar);

pEngine->registerDecimalInputSymbol("estatAibo", &worldState,

(double (Xabsl2FunctionProvider::*)())&WorldState::getEstatEstacio);

MyFileInputSource input("intermediate-code.dat"); //Agafem

l’arxiu generat pels xml pEngine->createOptionGraph(input);

//Cream ef graf

While(..) { if (!myErrorHandler.errorsOccurred) {

pEngine->execute();

worldState.printField(myErrorHandler);

player_move= nextAction;

} else {

printf("Hi ha hagut un error;");

player_move= 1;

}

//En aquest punt tenim a la variable nextAction , el valor de d’acció a realitzar, haurem de

//de comprovar si la variable és igual o no a l’estat anterior, per tal de dir-li

//al gos que executi una nova acció o no.

}

Options:

En aquest arxiu d’XML definirem totes les opcions que tenim, per cada opció
haurem de definir l’arxiu ”.Options/nomOpcio.xml”
En el nostre exemple únicament tenim una opció definida, ı̈nici”.

Podria ser interessant tenir una opció per quan el gos està en l’estació i una
altre per quan esta aixecat.

En l’inici serà on definirem la maquina d’estats d’aquesta opció.

Exemple Maquina d’estats:

<?xml version="1.0" encoding="ISO-8859-1"?> <!DOCTYPE

dummy-doc-type [

<!ENTITY my-symbols SYSTEM "../my-symbols.xml">

<!ENTITY my-basic-behaviors SYSTEM "../my-basic-behaviors.xml">

<!ENTITY options SYSTEM "../options.xml">

]> <option xmlns="http://www.ki.informatik.hu-berlin.de/XABSL2.2"

xmlns:xi="http://www.w3.org/2003/XInclude"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.ki.informatik.hu-berlin.de/XABSL2.2

../../../Xabsl2/xabsl-2.2/xabsl-2.2.option.xsd" name="inici"

initial-state="estatInici">

&my-symbols;
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&my-basic-behaviors;

&options;

<state name="estatInici">

<subsequent-basic-behavior ref="estat2"/>

<decision-tree>

<if>

<condition description="tecla apretada es amunt">

<equal-to>

<decimal-input-symbol-ref ref="tecla-apretada"/>

<constant-ref ref="CARA"/>

</equal-to>

</condition>

<transition-to-state ref="estatStandUp"/>

</if>

<else>

<transition-to-state ref="estatInici"/>

</else>

</decision-tree>

</state>

<state name="estatBalla">

<subsequent-basic-behavior ref="estatBalla"/>

<decision-tree>

<if>

<condition description="ha acabat de ballar">

<equal-to>

<decimal-input-symbol-ref ref="fiBallar"/>

<constant-ref ref="N"/>

</equal-to>

</condition>

<transition-to-state ref="estatAnarEstacioRecarga"/>

</if>

<else>

<transition-to-state ref="estatBalla"/>

</else>

</decision-tree>

</state>

<state name="estatCamina">

<subsequent-basic-behavior ref="get-behind-ball"/>

<decision-tree>

<if>

<condition description="Ha acabat de caminar?">

<equal-to>

<decimal-input-symbol-ref ref="fiCaminar"/>

<constant-ref ref="N"/>

</equal-to>

</condition>

<transition-to-state ref="estatCap"/>

</if>

<else>

<transition-to-state ref="estatCamina"/>

</else>

</decision-tree>

</state>

<state name="estatCap">

<subsequent-basic-behavior ref="nothing"/>

<decision-tree>

<if>

<condition description="M’han tocat el cap , han apretat tecla C ?">

<equal-to>

<decimal-input-symbol-ref ref="tecla-apretada"/>

<constant-ref ref="C"/>

</equal-to>

</condition>

<transition-to-state ref="estatBalla"/>
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</if>

<else>

<transition-to-state ref="estatCap"/>

</else>

</decision-tree>

</state>

<state name="estatAnarEstacioRecarga">

<subsequent-basic-behavior ref="anarEstacioRecarga"/>

<decision-tree>

<if>

<condition description="Esta en l’estació de recarga">

<equal-to>

<decimal-input-symbol-ref ref="tecla-apretada"/>

<constant-ref ref="ESTACIO"/>

</equal-to>

</condition>

<transition-to-state ref="estatEstacio"/>

</if>

<else>

<transition-to-state ref="estatAnarEstacioRecarga"/>

</else>

</decision-tree>

</state>

<state name="estatEstacio">

<subsequent-basic-behavior ref="nothing"/>

<decision-tree>

<if>

<condition description="Esta Carregat o han apretat tecla B">

<equal-to>

<decimal-input-symbol-ref ref="tecla-apretada"/>

<constant-ref ref="B"/>

</equal-to>

</condition>

<transition-to-state ref="estatStandUp"/>

</if>

<else>

<if>

<condition description="tecla apretada es amunt">

<equal-to>

<decimal-input-symbol-ref ref="tecla-apretada"/>

<constant-ref ref="CARA"/>

</equal-to>

</condition>

<transition-to-state ref="estatSaluda"/>

</if>

<else>

<transition-to-state ref="estatEstacio"/>

</else>

</else>

</decision-tree>

</state>

<state name="estatSaluda">

<subsequent-basic-behavior ref="estatSaluda"/>

<decision-tree>

<if>

<condition description="ha acabat de ballar">

<equal-to>

<decimal-input-symbol-ref ref="fiBallar"/>

<constant-ref ref="N"/>

</equal-to>

</condition>

<transition-to-state ref="estatEstacio"/>

</if>

<else>

<transition-to-state ref="estatSaluda"/>
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Figura 28. Graf del comportament

</else>

</decision-tree>

</state>

<state name="estatStandUp">

<subsequent-basic-behavior ref="standUp"/>

<decision-tree>

<if>

<condition description="El gos s’hauria d’aixecar de l’estació de recarga">

<equal-to>

<decimal-input-symbol-ref ref="estatAibo"/>

<constant-ref ref="N"/>

</equal-to>

</condition>

<transition-to-state ref="estatCamina"/>

</if>

<else>

<transition-to-state ref="estatStandUp"/>

</else>

</decision-tree>

</state>

</option>

Passos per compilar.

Ens hem de situar en la carpeta ../AiboXabls/xml/ Fem ”make all”.
Això validara la nostra maquina d’estats i en cas d’èxit ens generà l’arxiu
’intermediate-code.dat’ i ’debug-symbols.dat’, que després aquests arxius ser-
an utilitzats posteriorment en el projecte de visual.

Hem de tenir hem compta que cada cop que fem una modificació en els arxius
XML, haurem de tornar a generar aquests fitxers.
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Un cop tenim aquest arxius generats podem compilar i executar el projecte
de Visual.

En l’hora d’execućıo el programa genererà un arxiu anomenat ’messages.log’
en la mateixa carpeta de l’executable. Si tot fos correcta aquest arxiu hauria
d’estar buit, en cas contrari vol dir que s’han trobat els errors que l’arxiu ens
indica.
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9 Appendices

9.1 Appendix B The AIBO R© Entertainment Robot ERS-7M3 parts

Figura 29. Sony AIBO Robot

[1] Stereo microphones Allow the AIBO R© Entertainment Robot to listen to
the surrounding environment.

[2] Head distance sensor Measures the distance between the AIBO robot and
other objects.

[3] Color camera Detects the color, shape, and movement of nearby objects.

[4] Mouth Picks up the AIBOne toy and expresses emotions.

[5] Chest distance sensor Measures the distance between the AIBO robot and
other objects.

[6]Tail Moves up, down, left, and right to express the AIBO robot’s emotions.

[7] Ears Indicates the AIBO robot’s emotions and condition. See fig.29

[8] Head sensor Detects and turns white when you gently stroke the AIBO
robot’s head.

[9] Wireless light (on the back of the AIBO robot’s head) Indicator used with
the wireless LAN function. This light turns blue when the AIBO robot is
connected to the e-mail server.

[10] Pause button When pressed, the AIBO robot’s activity will pause or
resume.
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Figura 30. Sony AIBO Robot

[11] Back sensors (front, middle, and rear) Detect and turn white when you
gently stroke the AIBO robot’s back.

[12] Face lights (illuminated face) These lights turn various colors to show the
AIBO robot’s emotions and conditions.

[13] Head light Detects and turns white when you touch the head sensor.
Lights / flashes orange when one of the AIBO robot’s joints is jammed (page
43).

[14] Mode indicators (inner side of ears) These indicate the present mode and
condition of the AIBO robot (page 42).

[15] Operation light During operation: turns green. During preparation for
shutdown: flashes green. During charging: turns orange. When a charging error
occurs: flashes orange. When operation stops: turns OFF. Outside hours of
activity (Sleeping on the Energy Station): slowly flashing green.

[16] Back lights (front, middle, and rear) Detect and turn white when you
gently touch the AIBO robot’s back sensors. These lights also turn blue (front),
orange (middle), and red (rear) to indicate a variety of actions.See fig.30

[1] Paw sensors These are located on the bottom of the AIBO R© Entertainment
Robot’s paws, and detect contact with any surface it touches. When the AIBO
robot extends one of its paws, it will react with happiness if you touch it.
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Figura 31. Sony AIBO Robot

[2] Speaker Emits music, sound effects, and voice guide.

[3] Charging terminal When you place the AIBO robot on the Energy Station,
this part makes contact with the station to allow charging of the AIBO robot’s
battery.

[4] Volume control switch (VOLUME) Adjusts the volume of the speaker to
one of four levels (including no sound).

[5] Wireless LAN switch (WIRELESS) This turns the AIBO robot’s wireless
LAN function ON or OFF.

[6] ”Memory StickTM”media access indicator This indicator turns red while
the AIBO robot is reading or writing to a ”Memory Stick”media.

[7] Battery pack latch (BATT Z) Flip this latch to the rear when you want to
remove the battery.
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[8] Chin sensor Senses when you touch the AIBO robot’s chin.

[9] FCC ID/MAC address label Indicates the FCC ID and MAC address of
the AIBO robot’s wireless unit.

[10] Battery slot Holds the AIBO robot’s lithium-ion battery.

[11] ”Memory Stick”media eject button (Z) Press to eject the ”Memory Stick”media.
L ”Memory Stick”media slot This is where you insert the provided AIBO-ware
”Memory Stick”media. See fig.31
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9.2 Appendix C Computer Vision

The field of computer vision can be characterized as immature and diverse.
Even though earlier work exists, it was not until the late 1970’s that a more
focused study of the field started when computers could manage the processing
of large data sets such as images. However, these studies usually originated
from various other fields, and consequently there is no standard formulation
of the ”computer vision problem”. Also, and to an even larger extent, there is
no standard formulation of how computer vision problems should be solved.
Instead, there exists an abundance of methods for solving various well-defined
computer vision tasks, where the methods often are very task specific and
seldom can be generalized over a wide range of applications. Many of the
methods and applications are still in the state of basic research, but more
and more methods have found their way into commercial products, where
they often constitute a part of a larger system which can solve complex tasks
(e.g., in the area of medical images, or quality control and measurements in
industrial processes).

Computer vision is by some seen as a subfield of artificial intelligence where
image data is being fed into a system as an alternative to text based input for
controlling the behavior of a system. Some of the learning methods which are
used in computer vision are based on learning techniques developed within
artificial intelligence.

Since a camera can be seen as a light sensor, there are various methods in
computer vision based on correspondences between a physical phenomenon
related to light and images of that phenomenon. For example, it is possible
to extract information about motion in fluids and about waves by analyzing
images of these phenomena. Also, a subfield within computer vision deals with
the physical process which given a scene of objects, light sources, and camera
lenses forms the image in a camera. Consequently, computer vision can also
be seen as an extension of physics.

A third field which plays an important role is neurobiology, specifically the
study of the biological vision system. Over the last century, there has been an
extensive study of eyes, neurons, and the brain structures devoted to process-
ing of visual stimuli in both humans and various animals. This has led to a
coarse, yet complicated, description of how ”real” vision systems operate in
order to solve certain vision related tasks. These results have led to a sub-
field within computer vision where artificial systems are designed to mimic
the processing and behavior of biological systems, at different levels of com-
plexity. Also, some of the learning-based methods developed within computer
vision have their background in biology.
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Yet another field related to computer vision is signal processing. Many existing
methods for processing of one-variable signals, typically temporal signals, can
be extended in a natural way to processing of two-variable signals or multi-
variable signals in computer vision. However, because of the specific nature of
images there are many methods developed within computer vision which have
no counterpart in the processing of one-variable signals. A distinct character
of these methods is the fact that they are non-linear which, together with the
multi-dimensionality of the 19 22 signal, defines a subfield in signal processing
as a part of computer vision.

Beside the above mentioned views on computer vision, many of the related
research topics can also be studied from a purely mathematical point of view.
For example, many methods in computer vision are based on statistics, opti-
mization or geometry. Finally, a significant part of the field is devoted to the
implementation aspect of computer vision; how existing methods can be real-
ized in various combinations of software and hardware, or how these methods
can be modified in order to gain processing speed without losing too much
performance.

9.2.1 Related fields

Computer vision, Image processing, Image analysis, Robot vision and Machine
vision are closely related fields. If you look inside text books which have either
of these names in the title there is a significant overlap in terms of what
techniques and applications they cover. This implies that the basic techniques
that are used and developed in these fields are more or less identical, something
which can be interpreted as there is only one field with different names.

On the other hand, it appears to be necessary for research groups, scientif-
ic journals, conferences and companies to present or market themselves as
belonging specifically to one of these fields and, hence, various characteriza-
tions which distinguish each of the fields from the others have been presented.
The following characterizations appear relevant but should not be taken as
universally accepted.

Image processing and Image analysis tend to focus on 2D images, how to
transform one image to another, e.g., by pixel-wise operations such as con-
trast enhancement, local operations such as edge extraction or noise removal,
or geometrical transformations such as rotating the image. This characteri-
zation implies that image processing/ analysis does not produce nor require
assumptions about what a specific image is an image of.

Computer vision tends to focus on the 3D scene projected onto one or several
images, e.g., how to reconstruct structure or other information about the 3D
scene from one or several images. Computer vision often relies on more or less
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complex assumptions about the scene depicted in an image.

Machine vision tends to focus on applications, mainly in industry, e.g., vision
based autonomous robots and systems for vision based inspection or measure-
ment. This implies that image sensor technologies and control theory often
are integrated with the processing of image data to control a robot and that
real-time processing is emphasized by means of efficient implementations in
hardware and software. There is also a field called Imaging which primari-
ly focus on the process of producing images, but sometimes also deals with
processing and analysis of images. For example, Medical imaging contains lots
of work on the analysis of image data in medical applications.

Finally, pattern recognition is a field which uses various methods to extract
information from signals in general, mainly based on statistical approaches.
A significant part of this field is devoted to applying these methods to image
data. A consequence of this state of affairs is that you can be working in a
lab related to one of these fields, apply methods from a second field to solve
a problem in a third field and present the result at a conference related to a
fourth field!

9.2.2 Examples of applications for computer vision

Another way to describe computer vision is in terms of applications areas. One
of the most prominent application fields is medical computer vision or medical
image processing. This area is characterized by the extraction of information
from image data for the purpose of making a medical diagnosis of a patient.
Typically image data is in the form of microscopy images, X-ray images, an-
giography images, ultrasonic images, and tomography images. An example of
information which can be extracted from such image data is detection of tu-
mours, arteriosclerosis or other malign changes. It can also be measurements
of organ dimensions, blood flow, etc. This application area also supports med-
ical research by providing new information, e.g., about the structure of the
brain, or about the quality of medical treatments.

A second application area in computer vision is in industry. Here, informa-
tion is extracted for the purpose of supporting a manufacturing process. One
example is quality control where details or final products are being automat-
ically inspected in order to find defects. Another example is measurement of
position and orientation of details to be picked up by a robot arm. See the
article on machine vision for more details on this area.

Military applications are probably one of the largest areas for computer vi-
sion, even though only a small part of this work is open to the public. The
obvious examples are detection of enemy soldiers or vehicles and guidance of
missiles to a designated target. More advanced systems for missile guidance
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send the missile to an area rather than a specific target, and target selection is
made when the missile reaches the area based on locally acquired image data.
Modern military concepts, such as ”battlefield awareness,” imply that various
sensors, including image sensors, provide a rich set of information about a
combat scene which can be used to support strategic decisions. In this case,
automatic processing of the data is used to reduce complexity and to fuse
information from multiple sensors to increase reliability.

One of the newer application areas is autonomous vehicles, which include sub-
mersibles, land-based vehicles (small robots with wheels, cars or trucks), and
aerial vehicles. An unmanned aerial vehicle is often denoted UAV. The level
of autonomy ranges from fully autonomous (unmanned) vehicles to vehicles
where computer vision based systems support a driver or a pilot in various
situations. Fully autonomous vehicles typically use computer vision for navi-
gation, i.e. for knowing where it is, or for producing a map of its environment
(SLAM) and for detecting obstacles. It can also be used for detecting certain
task specific events, e. g., a UAV looking for forest fires. Examples of sup-
porting system are obstacle warning systems 21 24 in cars and systems for
autonomous landing of aircraft. Several car manufacturers have demonstrat-
ed systems for autonomous driving of cars, but this technology has still not
reached a level where it can be put on the market. There are ample examples
of military autonomous vehicles ranging from advanced missiles to UAVs for
recon missions or missile guidance. Space exploration is already being made
with autonomous vehicles using computer vision, e. g., NASA’s Mars Explo-
ration Rover.

Other application areas include the creation of visual effects for cinema and
broadcast, e.g., camera tracking or matchmoving, and surveillance.

9.2.3 Typical tasks of computer vision

Object recognition

Detecting the presence of known objects or living beings in an image, possibly
together with estimating the pose of these objects.

Examples: Searching in digital images for specific content (content-based im-
age retrieval) Recognizing human faces and their location in images. Estima-
tion of the three-dimensional pose of humans and their limbs Detection of
objects which are passing through a manufacturing process, e.g., on a con-
veyor belt, and estimation of their pose so that a robot arm can pick up the
objects from the belt. Optical character recognition OCR (optical character
recognition) takes pictures of printed or handwritten text and converts it into
computer readable text such as ASCII or Unicode. In the past images were
acquired with a computer scanner, however more recently some software can
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also read text from pictures taken with a digital camera.

Tracking

Tracking known objects through an image sequence.

Examples: Tracking a single person walking through a shopping center. Track-
ing of vehicles moving along a road.

Scene interpretation

Creating a model from an image/video.

Examples: Creating a model of the surrounding terrain from images, which
are being taken by a robot-mounted camera. Anticipating the pattern of the
image to determine size and density to estimate the volume using tomography
like device. The cloud recognition is one the government project using this
method.

Egomotion

The goal of egomotion computation is to describe the motion of an object
with respect to an external reference system, by analyzing data acquired by
sensors onboard on the object. i.e. the camera itself.

Examples: Given two images of a scene, determine the 3d rigid motion of the
camera between the two views.

9.2.4 Computer vision systems

A typical computer vision system can be divided in the following subsystems:

Image acquisition

The image or image sequence is acquired with an imaging system (camera,
radar, lidar, tomography system). Often the imaging system has to be cali-
brated before being used.

Preprocessing

In the preprocessing step, the image is being treated with ”low-level”-operations.
The aim of this step is to do noise reduction on the image (i.e. to dissociate the
signal from the noise) and to reduce the overall amount of data. This is typical-
ly being done by employing different (digital)image processing methods such
as: Downsampling the image. Applying digital filters convolutions, computing
a scale space representation Correlations or linear shift invariant filters Sobel
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operator Computing the x- and y-gradient (possibly also the time-gradient).
Segmenting the image. Pixelwise thresholding. Performing an eigentransform
on the image Fourier transform Doing motion estimation for local regions of
the image (also known as optical flow estimation). Estimating disparity in
stereo images.

Feature extraction

The aim of feature extraction is to further reduce the data to a set of features,
which ought to be invariant to disturbances such as lighting conditions, camera
position, noise and distortion. Examples of feature extraction are: Performing
edge detection or estimation of local orientation. Extracting corner features.
Detecting blob features. Extracting spin images from depth maps. Extracting
geons or other three-dimensional primitives, such as superquadrics. Acquiring
contour lines and maybe curvature zero crossings. Generating features with
the Scale-invariant feature transform.

Registration

The aim of the registration step is to establish correspondence between the
features in the acquired set and the features of known objects in a model-
database and/or the features of the preceding image. The registration step
has to bring up a final hypothesis. To name a few methods: Least squares
estimation Hough transform in many variations Geometric hashing Particle
filtering RANdom SAmple Consensus.
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9.3 Appendix D Traffic sign recognition mobile mapping adquisi-
tion

The Traffic Sign Recognition (TSR) is a field of applied computer vision re-
search concerned with the automatical detection and classification of traffic
signs in traffic scene images acquired from a moving car. Most part of the work
done in this field is enclosed in the problem of the Intelligent Transportation
Systems (ITS), which aim is to provide Driver Support Systems (DSS) with
the ability to understand its neighborhood environment and so permit ad-
vanced driver support such as collision prediction and avoidance. Driving is
a task based fully on visual information processing. The road signs and traf-
fic signals define a visual language interpreted by drivers. Road signs carry
many information necessary for successful driving - they describe current traf-
fic situation, define right-of-way, prohibit or permit certain directions, warn
about risky factors, etc. Road signs also help drivers with navigation. Two
basic applications of TSR are under consideration in the research community
- driver’s aid (DSS) and automated surveillance of road traffic devices. It is
desirable to design smart car control systems in such a way to allow evolu-
tion of fully autonomous vehicles in the future. The TSR system is also being
considered as the valuable complement of the GPS-based navigation system.
The dynamical environmental map may be enriched by road sign types and
positions (acquired by TSR) and so help with the precision of current vehicle
position.

Mobile mapping: the Geomobil project on Mobile mapping is a useful tech-
nique used to compile cartographic information from a mobile vehicle. The
mobile vehicle is usually equipped with a set of sensors synchronized with an
orientation system in order to link the obtained information with its position
over the map. We are working with the mobile mapping system named Ge-
omobil. The Geomobil is a Land Based Mobile Mapping System (LBMMS)
developed by the Institut Cartogr‘afic de Catalunya (ICC) (fig.32). It is a
modular system that allows the direct orientation of any sensor mounted on a
roof platform. The Geomobil system is composed of the following subsystems:
orientation subsystem, image subsystem, laser ranging subsystem, synchro-
nization subsystem, power and environmental control subsystem. In our case
we only use information from the image and orientation subsystems, which
will be briefly explained in the rest of this point.

Geomobil system: the orientation subsystem is responsible for georeferencing
the images acquired by the Geomobil. Thus it provides the coordinates (posi-
tion) and the angles (attitude) of their projection centers. It is a system that
combines inertial and GPS observations at a high level of integration, where
the GPS derived trajectories are used to correct and calibrate the drifts of
the Inertial Measurement Unit (IMU) gyros and accelerometers so that the
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position and velocity errors derived from inertial sensors are minimized. This
combination of GPS and IMU systems allows the system to calculate the po-
sition even when the GPS satellites signals are blocked by terrain conditions
(buildings, bridges, tunnels,...). The image subsystem design has been driven
by two main requirements: to acquire images of at least 1Mpix and to get 10m
stereoscopic overlap at a 10m distance from the van.

Figura 32. Geomobil system.

The stereo overlap is conditioned by two factors: getting the maximum stereo-
scopic overlap free of obstacles and preserving a B/D ratio (stereoscopic Base
- object Distance) as good as possible. The system links the captured im-
ages with their position and orientation data, and saves the information to
the discs. The acquisition frequency is limited by the storage system capacity,
and nowadays is programmed to take a stereo-pair of images each 10 meters
or a turn higher than 60 degrees, which corresponds to the camera field of
view

Figura 33. Stereoscopic system diagram. We can see the relation between overlap
zone and distance.
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Figura 34. Geovan camera characteristics.
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9.4 Appendix E Artificial Intelligence History

9.4.1 Prehistory of AI

Humans have always speculated about the nature of mind, thought, and lan-
guage, and searched for discrete representations of their knowledge. Aristotle
tried to formalize this speculation by means of syllogistic logic, which remains
one of the key strategies of AI. The first is-a hierarchy was created in 260 by
Porphyry of Tyros. Classical and medieval grammarians explored more subtle
features of language that Aristotle shortchanged, and mathematician Bernard
Bolzano made the first modern attempt to formalize semantics in 1837.

Early computer design was driven mainly by the complex mathematics needed
to target weapons accurately, with analog feedback devices inspiring an ideal of
cybernetics. The expression ”artificial intelligence”was introduced as a ’digital’
replacement for the analog ’cybernetics’.

9.4.2 Development of AI theory

Much of the (original) focus of artificial intelligence research draws from an
experimental approach to psychology, and emphasizes what may be called
linguistic intelligence (best exemplified in the Turing test).

Approaches to Artificial Intelligence that do not focus on linguistic intelli-
gence include robotics and collective intelligence approaches, which focus on
active manipulation of an environment, or consensus decision making, and
draw from biology and political science when seeking models of how ı̈ntel-
ligent”behavior is organized. AI also draws from animal studies, in particu-
lar with insects, which are easier to emulate as robots (see artificial life), as
well as animals with more complex cognition, including apes, who resemble
humans in many ways but have less developed capacities for planning and
cognition. Some researchers argue that animals, which are apparently sim-
pler than humans, ought to be considerably easier to mimic. But satisfactory
computational models for animal intelligence are not available.

Seminal papers advancing AI include ”A Logical Calculus of the Ideas Im-
manent in Nervous Activity”(1943), by Warren McCulloch and Walter Pitts,
and ”On Computing Machinery and Intelligence”(1950), by Alan Turing, and
”Man-Computer Symbiosis”by J.C.R. Licklider. See Cybernetics and Turing
test for further discussion. There were also early papers which denied the
possibility of machine intelligence on logical or philosophical grounds such
as ”Minds, Machines and G¨odel”(1961) by John Lucas. With the develop-
ment of practical techniques based on AI research, advocates of 10 AI have
argued that opponents of AI have repeatedly changed their position on tasks
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such as computer chess or speech recognition that were previously regarded as
ı̈ntelligenẗın order to deny the accomplishments of AI. Douglas Hofstadter, in
Godel, Escher, Bach, pointed out that this moving of the goalposts effectively
defines ı̈ntelligence”as ”whatever humans can do that machines cannot”. John
von Neumann (quoted by E.T. Jaynes) anticipated this in 1948 by saying, in
response to a comment at a lecture that it was impossible for a machine to
think: ”You insist that there is something a machine cannot do. If you will
tell me precisely what it is that a machine cannot do, then I can always make
a machine which will do just that!”. Von Neumann was presumably alluding
to the Church-Turing thesis which states that any effective procedure can be
simulated by a (generalized) computer.

In 1969 McCarthy and Hayes started the discussion about the frame prob-
lem with their essay, ”Some Philosophical Problems from the Standpoint of
Artificial Intelligence”.

9.4.3 Experimental AI research

Artificial intelligence began as an experimental field in the 1950s with such
pioneers as Allen Newell and Herbert Simon, who founded the first artificial
intelligence laboratory at Carnegie Mellon University, and John McCarthy
and Marvin Minsky, who founded the MIT AI Lab in 1959. They all attended
the Dartmouth College summer AI conference in 1956, which was organized
by McCarthy, Minsky, Nathan Rochester of IBM and Claude Shannon.

Historically, there are two broad styles of AI research - the ”neats”and ”scruffies”.
”Neat”, classical or symbolic AI research, in general, involves symbolic ma-
nipulation of abstract concepts, and is the methodology used in most ex-
pert systems. Parallel to this are the ”scruffy”, or çonnectionist”, approach-
es, of which artificial neural networks are the best-known example, which
try to ”evolvëıntelligence through building systems and then improving them
through some automatic process rather than systematically designing some-
thing to complete the task. Both approaches appeared very early in AI history.

Throughout the 1960s and 1970s scruffy approaches were pushed to the back-
ground, but interest was regained in the 1980s when the limitations of the
”neat”approaches of the time became clearer. However, it has become clear
that contemporary methods using both broad approaches have severe limita-
tions.

Artificial intelligence research was very heavily funded in the 1980s by the
Defense Advanced Research Projects Agency in the United States and by the
fifth generation computer systems project in Japan. The failure of the work
funded at the time to produce immediate results, despite the grandiose promis-
es of some AI practitioners, led to correspondingly large cutbacks in funding
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by government agencies in the late 1980s, leading to a general downturn in
activity in the field known as AI winter. Over the following decade, many AI
researchers moved into related areas with more modest goals such as machine
learning, robotics, and computer vision, though research in pure AI continued
at reduced levels.

9.4.4 Micro-World AI

The real world is full of distracting and obscuring detail: generally science
progresses by focusing on artificially simple models of reality (in physics, fric-
tionless planes and perfectly rigid bodies, for example). In 1970 Marvin Minsky
and Seymour Papert, of the MIT AI Laboratory, proposed that AI research
should likewise focus on developing programs capable of intelligent behaviour
in artificially simple situations known as micro-worlds. Much research has fo-
cused on the so-called blocks world, which consists of coloured blocks of various
shapes and sizes arrayed on a flat surface.

9.4.5 Spinoffs

Whilst progress towards the ultimate goal of human-like intelligence has been
slow, many spinoffs have come in the process. Notable examples include the
languages LISP and Prolog, which were invented for AI research but are now
used for non-AI tasks. Hacker culture first sprang from AI laboratories, in
particular the MIT AI Lab, home at various times to such luminaries as John
McCarthy, Marvin Minsky, Seymour Papert (who developed Logo there) and
Terry Winograd (who abandoned AI after developing SHRDLU).

9.4.6 AI languages and programming styles

AI research has led to many advances in programming languages including
the first list processing language by Allen Newell et. al., Lisp dialects, Plan-
ner, Actors, the Scientific Community Metaphor, production systems, and
rule-based languages. GOFAI TEST research is often done in programming
languages such as Prolog or Lisp. Bayesian work often uses Matlab or Lush
(a numerical dialect of Lisp). These languages include many specialist prob-
abilistic libraries. Real-life and especially real-time systems are likely to use
C++. AI programmers are often academics and emphasise rapid development
and prototyping rather than bulletproof software engineering practices, hence
the use of interpreted languages to empower rapid command-line testing and
experimentation.

The most basic AI program is a single If-Then statement, such as Ïf A, then
B.̈If you type an ’A’ letter, the computer will show you a ’B’ letter. Basically,
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you are teaching a computer to do a task. You input one thing, and the
computer responds with something you told it to do or say. All programs have
If-Then logic. A more complex example is if you type in ”Hello.”, and the
computer responds ”How are you today?”This response is not the computer’s
own thought, but rather a line you wrote into the program before. Whenever
you type in ”Hello.”, the computer always responds ”How are you today?”.
It seems as if the computer is alive and thinking to the casual observer, but
actually it is an automated response. AI is often a long series of If-Then (or
Cause and Effect) statements.

A randomizer can be added to this. The randomizer creates two or more re-
sponse paths. For example, if you type ”Hello”, the computer may respond
with ”How are you today?”or ”Nice weather”or ”Would you like to play a
game?”Three responses (or ’thens’) are now possible instead of one. There is
an equal chance that any one of the three responses will show. This is similar to
a pull-cord talking doll that can respond with a number of sayings. A comput-
er AI program can have thousands of responses to the same input. This makes
it less predictable and closer to how a real person would respond, arguably
because living people respond somewhat unpredictably. When thousands of in-
put (̈ıf”) are written in (not just ”Hello.”) and thousands of responses (”then”)
are written into the AI program, then the computer can talk (or type) with
most people, if those people know the If statement input lines to type.

Many games, like chess and strategy games, use action responses instead of
typed responses, so that players can play against the computer. Robots with
AI brains would use If-Then statements and randomizers to make decisions
and speak. However, the input may be a sensed object in front of the robot
instead of a ”Hello.l.line, and the response may be to pick up the object instead
of a response line.

9.4.7 Chronological History

Historical Antecedents

Greek myths of Hephaestus and Pygmalion incorporate the idea of intelligent
robots. In the 5th century BC, Aristotle invented syllogistic logic, the first
formal deductive reasoning system.

Ramon Llull, Spanish theologian, invented paper ”machines”for discovering
nonmathematical truths through combinattions of words from lists in the 13th
century. By the 15th century and 16th century, clocks, the first modern mea-
suring machines, were first produced using lathes. Clockmakers extended their
craft to creating mechanical animals and other novelties. Rabbi Judah Loew
ben Bezalel of Prague is said to have invented the Golem, a clay man brought
to life (1580).
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Early in the 17th century, Ren´e Descartes proposed that bodies of animals
are nothing more than complex machines. Many other 17th century thinkers
offered variations and elaborations of Cartesian mechanism. Thomas Hobbes
published Leviathan, containing a material and combinatorial theory of think-
ing. Blaise Pascal created the second mechanical and first digital calculating
machine (1642). Gottfried Leibniz improved Pascal’s machine, making the
Stepped Reckoner to do multiplication and division (1673) and evisioned a
universal calculus of reasoning (Alphabet of human thought) by which argu-
ments could be decided mechanically.

The 18th century saw a profusion of mechanical toys, including the celebrat-
ed mechanical duck of Jacques de Vaucanson and Wolfgang von Kempelen’s
phony chessplaying automaton, The Turk (1769).

Mary Shelley published the story of Frankenstein; or the Modern Prometheus
(1818).

19th and Early 20th Century

George Boole developed a binary algebra (Boolean algebra) representing (some)
l.laws of thought.Çharles Babbage and Ada Lovelace worked on programmable
mechanical calculating machines.

In the first years of the 20th century Bertrand Russell and Alfred North
Whitehead published Principia Mathematica, which revolutionized formal log-
ic. Russell, Ludwig Wittgenstein, and Rudolf Carnap lead philosophy into
logical analysis of knowledge. Karel Capek’s play R.U.R. (Rossum’s Universal
Robots)) opens in London (1923). This is the first use of the word ”roboẗın
English.

Mid 20th century and Early AI

Warren Sturgis McCulloch and Walter Pitts publish ”A Logical Calculus of the
Ideas Immanent in Nervous Activity”(1943), laying foundations for artificial
neural networks. Arturo Rosenblueth, Norbert Wiener and Julian Bigelow coin
the term çybernetics̈ın a 1943 paper. Wiener’s popular book by that name
published in 1948. Vannevar Bush published As We May Think (The Atlantic
Monthly, July 1945) a prescient vision of the future in which computers assist
humans in many activities.

The man widely acknowledged as the father of computer science, Alan Turing,
published Çomputing Machinery and Intelligence”(1950) which introduced the
Turing test as a way of operationalizing a test of intelligent behavior. Claude
Shannon published a detailed analysis of chess playing as search (1950). Isaac
Asimov published his Three Laws of Robotics (1950).
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1956: John McCarthy coined the term ”artificial intelligence”as the topic of the
Dartmouth Conference, the first conference devoted to the subject. Demon-
stration of the first running AI program, the Logic Theorist (LT) written by
Allen Newell, J.C. Shaw and Herbert Simon (Carnegie Institute of Technology,
now Carnegie Mellon University).

1957: The General Problem Solver (GPS) demonstrated by Newell, Shaw and
Simon.

1952-1962: Arthur Samuel (IBM) wrote the first game-playing program, for
checkers (draughts), to achieve sufficient skill to challenge a world champion.
Samuel’s machine learning programs were responsible for the high performance
of the checkers player.

1958: John McCarthy (Massachusetts Institute of Technology or MIT) invent-
ed the Lisp programming language. Herb Gelernter and Nathan Rochester
(IBM) described a theorem prover in geometry that exploits a semantic mod-
el of the domain in the form of diagrams of ”typicalçases. Teddington Con-
ference on the Mechanization of Thought Processes was held in the UK and
among the papers presented were John McCarthy’s Programs with Common
Sense, Oliver Selfridge’s Pandemonium, and Marvin Minsky’s Some Methods
of Heuristic Programming and Artificial Intelligence.

Late 1950s and early 1960s: Margaret Masterman and colleagues at University
of Cambridge design semantic nets for machine translation.

1961: James Slagle (PhD dissertation, MIT) wrote (in Lisp) the first symbolic
integration program, SAINT, which solved calculus problems at the college
freshman level.

1962: First industrial robot company, Unimation, founded.

1963: Thomas Evans’ program, ANALOGY, written as part of his PhD work
at MIT, demonstrated that computers can solve the same analogy problems
as are given on IQ tests. Edward Feigenbaum and Julian Feldman published
Computers and Thought, the first collection of articles about artificial intelli-
gence.

1964: Danny Bobrow’s dissertation at MIT (technical report from MIT’s AI
group, Project MAC), shows that computers can understand natural language
well enough to solve algebra word problems correctly. Bert Raphael’s MIT
dissertation on the SIR program demonstrates the power of a logical repre-
sentation of knowledge for question-answering systems.

1965: J. Alan Robinson invented a mechanical proof procedure, the Resolution
Method, which allowed programs to work efficiently with formal logic as a
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representation language. Joseph Weizenbaum (MIT) built ELIZA (program),
an interactive program that carries on a dialogue in English language on any
topic. It was a popular toy at AI centers on the ARPANET when a version
that ”simulated”the dialogue of a psychotherapist was programmed.

1966: Ross Quillian (PhD dissertation, Carnegie Inst. of Technology, now
CMU) demonstrated semantic nets. First Machine Intelligence workshop at
Edinburgh: the first of an influential annual series organized by Donald Michie
and others. Negative report on machine translation kills much work in Natural
language processing (NLP) for many years.

1967: Dendral program (Edward Feigenbaum, Joshua Lederberg, Bruce Buchanan,
Georgia Sutherland at Stanford University) demonstrated to interpret mass
spectra on organic chemical compounds. First successful knowledge-based pro-
gram for scientific reasoning. Joel Moses (PhD work at MIT) demonstrated
the power of symbolic reasoning for integration problems in the Macsyma
program. First successful knowledge-based program in mathematics. Richard
Greenblatt (programmer) at MIT built a knowledge-based chess-playing pro-
gram, MacHack, that was good enough to achieve a class-C rating in tourna-
ment play.

1968: Marvin Minsky and Seymour Papert publish Perceptrons, demonstrating
limits of simple neural nets.

1969: Stanford Research Institute (SRI): Shakey the Robot, demonstrated
combining animal locomotion, perception and problem solving. Roger Schank
(Stanford) defined conceptual dependency model for natural language under-
standing. Later developed (in PhD dissertations at Yale University) for use in
story understanding by Robert Wilensky and Wendy Lehnert, and for use in
understanding memory by Janet Kolodner. Yorick Wilks (Stanford) developed
the semantic coherence view of language called Preference Semantics, embod-
ied in the first semantics-driven machine translation program, and the basis
of many PhD dissertations since such as Bran Boguraev and David Carter
at Cambridge. First International Joint Conference on Artificial Intelligence
(IJCAI) held at Stanford.

1970: Jaime Carbonell (Sr.) developed SCHOLAR, an interactive program for
computer assisted instruction based on semantic nets as the representation of
knowledge. Bill Woods described Augmented Transition Networks (ATN’s) as
a representation for natural language understanding. Patrick Winston’s PhD
program, ARCH, at MIT learned concepts from examples in the world of
children’s blocks. Early 70’s: Jane Robinson and Don Walker established an
influential Natural Language Processing group at SRI.

1971: Terry Winograd’s PhD thesis (MIT) demonstrated the ability of comput-
ers to understand English sentences in a restricted world of children’s blocks,
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in a coupling of his language understanding program, SHRDLU, with a robot
arm that carried out instructions typed in English.

1972: Prolog programming language developed by Alain Colmerauer.

1973: The Assembly Robotics Group at University of Edinburgh builds Freddy
Robot, capable of using visual perception to locate and assemble models. The
Lighthill report gives a largely negative verdict on AI research in Great Britain
and forms the basis for the decision by the British government to discontine
support for AI research in all but two universities.

1974: Ted Shortliffe’s PhD dissertation on the MYCIN program (Stanford)
demonstrated the power of rule-based systems for knowledge representation
and inference in the domain of medical diagnosis and therapy. Sometimes
called the first expert system. Earl Sacerdoti developed one of the first plan-
ning programs, ABSTRIPS, and developed techniques of hierarchical plan-
ning.

1975: Marvin Minsky published his widely-read and influential article on
Frames as a representation of knowledge, in which many ideas about schemas
and semantic links are brought together. The Meta-Dendral learning program
produced new results in chemistry (some rules of mass spectrometry) the first
scientific discoveries by a computer to be published in a referreed journal.

Mid 70’s: Barbara Grosz (SRI) established limits to traditional AI approaches
to discourse modeling. Subsequent work by Grosz, BonnieWebber and Can-
dace Sidner developed the notion of çentering”, used in establishing focus of
discourse and anaphoric references in NLP. David Marr and MIT colleagues
describe the ”primal sketch”and its role in visual perception.

1976: Douglas Lenat’s AM program (Stanford PhD dissertation) demonstrated
the discovery model (loosely-guided search for interesting conjectures). Ran-
dall Davis demonstrated the power of meta-level reasoning in his PhD disser-
tation at Stanford.

Late 70’s: Stanford’s SUMEX-AIM resource, headed by Ed Feigenbaum and
Joshua Lederberg, demonstrates the power of the ARPAnet for scientific col-
laboration.

1978: Tom Mitchell, at Stanford, invented the concept of Version Spaces for
describing the search space of a concept formation program. Herbert Simon
wins the Nobel Prize in Economics for his theory of bounded rationality, one
of the cornerstones of AI known as ”satisficing”. The MOLGEN program,
written at Stanford by Mark Stefik and Peter Friedland, demonstrated that
an object-oriented programming representation of knowledge can be used to
plan gene-cloning experiments.
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1979: Bill VanMelle’s PhD dissertation at Stanford demonstrated the gener-
ality of MYCIN’s representation of knowledge and style of reasoning in his
EMYCIN program, the model for many commercial expert system ”shells”.
Jack Myers and Harry Pople at University of Pittsburgh developed INTERNIST,
a knowledge-based medical diagnosis program based on Dr. Myers’ clinical
knowledge. Cordell Green, David Barstow, Elaine Kant and others at Stanford
demonstrated the CHI system for automatic programming. The Stanford Cart,
built by Hans Moravec, becomes the first computer-controlled, autonomous
vehicle when it successfully traverses a chair-filled room and circumnavigates
the Stanford AI Lab. Drew McDermott and Jon Doyle at MIT, and John Mc-
Carthy at Stanford begin publishing work on nonmonotonic logics and formal
aspects of truth maintenance.

1980s: Lisp machines developed and marketed. First expert system shells and
commercial applications.

1980: Lee Erman, Rick Hayes-Roth, Victor Lesser and Raj Reddy published
the first description of the blackboard model, as the framework for the HEARSAY-
II speech understanding system. First National Conference of the American
Association for Artificial Intelligence (AAAI) held at Stanford.

1981: Danny Hillis designs the connection machine, a massively parallel archi-
tecture that brings new power to AI, and to computation in general. (Later
founds Thinking Machines, Inc.)

1982: The Fifth Generation Computer Systems project (FGCS), an initiative
by Japan’s Ministry of International Trade and Industry, begun in 1982, to
create a ”fifth generation computer”(see history of computing hardware) which
was supposed to perform much calculation utilizing massive parallelism.

1983: John Laird and Paul Rosenbloom, working with Allen Newell, complete
CMU dissertations on Soar (program). James F. Allen invents the Interval
Calculus, the first widely used formalization of temporal events.

Mid 80’s: Neural Networks become widely used with the Backpropagation
algorithm (first described by Paul Werbos in 1974).

1985: The autonomous drawing program, AARON, created by Harold Cohen,
is demonstrated at the AAAI National Conference (based on more than a
decade of work, and with subsequent work showing major developments).

1987: Marvin Minsky publishes The Society of Mind, a theoretical description
of the mind as a collection of cooperating agents.

1989: Dean Pomerleau at CMU creates ALVINN (An Autonomous Land Ve-
hicle in a Neural Network), which grew into the system that drove a car
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coast-to-coast under computer control for all but about 50 of the 2850 miles.

1990s: Major advances in all areas of AI, with significant demonstrations in
machine learning, intelligent tutoring, case-based reasoning, multi-agent plan-
ning, scheduling, uncertain reasoning, data mining, natural language under-
standing and translation, vision, virtual reality, games, and other topics. Rod-
ney Brooks’ MIT Cog project, with numerous collaborators, makes significant
progress in building a humanoid robot.

Early 90’s: TD-Gammon, a backgammon program written by Gerry Tesauro,
demonstrates that reinforcement (learning) is powerful enough to create a
championshiplevel game-playing program by competing favorably with world-
class players.

1997: The Deep Blue chess program (IBM) beats the world chess champion,
Garry Kasparov, in a widely followed match. First official RoboCup football
(soccer) match featuring table-top matches with 40 teams of interacting robots
and over 5000 spectators.

1998: Tim Berners-Lee published his Semantic Web Road map paper [2]. Late
90’s: Web crawlers and other AI-based information extraction programs be-
come essential in widespread use of the World Wide Web. Demonstration of
an Intelligent room and Emotional Agents at MIT’s AI Lab. Initiation of work
on the Oxygen architecture, which connects mobile and stationary computers
in an adaptive network.

2000: Interactive robopets (”smart toys”) become commercially available, re-
alizing the vision of the 18th century novelty toy makers. Cynthia Breazeal at
MIT publishes her dissertation on Sociable machines, describing Kismet (ro-
bot), with a face that expresses emotions. The Nomad robot explores remote
regions of Antarctica looking for meteorite samples.

2004: OWL Web Ontology Language W3C Recommendation (10 February
2004).

58



9.5 Appendix F Apropat a la Ciència

9.5.1 Apropa’t a la ciència.De la Recerca a la Innovació

Figura 35. Apropat a la Ciència event (2006/2007,Barcelona)

The followings information is provided directly from the official website:
http://www10.gencat.net/probert/catala/exposicio/ex14 ciencia.htm

Apropa’t a la ciència.De la Recerca a la Innovació (fig.35)

Inauguració: 11 d’octubre de 2006 a les 19 h Oberta al públic del 12 d’octubre
al 31 de juliol de 2007 L’exposició Com un exponent destacat del Pla de Re-
cerca i Innovació 2005 - 2008 de la Generalitat de Catalunya, i coincidint amb
Barcelona Ciència 2007, ”Apropa’t a la ciència”pretén acostar d’una manera
didàctica i atractiva la ciència als ciutadans; entesa aquesta en un sentit am-
pli. És a dir, com una eina útil per a la gent, malgrat el desconeixement de
molts dels seus aspectes, però de la qual se’n deriven evidents repercussions
socials i de millora per a la qualitat de vida, és a dir el RETORN SOCIAL
DE LA CIÈNCIA. També està adreçada a fomentar l’interés dels més joves
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cap a aquesta disciplina.

Any de la ciència Sota el t́ıtol de Barcelona Ciència 2007 l’ajuntament de
Barcelona commemora el centenari del premi Nobel atorgat a Santiago Ramon
y Cajal. Engega un ampli programa cultural que posarà un accent especial en
el vincle entre les ciències, la cultura i la societat. A més a més, el 2007 es
commemora també el centenari de la creació de l’Institut d’Estudis Catalans
i el de la Junta de Ampliación de Estudios, institució precursora del Consejo
Superior de Investigaciones Cient́ıficas. Per tal de donar un impuls decisiu
a la poĺıtica en relació amb la promoció de la cultura cient́ıfica i crear una
definitiva major sensibilitat social i cultural cap a la ciència, aquest programa
cultural anuncia entre les seves ĺınies concretes d’acció la proposta que l’any
2007 sigui declarat ”Any de la Ciència”a la ciutat de Barcelona. website:
http://www.bcn.es/ciencia2007/

L’exposició Apropa´t a la Ciència. De la recerca a la innovació ha estat dis-
senyada per donar a conèixer els plans de recerca i desenvolupament impulsats
per la Generalitat de Catalunya per tal de fer veure la relació entre els coneix-
ements cient́ıfics i la innovació tecnològica i promoure vocacions cient́ıfiques.
Se’ns ofereix en l’exposició amb exemples ben concrets i molt suggerents. En
ella no se’ns parla de res que recordi el contingut dels llibres de text (potser
perquè es reconeix de manera impĺıcita que, si ho fes, seria dif́ıcil l’apropa-
ment del públic que es vol aconseguir), la seva finalitat no és fer comprendre
conceptes teòrics, fórmules ni equacions. Se’ns presenta, en canvi, una àmplia
panoràmica de l’activitat cient́ıfica real, la que es produeix en diversos con-
textos i impregna la vida de totes les persones. Per això, per la novetat que
representa i per les noves possibilitats educatives que ofereix, és molt impor-
tant donar aquest nou significat, d’empresa col·lectiva, a la paraula ’ciència’.

Anem del passat més remot, de quan encara no hi havia humans sobre la Terra
fins a l’avenir incert dels viatges espacials i dels robots. En Pau d’Hostalets
de Pierola ens proporciona una ocasió per a pensar en el lent procés que ha
donat lloc a l’emergència de l’espècie humana (una evolució afortunada de
la clav́ıcula que proporciona noves possibilitats de manipulació) i la cadira
Mares ens fa veure les dificultats d’adaptar un cos que ha de moure’s a la
inactivitat forçosa en l’interior d’una nau espacial. Els robots ens fan pensar
en quines tasques faran en lloc nostre i com fer-les o no fer-les podrà afectar les
nostres pròpies capacitats. S’han ampliat les comunicacions, que connecten els
satèl·lits artificials, tan llunyans, amb els mòbils, tan propers. Les intervencions
humanes en el món són ara d’abast planetari i transformen la Natura, perquè
en són part. Les tecnologies per a l’aprofitament de l’energia (els molins de
vent), per a la conservació dels aliments, per a prevenir malalties o superar-ne
d’incurables (les vacunes i els trasplantaments), han de poder arribar a tot
arreu.. La mostra ocupa f́ısicament la sala 3 del Palau Robert dividida en
vuit àmbits, a més dels escenaris un d’entrada i un de sortida, en el primer
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dels quals es fa una ràpida pinzellada a les aportacions realitzades pels grans
cient́ıfics de la història com ara Newton o Curie, entre molts d’altres. Aquesta
introducció inicial remet al darrer dels apartats de tancament de l’exposició,
tot invitant les generacions futures a prendre el relleu cient́ıfic.

9.6 La robòtica i les seves aplicacions socials

Un futur de persones i robots. Tot i que per a la majoria de persones els ro-
bots són una realitat confinada a les fàbriques i a la producció, el futur de
la robòtica no passa per les naus industrials. Si l’any 2000 els robots indus-
trials representaven el 95mercat global de la robòtica, es calcula que durant
el 2025 no passaran de ser el 20% d’aquest mercat (situat als 65.000 milions
de dòlars), perdent el seu lideratge en favor dels robots personals i de serveis.
Els seus usos es distribuiran en tres grans apartats: - En el sector profession-
al, des de l’agricultura a la cirurgia passant pel transport i la construcció.
L’aplicació de la robòtica en aquest sector, en el que Europa manté un cert
lideratge, constitueix l’evolució natural de la robòtica tradicional i ha de per-
metre automatitzar processos fins ara exclusius dels humans durant la seva
vida professional. - En el sector domèstic, des de la neteja de la casa fins
a la cura de la gent gran o dels malalts. Aquestes aplicacions, liderades ac-
tualment pels EUA i Corea, faran canviar la imatge del robot amb forma de
”braç mecànic”que munta el vidre d’un cotxe a la ĺınia de producció per un
robot, en alguns casos antropomòrfic, que conviu i actua a l’entorn domèstic
de les persones fent tasques de suport a les persones. - El sector de l’oci i
l’entreteniment, des de les joguines robotitzades fins als entrenadors personals
d’algun esport. Aquest sector, liderat pel Japó, és ja una realitat amb una
gran capacitat de creixement que pot fins i tot superar als jocs d’ordinador.

A l’exposició veurem el robot AIBO i les possibilitats que un programari es-
pecial té per a les persones amb discapacitats, persones grans, etc.
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Figura 36. Fira
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