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Abstract

Human body segmentation in visual data is a challenging problem in Computer Vision.

This problem has been treated for decades, and it still remains an open issue. The main

difficulties of human body segmentation in visual data come from the different points of

view, changes in clothes and illumination, background artifacts, presence of occlusions

and the articulated nature of the human body. An accurate segmentation of the human

body will benefit the development of a new generation of potential applications in health,

leisure, and security.

Recently, with the presence in the marked of new cheap sensors that provide complemen-

tary visual information to classical RGB, the generation of new multi-modal descriptors

and fusion strategies have received special attention by the community. Examples of

these sensors include Thermal imaging and depth data coming from infrared sensors,

which can provide complementary and discriminative information to RGB descriptors in

order to improve segmentation of humans in multi-modal visual data. In this master

thesis project it has been designed a novel registered multi-modal RGB-Depth-Thermal

data set of continuous image sequences. The data set has been collected and registered

in collaboration with an expert team from the Aarlborg University. This data set has

been manually annotated at pixel level at the regions containing subjects in all three

modalities and will be available for the scientific community.

From the novel data set, a multi-modal adaptive background subtraction approach has

been proposed in order to automatically detect the regions of interest that can contain a

subject in the image. In addition, several descriptors from the state-of-the art have been

tested and adapted to extract information from the different modalities. The different

feature spaces are modeled via Gaussian Mixture Models for both subject and non-subject

categories, providing a confidence score for each grid region of interest. The feature

modalities have been tested independently to evaluate their performance for subject

segmentation, and two approaches for multi-modal segmentation have been proposed.

The first naïve approach just computes a threshold value about the combined confidences

for all modalities given the score provided by the Gaussian classifiers. In the second

approach, a SVM is trained combining the output of previous classifiers confidences as

features, also extending the feature vector with previous classifier predictions, in a stacked
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learning fashion. The results show variable performance for the different modalities

when segmenting people in multi-modal data, and improved segmentation accuracy of

the multi-modal GMM-SVM stacked learning method.



Resumen

La segmentación de personas en datos visuales es uno de los problemas actuales más

difíciles en el área de la Visión por Computador. Este problema se ha estudiado durante

décadas por la comunidad, y aún en día sigue siendo tratado. Las principales dificultades

de este problema vienen dadas por los diferentes puntos de vista, los cambios en ropa e

iluminación, los artefactos presentes en el fondo así como por el alto nivel articulado del

cuerpo humano, el cual presenta multitud de cambios en apariencia de la pose. Obtener

una segmentación robusta del cuerpo humano beneficiaría en el desarrollo de una nueva

generación de aplicaciones con alta impacto social en los campos de la salud, ocio y la

seguridad.

Recientemente, con la aparición en el mercado de nuevos sensores económicos que pro-

porcionan información visual complementaria al clásico RGB, se ha generado un nuevo

interés por el estudio de descriptores multi-modales así como de nuevas técnicas de fusión

y aprendizaje de datos. Ejemplos de estos sensores incluyen imágenes termales y mapas

de profundidad por infrarrojos, los cuales pueden proporcionar información complemen-

taria y altamente discriminativa a los descriptores estándar RGB, y como consecuencia,

conseguir mejorar el rendimiento integrado de los modelos de segmentación de personas

en datos visuales multi-modales.

En este proyecto de tesis de máster se ha desarrollado una nueva base de datos multi-

modal RGB-Termal-Profundidad registrada de secuencia continua de datos visuales. La

base de datos ha sido filmada y registrada en colaboración con un equipo experto del área

de la Universidad de Aarlborg en Dinamarca. Los datos han sido manualmente anotados

a nivel de píxel en las regiones donde aparecen sujetos realizando diferentes actividades

e interaccionando con objetos presentes en la escena. Para analizar la base de datos se

ha desarrollado un método de extracción de fondo adaptativo multi-modal que extrae las

regiones de interés que potencialmente pueden contener un sujeto. Adicionalmente, un

conjunto de descriptores del estado del arte han sido testeados y adaptados para extraer

información de las diferentes modalidades. Los diferentes vectores de características han

sido modelados mediante mixturas de Gausianas, proporcionando una métrica de confi-

dencia de usuario u objeto dentro de una rejilla de las regiones detectadas. Finalmente se

han propuesto dos metodologías de segmentación multi-modal. La primera y más “naïve”
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estima un sesgo de corte sobre las confidencias combinadas de todas las modalidades dada

la puntuación obtenida por los clasificadores Gausianos. En el segundo método, los SVM

son entrenados combinando las confidencias de salida de los primeros clasificadores junto

con la predicción de clasificación de los mismos como nuevas características, siguiendo la

filosofía de los métodos enlazados de clasificadores. Los resultados obtenidos muestran

variabilidad en el rendimiento de cada modalidad para segmentar personas, y una mejora

significativa de los métodos de fusión multi-modales, y en especial del método enlazado

basado en GMM-SVM.



Resum

La segmentació de persones en dades visuals és un dels problemes actuals més difícils

de l’àrea de la Visió por Computador. Aquest problema s’ha estudiat durant dècades

per la comunitat, i encara avui dia segueix sent un cas d’estudi. Les principals dificul-

tats d’aquest problema venen donades pels diferents punts de vista, els canvis en roba i

il·luminació, els artefactes presents al fons de les imatges, així com per l’alt nivell artic-

ulat del propi cos humà. Obtenir una segmentació acurada de cos humà beneficiaria el

desenvolupament d’una nova generació d’aplicacions amb alt impacte social en els camps

de la salut, l’oci i la seguretat.

Recentment, amb l’aparició al mercat de nous sensors econòmics que proporcionen infor-

mació visual complementària a la clàssica RGB, s’ha generat un nou interès per l’estudi

de descriptors multi-modals, així com en noves tècniques de fusió i aprenentatge de dades.

Exemples d’aquests sensors inclouen imatges termals i mapes de profunditat per infraro-

jos, els quals poden proporcionar informació complementària i altament discriminativa als

descriptors clàssics RGB, y com a conseqüència, aconseguir un millor rendiment integrat

dels models de segmentació de persones a dades visuals multi-modals.

En aquest projecte de tesis de màster s’ha desenvolupat una nova base de dades muti-

modal RGB-Termal-Profunditat registrada de seqüència contínua de dades visuals. La

base de dades ha estat filmada i registrada en col·laboració amb un equip expert de

l’àrea de la Universitat Aarolborg a Dinamarca. Les dades han estat manualment eti-

quetades a nivell de píxel a les regions on apareixen subjectes realitzant diferent activ-

itats i interaccionant amb objectes presents a l’escena. Per analitzar la base de dades

s’ha desenvolupat un nou mètode d’extracció de fons adaptatiu muti-modal que detecta

les regions d’interès que potencialment poden contenir un subjecte. Addicionalment, un

conjunt de descriptors de l’estat de l’art han estat testejats i adaptats per extreure in-

formació de les diferents modalitats. Els diferents vectors de característiques han estat

modelats mitjançant mixtures de Gaussianes, proporcionant una mesura de confidència

de usuari i/o objecte dins d’una graella sobre les regions detectades. Finalment s’han

proposat dos metodologies de segmentació multi-modal. La primera i més “naïve“, estima

una cota de separació de confidències combinades de totes les modalitats donada la pun-

tuació dels classificadors Gaussians. En el segon mètode proposat, els SVM són entrenats
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combinant les confidències de sortida dels primers classificadores junt amb la predicció

de classificació dels mateixos com a noves característiques, tot seguint la filosofia dels

mètodes d’enllaçament de classificadors. Els resultats obtinguts mostren variabilitat en

el rendiment de segmentació de cada modalitat, i una millora significativa dels mètodes

proposats de fusió i segmentació multi-modal, i en especial del mètode per enllaçat basat

en GMM-SVM.
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Chapter 1

Introduction

Segmentation of people in images is still nowadays a very challenging and tough problem

for the computer vision community due to the great diversity of poses that they can adopt

and their variable appearance. Difficulties also arise from changes in lighting conditions

and complex and cluttered backgrounds. The general idea of human body segmentation

is to assign a label to every pixel or group of pixels in an image such that pixels with the

same label share certain visual characteristics which entitles them to be considered as

part of a human. These type of problems are commonly referred to as labeling problems.

Despite extensive research done so far, some constraints have still to be taken into account

and one often has to make assumptions about the scenario where the segmentation task

is to be applied, such as static versus moving camera, indoor versus outdoor, and so

on. Ideally, it should be tackled in an automatic fashion rather than relying on user

intervention, which makes such task even more challenging.

There exist a wide range of possible applications for people segmentation such as surveil-

lance, content-based image retrieval, activity recognition, patient caregiving or human-

computer interaction among others. Such task is also often related to pose estimation

problems, since it can be carried out efficiently once the person is detected and segmented

in an image. Furthermore, it can facilitate the task of photo edition, chroma-keying or

video compression. Hence, human body segmentation can be considered as an important

preprocessing step for other tasks.

1
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State of the art methods that tackle the human segmentation task mostly use color

images recorded by RGB cameras as the main cue for further analysis, although they

present several widely known intrinsic problems such as intensity similarities between

background and foreground. More recently, the release of RGB-Depth devices such as

Microsoft R© KinectTM, a cheap multi-sensor device based on structured light technology,

has allowed the community to use RGB images along with per-pixel depth information,

often called depth maps, thus increasing the robustness of the methods. Besides, this

device has helped boost research in human pose and behavior analysis.

1.1 Proposal

In this context, we propose adding a third modality: thermal imagery got from thermal

infrared cameras, thus complementing other information sources and making easier the

segmentation task. Although thermal cameras are relatively expensive devices, their mar-

ket price is lowering substantially every year –as it happens with other sensory devices.

Besides, they can capture data similar to standard color cameras but without having

illumination problems, that is why infrared cameras are becoming popular in surveil-

lance scenarios and other similar applications. To do so, we introduce a novel tri-modal

database provided by researchers from Aalborg University in Denmark and Universitat

de Barcelona. Such database contains people acting in three different video sequences,

consisting of more than 2,000 frames each one, in which three different subjects appear

and interact with objects performing diverse actions such as reading, working with a

laptop, speaking on the phone, etc. There may be more than one subject appearing in

scene. The dataset comes along with an algorithm that performs the registration among

modalities.

In addition, we present a baseline methodology to automatically segment people in video

sequences in indoor scenarios with a fixed camera. With all the available modalities,

important features will be extracted using different state of the art descriptors, which

are used to learn a probabilistic model so as to predict the image regions belonging to

people. We will compare results from applying segmentation to the different modalities

separately to results obtained by fusing features from all modalities.
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To the best of our knowledge, this is the first dataset and work that combines color,

depth and thermal modalities to perform the people segmentation task in videos, aiming

to bring further benefits towards developing more robust solutions.

1.2 Outline

The remainder of this dissertation is organized as follows. Section 2 reviews the different

approaches for human body segmentation that appear in the recent literature. Section 3

introduces and exhaustively explains the proposed baseline methodology, which will be

experimentally evaluated in Section 4. Finally, Section 5 concludes this dissertation.
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Related work

Image segmentation is one of the oldest and most widely studied problems in computer

vision [1–5]. First approaches had a tendency to use region splitting or merging, which

correspond to divisive and agglomerative clustering respectively. Later, research focused

on methods that try to optimize some criteria, such as inter-region boundary lengths,

intra-region consistency or dissimilarity [6]. Due to the vast work available on image

segmentation, in this section we are going to focus in the most recent and relevant works,

techniques and methods applied specifically to human body segmentation that determine

the state of the art.

2.1 Methods

Within the last decade a great number of novel approaches have emerged to respond to

different requirements in the human segmentation context, such as trying to overcome

changing illumination conditions, dealing with variable human poses or developing quasi-

automatic systems that progressively lose the need for user intervention.

When dealing with indoor scenarios recorded by a stationary camera, the pixel-based

background subtraction approach can be applied successfully. We can model the back-

ground distribution of the scene and detect moving objects by comparing each pixel to

the model, which are considered as foreground. The result is a silhouette of the moving

4
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object, which can be further used for other tasks. Pixel intensity is the most commonly

used feature in background modeling, though there are many approaches that use other

type of information such as edge, motion, stereo or texture features. The parametric

model that Stauffer and Grimson proposed in [7], which models the background using

a mixture of gaussians (MoG), has been widely used and many variations have been

suggested based on it. In [8], more advanced statistical background modeling techniques

are deeply reviewed.

Nonetheless, after obtaining the moving object contours we still need a way to assess

whether they belong to a human or not. Human detection methods are strongly related

to the task of human body segmentation since they allow to discriminate better between

other objects. They usually produce a bounding box indicating where the person is,

which in turn may be also useful as a prior for pixel-based or bottom-up approaches to

refine the final human body silhouette. In the category of holistic body detectors, one

of the most successful representations is the Histogram of Oriented Gradients (HOG)

[9], still being the basis of many current detectors. Used along with a discriminative

classifier –e.g. Support Vector Machines (SVM) [10] –it is able to accurately predict the

presence of human subjects. Example-based methods [11] have been also proposed to

address human detection, utilizing templates to compare the incoming image and locate

the person, limiting the pose variability though.

Regarding descriptors, other possible representations apart from the already commented

HOG are those that try to fit the human body into silhouettes [12], those that model color

or texture such as Haar-like wavelets [13], optical flow quantized in Histrograms of Optical

Flow (HOOF) [14], depth maps [15] and, more recently, descriptors including logical

relations, e.g. Grouplets [16], which enables to recognize human-object interactions.

Instead of whole body detection, some approaches have been built under the assumption

that the human body consists of an ensemble of body parts [17, 18]. Some of them are

based on pictorial structures [19, 20]. In particular, [20, 21] from Yang and Ramanan

along with [22] from Felzenszwalb have outperformed other existing methods using a De-

formable Part-based Model (DPM) that consists on a root HOG-like filter and different

part-filters that define a score map of an object hyphotesis, using latent SVM as a clas-

sifier. Another well-known part-based detector is Poselets [23, 24], which trains different
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homonymous parts to fire at a given part of the object at a given pose and viewpoint.

Grammar models [25] and AND-OR graphs [26] have been also used in this context.

By the same token, other approaches model objects as an ensemble of local features.

In this category there are included methods such as Implicit Shape Models (ISM) [27],

consisting of visual words combined with location information. In addition, they are used

in works that estimate the class-specific segmentation based on the detection result after

a training stage [28].

Conversely, generative classifiers directly deal with the person segmentation problem.

They function in a bottom-up manner, learning a model from a initial prior in the

form of bounding boxes or seeds, and using it to yield an estimate for the background

and target distributions, normally applying Expectation Maximization (EM) [29, 30].

One of the most popular is GrabCut [31], an interactive segmentation method based on

graph cuts [32] and Conditional Random Fields (CRF) that, using a bounding box as an

initialization region, combines pixel appearance information with neighborhood relations

to refine silhouettes up to a very accurate level. Graph cuts method has been further

applied to part-based approaches [33].

Having considered the properties of each one of the aforementioned segmentation cate-

gories, it is reasonable that several approaches have been proposed towards their com-

bination, that is, top-down and bottom-up segmentation [34–37]. Just to name a few,

ObjCut [38] combines pictorial structures and Markov Random Fields (MRF) to obtain

the final segmentation. PoseCut [39] is also based on MRF and graph cuts but it has the

added ability to deal with 3-D pose estimation from multiple views.

According to the nature of our proposal, we find appropriate to dedicate a few lines re-

garding thermal imagery and associated descriptors. In contrast to color or depth cues,

thermal infrared imagery has not been used that widely for human detection and segmen-

tation purposes, although it is experiencing a growing interest by the research community.

Several specific descriptors have been proposed so far. For example, in [40], the authors

extended the combination of edgelets and HOG features with AdaBoost and SVM cas-

cade to infrared images. Background subtraction has been also adapted to deal with

this kind of imagery in [41], which presented a statistical contour-based technique that

eliminates typical halo artifacts produced by infrared sensors by combine foreground and
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background gradient information into a contour saliency map so as to find the strongest

salient contours. More recently, [42] presented a person re-identification method that for

the first time combined RGB, depth, and thermal features. An extensive survey of ther-

mal cameras and their applications can be found in [43], including technological aspects

and the nature of thermal radiation.

2.2 Benchmark datasets

To advance research in this area, it is a must to have the right means to compare existent

methods so as to allow improvements to be measured. It is not easy to find large image

segmentation databases due to the tedious task that manual labeling implies. In this

context, the appearance of crowdsourcing-based frameworks such as Amazon Mechanical

Turk [44] or LabelMe [45] has encouraged users to participate in with little easy tasks

such as image segmentation or annotation, thus gamificating somehow the laborious task

of human-labeling and helping the computer vision community to obtain ground truth

information at a lower cost.

Either way, there exist several static image-based human-labeled databases, which allow

us to compare the great deal of available literature of image segmentation. The best

known of these is the Berkeley Segmentation Dataset and Benchmark1 [46], which consists

of 12,000 segmentations of 1,000 Corel dataset color images, containing people or different

objects. It also includes figure-ground labelings for a subset of the images. Authors of

[47] made also available a database2 containing 200 gray level images along with ground

truth segmentations, which was specially designed to avoid potential ambiguities by only

incorporating images that clearly depict one or two objects in the foreground that differ

from its surroundings by either texture, intensity, or other low level cues, but it does

not represent uncontrolled scenarios. The well known PASCAL Visual Object Classes

Challenge [48] tended to include a subset of the color images annotated in a pixel-wise

fashion for the segmentation competition. Although not considered to be benchmarks,

Kinect-based datasets are also available, since this device is being widely used in human

pose related works. In [49] a novel dataset3 was presented, which contains 3,386 images of
1http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
2http://www.wisdom.weizmann.ac.il/%7Evision/Seg_Evaluation_DB/index.html
3http://www.robots.ox.ac.uk/~vgg/data/humanSeg/

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
http://www.wisdom.weizmann.ac.il/%7Evision/Seg_Evaluation_DB/index.html
http://www.robots.ox.ac.uk/~vgg/data/humanSeg/
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(a) (b) (c)

(d) (e)

(f) (g)

(h)

(i)

Figure 2.1: Examples of recent methods and descriptors: (A) HOG [9]: Person and his com-
puted HOG descriptor, and the descriptor weighted by positive SVM weights; (B) Deformable
Part-based Model [22]: coarse root filter, spatial model for the location of each part and cost of
placing the center of a part at different locations relative to the root, respectively; (C) Mixture
of parts from [21]: different trees obtained from the mixture of parts and estimation of parts and
pose; (D) Pictorial structures [19]: pedestrian detection and upper-body and full body pose esti-
mations, respectively; (E) Poselets [24]: each part shows its inferred poselet and the SVM HOG
template; (F) GrabCut [31]: rectangle defined by the user that acts as a bounding box prior
and object extracted based on it; (G) PoseCut [39] in order of appearance: original image, pixel
likelihood for being labeled as foreground or background, segmentation after using the GMM
models, optimal estimated pose, shape prior corresponding to the optimal pose, likelihood after
fusing the previous information, and final segmentation; (H) ISM for segmentation [28]: training
procedure, where local features are extracted from interest points and clustered to create an
appearance codebook, which allows to learn a spatial occurrence distribution for each entry; (I)
bottom-up top-down segmentation [36]: CRF structure, original image, and results before and
after applying GrabCut to each detected bounding box, respectively.
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segmented humans and ground truth automatically created by Kinect, and consisting of

different human subjects across 4 different locations. Unfortunately, depth map images

are not included in the public dataset.

However, there is a lack of a standard database of videos that can be used for evaluation

purposes, such as visual surveillance approaches. There exist some popular ones which

try to provide realistic settings and environmental conditions [50]. Among all of them,

we underline the collective datasets of Project ETISEO4 [51], owing to the fact that for

some of the scenes the authors include, apart from color images, an additional imaging

modality such as infrared footage. It consists of indoor and outdoor scenes of public

places such as an airport apron or a subway station, and also includes a frame-based

annotated ground truth. Depth modality is used in some works such as the RGB-D

People Dataset5 [52], which presented a dataset containing more than 3,000 RGB-Depth

frames using Kinect. The sequences show mostly upright walking and standing persons

from a range of orientations and different levels of occlusions, although the annotation

is done in a bounding-box fashion, that is, only detecting people.

4http://www-sop.inria.fr/orion/ETISEO/download.htm
5http://www.informatik.uni-freiburg.de/~spinello/RGBD-dataset.html

http://www-sop.inria.fr/orion/ETISEO/download.htm
http://www.informatik.uni-freiburg.de/~spinello/RGBD-dataset.html
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Proposed baseline

Let us write Fi = {Ci,Di,Ti} for a determined tri-modal frame, and p a pixel at an

arbitrary location (x, y) in an image.

3.1 Extraction of masks and regions of interest

3.1.1 Background subtraction

The first step of our baseline is to attempt to reduce the search space. A static video-

camera with fixed orientation observing an indoor scene is a common practice which

enables to detect and isolate new objects entering the scene assuming that the images

of the scene without new objects, known as background, exhibit some regular behavior

that can be described by a statistical model. Thus, in order to perform background

subtraction one has first to learn a model of the background. Once learned, this model

is compared against the new incoming images and parts that do not fit are considered

foreground. A widely used approach for background modeling in this context is Mix-

ture of Gaussians MOG [53], which assigns a GMM per pixel with a fixed number of

components. Sometimes background presents periodically moving parts such as noise or

sudden and gradual illumination changes. Such problems are often tackled with adaptive

algorithms that keep learning the pixel’s intensity distribution after the learning stage

with a decreased learning rate. However, this also causes that intruding objects that

10
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stand still for a period of time vanish, so in our case a non-adaptive approach is more

convenient.

Although this background subtraction technique performs fairly well, it has to deal with

the intrinsic problems of the different image modalities. For instance, color-based algo-

rithms may fail due to shadows, similarities in color between foreground and background,

highlighted regions, and sudden lighting changes. Thermal imagery may also have this

kind of problems, plus the inconvenience of temperature changes in objects. A halo effect

is also observed around warm items. Regarding to depth-based approaches, they may

produce misdetections due to the presence of foreground objects with similar depth to

the background. However, they are more robust to lighting artifacts and shadows. Depth

data is quite noisy and many pixels in the image may have no depth due to multiple re-

flections, transparent objects, or scattering in certain surfaces such as human tissue and

hair. Furthermore, a halo effect around humans or objects is usually perceived due to

parallax issues. A comparison is shown in Fig. 3.1, where the actual foreground objects

are the human and the objects on the table. As we can observe, RGB fails at extracting

the human legs due to the similarities in color with the chair at the back. The thermal cue

segments the human body more accurately, but includes some undesired reflections and

the jar and mugs with a surrounding halo. The pipe tube is also extracted as foreground

due to temperature changes along time. Despite its drawbacks, depth-based background

subtraction is the one that seems to give the most accurate result.

Therefore, the binary foreground masks of our proposed baseline are computed applying

background subtraction to the depth modality previously registered to the RGB one,

thus allowing us to use the same masks for both modalities. Let us consider the depth

value of a pixel at frame i as di. The background model p(di|BG) –where BG represents

the background – is estimated from a training set of depth images represented by D using

the T first frames of a sequence such that D = {d1, . . . ,dT }. This way, the estimated

model is denoted by p̂(di|D, BG)}, modeled as a mixture of gaussians. In particular, we

use the available implementation in OpenCV of the method presented in [54], which uses

an on-line clustering algorithm that constantly adapts the number of components of the

mixture for each pixel during the learning stage. GMMs are further explained in section

3.4.1.
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Once the binary foreground masks are obtained, a 2-D connected component analysis

is performed using basic mathematical morphological operators and setting a minimum

value for each connected component area (except in left and rightmost sides of the image

which may be caused by a new incoming item) to clean the noisy output mask. On an-

other front, foreground masks for the thermal modality are computed using the provided

registration algorithm with the depth/color foreground masks as input. From now on,

we will use FG = {FGcolor, FGdepth, FGthermal} to refer to them.

Figure 3.1: Background subtraction for different visual modalities of the same scene (RGB,
depth and thermal respectively).

3.1.2 Bounding box generation from regions of interest

To further process the information of each connected component of the previously ex-

tracted depth-based foreground masks, rectangular bounding boxes are to be generated

encapsulating such components individually over time, whose function is to denote the

regions of interest of a foreground mask. This way, we define the set of bounding boxes of

the i-th frame generated from the depth-based masks as Bdepth
i = {bij | ∀j = {1, . . . , n}},

being bij the j-th bounding box and n the number of bounding boxes generated in that

frame, which is equal to the number of connected components. Similarly, bounding

boxes generated from the resulting thermal masks are denoted by Bthermal
i . Since color
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and depth modalities share the same foreground masks, Bdepth
i = Bcolor

i , having also the

same number of bounding boxes, condition that Bthermal
i does not currently fulfill. At

the end, each frame will have to contain the same number of bounding boxes in each

one of the modalities, which in turn have to correspond to the same regions of interest

among them in order to allow a proper comparison. This issue will be tackled in section

3.1.3.

A region of interest r ∈ R should contain a separated person or object. However, different

subjects or objects may overlap in space, resulting in a bigger component containing

more than one item, for this reason each component has to be analyzed to find the

correct bounding boxes that surround each region of interest. One of the advantages of

the depth cue is that we can use the depth value in each range pixel to know whether

an item is farther or not than other. We can assume that a given connected component

belongs to just one item if its disparity distribution has a low standard deviation, that is,

there is no rapid change in disparity. For those that have a greater standard deviation,

Otsu’s method [55] can be used to split the blob by automatically finding a threshold

assuming a bimodal distribution. It calculates the optimal threshold separating the two

classes such that their intra-class variance is minimal. We will define π as the function

that applies this method to a set of bounding boxes.

For such purpose, we define c as a vector containing the depth range values that corre-

spond to a given connected component, with mean µc and standard deviation σc, and

σotsu as a parameter that defines the maximum σc allowed to not apply π. Note that

erroneous white or black pixels do not have to be taken into account in c when finding

the Otsu’s threshold because they would change the disparity distribution, thus leading

to incorrect divisions. Hence, if σc > σotsu, π is applied. However, the assumption of

bimodal distribution may not hold, so to take into account the possibility of more than

two overlapping items the process is applied recursively to the divided regions in order

to extract all of them.

Once the different items are found, the regions belonging to them are labeled using a

different id per item. Besides, they are again surrounded by new bounding boxes denoted

by:
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Odepth
i =

{
oim|∀m = {1, . . . ,Mn}j

}
(3.1)

where {oim}j is the set of new Mn bounding boxes generated by the bounding box bij .

3.1.3 Bounding box transformation and correspondence to other modal-
ities

As stated previously, depth and color cues use the same foreground masks, so we can take

advantage of the same bounding boxes for both modalities. However, since the thermal

cue uses a transformation of these masks by applying the registration algorithm frame by

frame, new bounding boxes with different coordinates are computed for that modality,

which must correspond to the same regions of interest of the depth and color cues. In

case of overlapping items, it would suffice by finding the registered labeled connected

components to generate the new bounding boxes. Unfortunately, the algorithm cannot

register connected components up to a pixel level, meaning that those that have more

than one id in depth or color masks would have just one id in thermal ones, thus being

surrounded by just one big bounding box. The problem here is twofold: (1) find the

correspondence between Bdepth
i and Bthermal

i such that a bounding box of Bdepth
i and the

matched one of Bthermal
i contain the same region of interest r; and (2), if a bounding box

from Bdepth
i was modified after π, compute the corresponding sub bounding boxes that

belong to the matching bounding box in Bthermal
i .

The correspondence task (1) is achieved using an iterative algorithm that, taking into ac-

count the deviation among depth/color and thermal modalities, searches for the bounding

boxes that match the best, both in terms of bounding box coordinates and area similarity.

The correspondence function is denoted as:

bthermal
iq = β(bdepthij ) (3.2)

Bounding boxes of both sets are ordered beforehand in a row-major order using the top-

left corner of the bounding box as a reference, thereby easing the search task. Bounding

boxes which appear in thermal but do not have a correspondence in depth are omitted,
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whereas those in the depth modality that do not have a correspondence either are copied

as they are, that is, with the same coordinates, following one of the main aforesaid

constraints which states that the number of bounding boxes must be the same among

modalities.

Once we have found the correspondence between both sets, we can use the information

stored in Odepth
i in order to address the task of bounding box splitting (2). Let us define

hbthermal
iq

and vbthermal
iq

as the height and width of a thermal bounding box respectively,

and similarly for depth bounding boxes h
bdepthij

and v
bdepthij

, such that bthermal
iq = β(bdepthij ).

Given the deviation among modalities, we assume that the dimensions of two matched

bounding boxes are proportional. Therefore, hbthermal
iq

∝ h
bdepthij

and vbthermal
iq

∝ v
bdepthij

.

Thus, the ratio between both bounding boxes is:

kh =
h
bdepthij

hbthermal
iq

(3.3)

kv =
v
bdepthij

vbthermal
iq

(3.4)

Such ratio can be utilize to create a new bounding box othermal
ik ∈ Othermal

i in such a vay

that its dimensions are:

hothermal
ik

= khhodepthij
(3.5)

vothermal
ik

= kvvodepthij
(3.6)

The expansion or shrinking of othermal
ik is produced taking as reference the center of

odepthij , considering the boundaries of bthermal
iq as the growth limit, meaning that if the

new bounding box has to expand vertically but it reaches the bottom of bthermal
iq , it will

stop expanding downwards but will continue doing so upwards, and similarly for left and

right sides, until reaching the desired measures if possible.
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As a result, we obtain the final set of bounding boxes Othermal ≡ Odepth = Ocolor,

which although not having the same coordinates denote the same regions of interest R.

Henceforth, we will simply use R to refer to such regions.

3.2 Grid partitioning

Given the precision got in the registration, particularly because of the depth-to-thermal

transformation, we are not able to make a pixel-to-pixel correspondence among all the

modalities. Instead, the association is made among greater information units: grid cells.

Each region of interest r ∈ R associated to either a segmented subject or object is

partitioned in a grid of cells. We write Grij to refer to the position (i, j) in the r-th

region, such that i ∈ {1, ..., vgrid} and j ∈ {1, ..., hgrid}. Regarding to the whole set of

(i, j)-cells {Grij}∀r∈R, it is denoted by Gij .

In turn, a grid cell Grij consists in a set of image subregions {Gc
rij}∀c∈C , provided by

the set of visual cues C = {color,depth, thermal}. Accordingly, {Gc
rij}∀r∈R, the set of

(i, j)-cells in the modality c, is indicated by Gcij .

The grid cell is the unit of information processed in the different modalities’ description

and classification procedures. The next section provides the details about the feature

extraction computed from different visual cues at cell level.

3.3 Feature extraction

Each modality involves its own specific descriptors. In the case of the color modality two

kind of descriptors are extracted for each cell, Histogram of Oriented Gradients (HOG)

and Histogram of Oriented Optical Flows (HOOF), whereas in the depth and thermal

modality the Histogram of Oriented Normals (HON) and Histogram of Intensities and

Oriented Gradients (HIOG) are respectively computed. Eventually, from this feature ex-

traction process, a set of descriptions is obtained Dij = {Dd
ij}∀d∈D for each grid position

(i, j), being D the set of considered descriptors {HOG,HOOF,HON,HIOG}.
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The color modality is also used to compute a sequence of probability-like maps at pixel-

level (SM). Such descriptor is also included in this section but for the moment is not

included in the set of descriptions D, owing to the fact that its intrinsic characteristics

differ from the others and will be treated in a distinct fashion.

3.3.1 Color

The color cue is nowadays the most popular imagery modality and has been extensively

used to extract a range of different feature descriptions. It is usually represented by

the RGB color space, which expresses the color as a triplet (red, green, blue), but other

models are also available. Notwithstanding its simplicity and properties, it suffer from

some drawbacks such as illumination changes, shadows, camouflage, among others, which

may inconvenience some tasks.

3.3.1.1 Histogram of oriented gradients (HOG)

For RGB cue, a simple implementation of HOG [9] is to be computed for each grid

cell, known as detection window in the HOG context. Each window is resized to a

hHOG
w × vHOG

w pixel area and divided in rectangular blocks of hHOG
b × vHOG

b pixels, which

are in turn divided into rectangular local spatial regions called cells of size hHOG
c × vHOG

c

pixels, thus having 4 cells per block and 8 blocks per window. We use RGB color space

with no gamma correction. In order to compute the gradients, two kernels in the x and y

directions with no smoothing are used for each channel so as to find and take the channel

with the greatest gradient magnitude for each pixel. The gradient at point p of detection

window is:

Gxp = [-1 0 1] ∗Cp (3.7)

Gyp = [-1 0 1]T ∗Cp (3.8)

The gradient magnitude M and orientation Θ of the gradient at point p are:
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(a) Optical flow (b) Ramanan score map

(c) Depth normals (d) Thermal intensities and oriented gradients

Figure 3.2: Example of descriptors from RGB modality: (A) represents the motion vectors
using a forward scheme, that is, the optical flow orientation gives insight into where the person is
moving to in the next frame; (B) score maps representing the hypothesis of a pixel belonging to
a person; (C) the computed surface normal vectors; (D) the intensity and the thermal gradients
orientations.

Mp =
√

(Gxp)2 + (Gyp)2 (3.9)

Θp = tan−1
(Gyp
Gxp

)
(3.10)

Gradient orientation is also computed for each pixel in the dominant channel and as-

signed into a κ-bin histogram over each cell using unsigned gradients such that bins are
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evenly spaced over 0◦ and 180◦. As stated in [9], signed contrast is uninformative for

humans due to the wide range of clothing and background colors. For each gradient vec-

tor, its contribution to the histogram is given by the vector magnitude, that is, stronger

magnitudes have a bigger impact on the histogram. Owing to local variations in illumi-

nation and foreground-background contrast gradient strengths vary over a wide range so

cells are grouped into larger, spatially connected blocks. Hence, the information of each

cell is concatenated. Then, the gradient strengths are locally normalized applying the

L2-norm over each block. Block overlap is not applied in this case so as to lower the final

descriptor dimensions.

3.3.1.2 Histogram of oriented optical flow (HOOF)

Since we are working with video sequences, the color cue also allows us to obtain motion

information by computing dense optical flow and describing the distribution of the resul-

tant vectors, known as histogram of oriented optical flow [14]. The optical-flow vectors

of the whole image are computed using the luminance information of the image with the

Gunnar Farnebäck’s algorithm [56] available in OpenCV1 [57], which is based on model-

ing the neighborhoods of each pixel of two consecutive frames by quadratic polynomials.

It represents the image signal in the neighborhood of each pixel by a 3-D surface and

finds where the surface has moved in the next frame. As a result, a set of 2-D vectors

denoting the movement of each pixel for the horizontal u and vertical v directions in the

compared frames is found. It allows a wide range of parameterizations, which will be

specified in section 4.

The resulting motion vectors, whose example is shown in Fig. 3.2a, are masked and

quantized to produce weighted votes for local motion based on their magnitude which

are locally accumulated into a ν-bin histogram over each grid cell according to the signed

(0◦ - 360◦) vector orientations. In contrast to HOG, HOOF uses signed optical flow

since the orientation provides more discriminative power. Magnitude and orientation of

a motion vector at pixel p are calculated as in Eq. 3.9 and Eq. 3.10 respectively.
1http://code.opencv.org.

http://code.opencv.org.
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3.3.1.3 Score maps (SM)

In [20, 21] a method for detecting articulated people and estimating their pose from

static images is described based on a new representation of deformable part models

using a mixture of small, non-oriented parts in such a way that jointly captures spatial

relations between part locations and co-occurrence relations between part mixtures. We

take advantage of part of their model and the basic available implementation2 so as to

obtain a pixel-level measure, named score, that gives intuition into the presence of a

person at a given location. It includes pre-trained full body models from the PARSE

image dataset [17].

Briefly explained, their method uses a set of linear filters F , which are rectangular tem-

plates that specify weight vectors for a particular human body part, having M = 26

body parts. Each part includes C = 6 different component filters. Therefore, we define

fmc ∈ F to represent the c-th component filter that corresponds to the m-th body part,

being c = {1, . . . , C} and m = {1, . . . ,M}. These filters are applied to dense feature

maps computed by using a variation of HOG. The method also defines a feature pyra-

mid H to obtain scores from placing the filters at different positions and scales of the

pyramid, which is computed based on an initial image pyramid, in such a way that each

feature map is computed from each level l = {1, . . . , L} of the image pyramid, where L

is the number of levels and depends on the original image size.

Let pl denote the position (x, y) in the l-th level of the pyramid, and φ(H, pl) a feature

vector contained in the sub window of H with top-left corner at pl whose dimensions are

the defined by the filter. A part filter score can be considered as the response of the dot

product between a filter and a subwindow of the feature map. Thus, the score of a point

pl for a given filter c of part m is:

score(pl)mc = fmc · φ(H, pl) (3.11)

Since our aim is not to find separated human body parts but full-body detections, we

computed a combination of the different parts scores for each level such that:
2http://www.ics.uci.edu/~dramanan/software/pose/

http://www.ics.uci.edu/~dramanan/software/pose/
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score(pl) =
1

C

1

M

∑
c∈C

∑
m∈M

score(pl)mc (3.12)

For obtaining the final score score(p), we proceed in a similar way with the scores obtained

from the different levels. Note that the output score maps of each scale have different size

so in order to compute the mean of the L different scaled score maps they are all resized

to the original image size. Representing score(pl)′ as the resized version of score(pl):

score(p) =
1

L

∑
l∈L

score(pl)′ (3.13)

The final score map for each color image Ci ∈ Fi is an array:

score(Ci) = {score(p1), . . . , score(pn)}

with n equal to the size of the original frame. An example of score map is depicted in

Fig. 3.2b.

3.3.2 Depth

The grid cells in the depth modality Gdepth
ij are depth dense maps represented as planar

images of pixels (in projective coordinates) that take depth values in millimeters. From

the depth representation in projective coordinates it is possible to obtain the "real world"

ones by using the intrinsic parameters of the depth sensor. This conversion generates

3-D point cloud structures Pij in which the distances among points are actual distances

– those that can be measured in the real world. Finally, in each point cloud Prij ∈ Pij
the surface normals are computed and their angles’ distribution summarized in a δ-bin

histogram, eventually describing the cell from the depth modality point of view.

3.3.2.1 Histogram of oriented depth normals (HON)

In order to describe an arbitrary point cloud P the surface normals vectors have to be

computed first. A surface normal of a 3-D point is a perpendicular vector to a 3-D plane
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which is tangent to the surface in that point. Thus, the normal 3-D vector at a given

point p = (px, py, pz) ∈ P can be seen as the problem of determining the normal of a 3-D

plane tangent to p. A plane is represented by the origin point q and the normal vector

n. From the neighboring points K of p ∈ P, we first set q to be the average of those

points:

q ≡ p̄ =
1

|K|
∑

p∈PK
p (3.14)

Then, the solution of n can be approximated using the covariance matrix C ∈ R3×3 of

the points in PKp . The covariance matrix C is computed as follows:

C =
1

|K|

|K|∑
i=1

(pi − p̄)(pi − p̄)T (3.15)

being C a symmetric positive semi-definite matrix. Solving the next equation by means

of eigenvalue decomposition:

Cuj = λjuj , j ∈ {0, 1, 2} (3.16)

where λj ∈ R and uj ∈ R3 represent the j-th eigenvalue and eigenvector of C respectively,

a solution for n is found to be the eigenvector uj with the associated smaller λj . Formally,

n = uz, where z =j λj , j ∈ {0, 1, 2} (3.17)

The sign of n can be either positive or negative, and it can not be disambiguated from

the calculations. We adopt the convention of re-orienting consistently all the computed

normal vectors towards the depth sensor’s viewpoint z. The computed normal vectors

over a human body region is shown in Figure 3.2c. Points are illustrated in white, whereas
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normal vectors are red lines (instead of arrows for the sake of the visual comprehension).

The next step is to build the histogram describing the distribution of the normal vectors’

orientations.

A 3-D normal vector got from the previous calculations is expressed in cartesian co-

ordinates (nx, ny, nz). Nonetheless, a normal vector can be also expressed in spherical

coordinates using three parameters: the radius s, the inclination θ, and the azimuth ϕ.

In our case, s is a constant value, so this parameter can be omitted. Regarding θ and ϕ,

the cartesian to spherical coordinates transformation is calculated as:

θ =

(
nz
ny

)
, ϕ =

√
(n2y + n2z)

nx
(3.18)

Therefore, a 3-D normal vector can be characterized by a pair (θ, ϕ) and the depth

description of a cell consists of a pair of concatenated δθ-bin and δϕ-bin histograms,

describing the two angular distributions of the body surface normals within the cell.

Moreover, each of the two histograms is normalized before the concatenation, dividing

by the number of elements, to end up with a relative angles frequency count.

3.3.3 Thermal

The thermal cue is a very informative feature for the task of people detection/segmen-

tation. A pixel part of a human region gives off heat and hence a relatively large value

in terms of thermal intensity.

3.3.3.1 Histogram of thermal intensities and oriented gradients (HIOG)

The descriptor got from a cell in the thermal cue Gthermal
rij is the concatenation of two

histograms. The first one is an histogram summarizing the thermal intensities, which

range in the interval [0, 255]. The intensities are the ones in the masked region of the

cell, i.e. not taking into account the background pixels. Instead, the second histogram

is summarizing the orientations of thermal gradients. These gradients are computed
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convolving a first derivative kernel in both directions (as in Eq. 3.7-3.8). Then, their ori-

entation is calculated and binned in the histogram weighted by their magnitude. Finally,

the two histograms are normalized dividing by the sum of the accumulations in the bins

and concatenated. We used τi bins for the intensities part and τg bins for the gradients’

orientations.

3.4 Cell classification

Since we are intended to segment human body regions, we need to distinguish those from

the other foreground regions segmented by the background subtraction algorithm. These

other foreground regions, apart from subjects, are the objects – they could be other living

beings, e.g. cats or dogs, though these are not considered in this work.

From the previous step, each grid cell has been described using the different descriptors

D. For the purpose of classification, we train several Gaussian Mixture Models for each

grid position (i, j), kind of description d ∈ D, and foreground class either subject or

orbject. Concretely, the set of GMMs modeled from the set of grid cells positioned in

(i, j) isMij = {Md,sub
ij ,Md,obj

ij }∀d∈D. In Fig. 3.3, the different steps of the baseline up

to this point are illustrated.

Then, in testing time, an unseen cell can be predicted to be a subject or an object

depending on the likelihood got in the probability density function (PDF) of the different

mixtures. We will denote the likelihood values got from the GMMsMd,sub
ij andMd,obj

ij by

Ld,subij and Ld,objij respectively. The final classification of a Grij is performed by combining

somehow and comparing {Ld,subrij }∀d∈D and {Ld,objrij }∀d∈D. How to intelligently combine

the previous classification results is explained in Section 3.5.

3.4.1 Gaussian Mixture Models

Gaussian Mixture Models (GMMs) is an unsupervised learning method for fitting multi-

ple Gaussians to a set of multi-dimensional data points3. It is often used as a probabilistic
3This technique uses properties of gaussians, thus its generalization to fit other functions is not

straightforward.
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clustering and an alternative to the k-means algorithm. As in the case of k-means, the

number of components K (or gaussians) in the mixture is a parameter that needs to be

specified to the algorithm. The GMMs are trained using the very general Expectation-

Maximization algorithm [58]. The goal is to end up maximizing the overall likelihood L
of the model:

L =
N∏

x∈X

p(x) (3.19)

where x is a multi-dimensional data point (in this case representing the descriptor of an

arbitrary grid cell Gd
rij) and p(x) is the probability of x being drawn from the model.

This probability is the value assigned by the mixture PDF to that point, which is in fact

a linear combination of K gaussian PDFs:

p(x) =
K∏
k=1

p(x|k)P (k) (3.20)

being p(x|k) the value assigned by the k-th gaussian PDF to x (the height of the PDF

function at that point), whereas P (k) is the importance, or weight, of the k-th component

in the mixture. In fact, since the model is a mixture of gaussians, p(x) can be expressed

as the mixture of parametrized gaussian functions:

p(x) =
K∏
k=1

N (x|µk,Σk)P (k), (3.21)

N (x|µ,Σ) =
1

2πρ/2|Σ|1/2
exp−

1
2
(x−µ)TΣ−1(x−µ) (3.22)

In order to be able to predict at some point new given examples, a training procedure

is needed to model the parameters of the mixture, i.e. the means µ = {µ1, ...,µK} and
covariances matrices Σ = {Σ1, ...,ΣK}. This is done by the two-step procedure called

Expectaction-Maximization.
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3.4.2 Expectation-Maximization: modeling a GMM

Let be X the set of ρ-dimensional points and have initialized the parameters for the K

components µ and Σ and the contribution of the components {P (k1), ..., P (kK)}. The

first step to perform is the expectation calculation, or E-Step, that consists on computing

the K posteriors for all the points x ∈ X. The posterior P (k|x) is the probability the

point x belongs to the component k, and it is exactly:

pkx = P (k|x) =
N (x|µk,Σk)P (k)

p(x)
(3.23)

Next, it is the turn of the maximization step, or M-step. In this step, it is supposed the

assignments of individual points are known but not the model. The parameters of the

components and their weights are re-estimated – because of the previous calculations –

as:

µ̂k =

∑
x∈X pkx x∑
x∈X pkx

(3.24)

Σ̂k =

∑
x∈X pkx (xi − µ̂k)(x− µ̂k)

T∑
x∈X pkx

(3.25)

P̂ (k) =
1

|X|
∑
x∈X

pkx (3.26)

It can be proven that alternating E and M steps, the algorithm converges to at least

a local maximum of overall likelihoods. A typical initialization is to start with K ran-

domly chosen data points as starting means, and equal covariance matrices. Nonetheless,

convergence is sometimes slow, because of having many points laying in "plateaus". An-

other possibility, as it has been done in this work, is to use k-means to have a better

initialization because of a more robust estimate of the initial parameters, increasing the

convergence speed and the chances of finding a better solution.

Moreover, though not explained, dealing with likelihoods may cause underflow problems

in the computations. The approach to cope with this problem is to apply logarithms,
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that is dealing with log-likelihoods instead of likelihoods. Despite this changes some

calculations re-formulated using the what is called "log-sum-exp" trick, the EM algorithm

is still a valid approach to maximize the log-likelihood of the model given X.

3.5 Multi-modal fusion

Having different modalities and descriptions allow us to fuse them to have a more in-

formative and richer representation of the scenario which in turn can improve the final

segmentation result. Such fusion can be achieved using several approaches, which are

detailed below.

Before fusing the results got in the GMMs from different modalities and classes, a nor-

malization step is required. The more simple possible strategy that normally yields

good results is to perform a min-max normalization. This is done simply by subtract-

ing the min value of a set of values and dividing by the difference between the max

and the min. In our case, the normalization is done within the set of log-likelihoods

∆d
ij = {Ld,subij ,Ld,objij } obtained subject and object GMMs using a kind of description

d ∈ D. Concretely, a log-likelihood ξ ∈ ∆d
ij is min-max normalized:

ξ̂ =
ξ −min(∆d

ij)

max(∆d
ij)−min(∆d

ij)
(3.27)

The normalized log-likelihoods L̂d,subij , L̂d,objij range in the interval [0, 1], which will be

further used to obtain the prediction t̂dr = {0, 1} of a region r, which denotes if such

region belongs to an object or a subject respectively, and the predicted set of binary

masks Ŝ, which defines the human body segmentation.

SM description has not been taken into account thus far owing to its uniqueness. How-

ever, it only can be combined with the other descriptions if they are represented in an

equal manner. For this purpose, a set of object score maps is computed from the orig-

inal subject score maps, by taking the maximum score scoremax of the whole set and

computing the inverse, such that:
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score(p)obj = scoremax − score(p)sub (3.28)

Afterwards, to modify the description to a cell level, the scores are first normalized

applying, again, min-max normalization. Then, the mean is computed for each cell to

obtain a value per cell, as happens in the rest of the descriptions.

For the sake of simplicity, from this point we will consider the normalized version of SM

to be part of the set of descriptors D, and the cell probability-like values to be also part

of ∆d
ij , even though they do not represent exactly the same.

3.5.1 Individual prediction

The first step is to compute the individual prediction of each of the descriptions sepa-

rately. Since all the descriptions are cell-based except for the non-normalized SM, which

is pixel-based, we differentiate two different approaches of individual prediction.

3.5.1.1 Cell-based descriptions

A grid cell voting is performed using the normalized log-likelihoods of subject and object

of each of them, comparing both to decide if that cell contains a person, such that

v =
∑
i,j

1{L̂d,subij > L̂d,objij } (3.29)

We also define a threshold vthr that refers to the minimum number of positive votes

needed to assign the subject label to the given region. Such threshold is given by

vthr =
vgridhgrid

2
(3.30)
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However, the decision of a cell can be given by a little difference between both log-

likelihoods. For this reason, in order to decide whether the region belongs to a person,

such differences are taken into account if an agreement is not reached by the cells. The

final decision is thus described as:

t̂dr = 1

{
v > vthr

}∨{
1
{
v = vthr

}
· 1
{(∑

i,j

L̂d,subij − L̂d,objij

)
> 0

}
(3.31)

That is, in the event of a tie, the sum of the difference in log-likelihoods among cells

would decide the final label for that region.

In order to create the predicted segmentation masks, we use the extracted foreground

masks FG from the background subtraction step. For each frame, regions that belong

to that frame are masked to 0 if they were predicted to be a subject, and left as they are

otherwise. A prediction conflict could arise if there is an overlap between the bounding

boxes that denote the regions and their labels differ. In that case, the overlapped region

would be masked to 0 –thereby being considered as a subject –if, as applied before,

the sum of the difference between subject and object likelihoods is negative, and kept

unchanged in any other way.

3.5.1.2 Pixel-based descriptions

The color modality is also described using the score maps obtained by the Ramanan

method, in such a way that each pixel has its own score score(p) of hypothesis of being

part of a person. Therefore, we need a different way to obtain the prediction of a given

region. To that end, two parameters are introduced: α, defining the minimum score of

a pixel to be considered of a person; and η, denoting the minimum percentage of pixels

inside a region that are considered as person that are needed to label the whole region as

a person. Thus, being Nr the number of pixels of a region r the decision, is defined as:



Proposed baseline 30

t̂dr = 1

{ 1

Nr

Nr∑
i=1

1{score(pi) > α} > η
}

(3.32)

The predicted segmentation masks are created in a similar way to the cell-based descrip-

tions case. The decision in case of prediction conflict between bounding boxes, however,

is tackled in an specific manner. As we will explain in Section , α and η may differ

depending on the cross-validation settings. Being Nb the number of conflicting bounding

boxes, and αb and ηb the specific parameters for bounding box b, the conflicting region

roverlap will be marked as person if the following expression holds:

1

Nb

Nb∑
j=1

(
1

Nr

Nr∑
i=1

1{score(roverlap) > αb}
)
>

1

Nb

Nb∑
j=1

ηb (3.33)

3.5.2 Naive approach

A basic fusion approach is to combine the descriptors in such a way that all contribute

with equal weight. We propose a cell-level fusion using the normalized subject and object

log-likelihoods and modified score maps. Consequently, a voting stage is first performed

among all descriptors, whose individual predictions t̂dr are the votes, such that:

v =
∑
d∈D

t̂dr (3.34)

Note that some of the predictions may be wrong, thereby affecting negatively the voting.

If the majority of the votes consider the region to be a person, meaning that there is a

strong agreement between descriptions, those descriptions that consider the given region

to be a subject will not be taken into account in the cell-level fusion stage. Defining the

selected descriptions as D′ ⊂ D, their combination L̄d,subij and L̄d,objij is given by:
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L̄d,subij =
∑
d∈D′
L̂d,subij (3.35)

L̄d,objij =
∑
d∈D′
L̂d,objij (3.36)

Once the combined log-likelihoods are obtained, the approach follows the same procedure

as the individual prediction for cell-based descriptions to obtain a final prediction t̂r for

each region, and similarly to obtain the segmentation masks. Note that this time, since

a fused result is obtained , there will only be one set of segmented masks for all the

descriptions –except for the thermal description whose FG masks were different owing

to the non-accurate pixel-wise registration among modalities.

3.5.3 SVM-based approach

Support vector machines is a non-probabilistic supervised binary classifier that learns

a model which represents the instances as points in space, mapped in such a way that

instances of different classes are separated by a hyperplane in a high dimensional space.

However, if the dataset is not linearly separable in that space the hyperplane will fail in

classifying properly. This can be solved by mapping the dataset instances into a higher

dimensional space using a kernel function, thus making easier the dataset division [10].

SVM is often used in the literature as a discriminative classifier for object recognition,

and particularly in human detection approaches, usually yielding successful results. We

therefore propose a fusion using SVM with different types of kernel. In particular, our

baseline includes linear kernel and radial basis function (RBF). Linear SVM just requires

one parameter, the penalty parameter ζ, which specifies a trade-off between model com-

plexity and misclassification of training examples and can take values in the interval

[0, inf ]. Higher values of ζ causes closer fitting to the training set, which may tend to

overfitting. The performance of the RBF kernel is also influenced by the γ parameter,

which controls the shape of the separating hyperplane. Higher values usually increase the

number of support vectors. Weights w obtained from linear SVM represent the hyper-

plane used to separate between classes, but they can also give us an insight of the level of
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importance or level of influence that each feature has when classifying the instance [59].

The SVM models has been trained using the available implementation of the LibSVM4

library [60].

Let R be the data set of regions and features that will be used in the SVM approach.

Each region will be described by the different probabilities of subject and object of

the different descriptions {L̂d,subij , L̂d,objij } such that each region r will be described by

2 × |D| × vgrid × hgrid feature values. The computed ground truth labels tmr ∈ T will

be used in the training stage to indicate the class of r. Note that some regions have an

unknown label {−1}; such regions are not used for training. Region prediction will be

again denoted by t̂r.

However, we are not taken into account the previous predictions obtained for each de-

scription individually. In order to take into account this information, which may help in

the classification stage, the set of individual predictions t̂dr can be included in the data

set R, such that each region r is described by 2×|D|× vgrid×hgrid + |D|. This approach
follows the Stacked Learning scheme [61, 62], which involves training a new learning

algorithm combining previous predictions obtained with other learning algorithms.

Accordingly, we use four SVM classifiers: (1) simple linear SVM, (2) simple RBF SVM,

(3) stacked linear SVM, and (4) stacked RBF SVM. Segmented masks are created fol-

lowing, again, the aforementioned procedure.

4http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
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Figure 3.3: The main steps of the proposed baseline method, before reaching the fusion step.



Chapter 4

Evaluation

4.1 Parameters and settings

After some experiments regarding the use of Otsu’s threshold in the background sub-

traction and generation of bounding boxes stage, we set σotsu = 8.3 for a connected

component area of at least 0.1% of the image, or σotsu = 12 for other cases.

Since it is not possible to have a pixel-to-pixel correspondence among modalities, we

define the correspondence at a grid cell level. The grids have been partitioned in M ×N
cells, being M = 2 and N = 2. The main idea of the grid partitioning is to reduce the

variability of the regions in each GMM. At the same time, they are large enough to not

condition the eventually computed overlap measure.

For the HOG descriptor, we defined: Hw = 64 × 128, Hb = 32 × 32, Hc = 16 × 16 and

Hh = 9. The information of each cell is concatenated resulting in a vector of 36 values

per block. This brings the final vector size of a grid cell to 4 blocks vertically × 2 blocks

horizontally × 4 cells per block × 9 bins per cell = 288 components.

In order to compute the optical flow, and based on the tests performed in [63], we set

the parameters of the given implementation according to the values that gave the best

performance. In particular, the averaging window size was set to 2, the size of the pixel

neighborhood considered when finding polynomial expansion in each pixel was set to 5

and the standard deviation of the Gaussian that is used to smooth derivatives used as a

34
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basis for the polynomial expansion to 1.1. The remaining parameters were set to their

default OpenCV values. For the HOOF descriptor, we defined Vb = 8, to finally produce

an 8-D feature vector.

For the depth descriptors, we defined θI = 8 and φG = 8.

For the thermal descriptors, we defined TI = 8 and TG = 8.

The parameter set up in the training of the GMMs is simply the number of mixtures,

which have been set to a typical value of 3 mixture components.

4.2 Experimental methodology and validation measures

The proposed baseline has been validated by means of a K-fold cross-validation (CV).

The R regions of interest have been divided in disjoint partitions, in which the cells’

classifications and log-likelihoods’ normalizations have been performed independently.

In each iteration of the cross-validation, K-1 partitions are used to train the GMMs and

the other one is used for testing, that is, each region of interest in the test set is predicted

(at cell level) using models trained in an independent dataset (train set). Once all the

regions in the K different test partitions have been predicted, all the regions throughout

the sequence of frames have been also predicted, and a final performance measure can be

computed at frame level comparing the results of the predictions with the groundtruth,

e.g. an overlap measure, explained below.

Moreover, in order to select the α and η parameters for the individual prediction of

the SM descriptor, a coarser-to-fine search strategy has been followed. The first coarse

grid search is utilized to roughly estimate their value. In this search, a K-fold CV has

tested 6 × 5 combinations; α took the middle 6 of the 8 equidistant values in the range

[scoremin, scoremax] and η the middle 5 of 7 equidistant values in the range [0, 1]. Posteri-

orly, the fine search around the best coarse combination in each fold has been performed

to find the best fine combination. A second K-fold CV tested the fine combinations,

which consisted of a 7×5 grid centered in the corresponding best coarse combination. In

this case the criterion to guide the search of the parameters selection is simply the subject

detection accuracy, got comparing the result of the prediction to the ground truth.
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Another coarse-to-fine grid search has been applied in order to select the SVM parameters

γ and ζ. The coarse search is first used to identify a better region on the grid. For linear

SVM, ζ is searched in the range [2−5, 215] in steps of 22, that is, 11 values. RBF SVM

uses in turn the same range of values for ζ, whereas γ is searched in the interval [2−13, 23]

in steps of 22, thus testing 11 × 9 combinations. After finding the best combination, a

finer grid search on that region has been conducted, varying in 21.5 in each direction

centered on the value that produced the highest classification accuracy. Both procedures

have been validated with K-fold CV, using the computed ground truth labels tmr ∈ T to

train the models.

Table 4.1: Best cross-validation results for parameter selection of SVM models

Linear RBF
SVM Type γ ζ accuracy γ ζ accuracy
Simple - 45.2548 96.56 % 5.6569 22.6274 97.65 %
Stacked - 1024 96.78 % 0.5 512 97.67 %

Lastly, we have used the Jaccard Index [64], also known as the Jaccard similarity co-

efficient, in order to compare the similarity between the groundtruth masks and the

predicted masks in terms of overlap, thus assessing the performance of the proposed

baseline. The degree of overlap between two binary sets A and B is computed as the

ratio between the size of the intersection divided by the size of the union:

overlap(A,B) =
|A ∩B|
|A ∪B|

(4.1)

This measure takes values in [0, 1], 0 meaning no overlap and 1 meaning perfect agreement

between sets. GT represents connected components of the ground truth binary masks,

and Ŝ those of predicted binary masks from the different modalities individually or from

the different fusion approaches. For each frame, the overlap is computed per person id

and connected component, in such a way that connected components that have the same

person id or are connected in the ground truth constitute a set A, and they are compared

to the blobs that coincide in the predicted binary masks, which constitute a set B. The

overlap of each frame is then averaged by the number of sets found. It is therefore a

pessimistic measure because a very tiny blob misclassified as a person in the predicted

binary masks will account for 0 overlap, thus decreasing the mean overlap of the frame,

so it can be considered as a lower bound on how accurate the prediction is. The final
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overlap is computed as the mean overlap of all frames having at least one blob, whether

they be in the ground truth or in the predicted binary mask.

As commented in Section 3.1.1, the depth cue suffers from a halo effect around people

or objects, thus complicating an accurate pixel-level segmentation at blob contours when

applying background subtraction. This lack of accuracy is also caused by possible dis-

tortions, noise or other problems, and decreases the final overlap. Hence, a do not care

region (DCR) is often used. Such region is taken per frame by centering a morphology

operator of different sizes at the ground truth binary masks blob contours and subtract

it from those masks and from the predicted ones to compute the overlap. This way, we

can compare the effect of using a growing DCR to the actual overlap.

4.3 Experimental results

As explained in the last section, we assess the performance of the proposed baseline

using the Jaccard overlap measure (Eq. 4.1). Figure 4.1 depicts the obtained overlap for

individual predictions and fusion predictions with different fusion approaches. Tables 4.2

and 4.3 are included to compare the differences between using the descriptors separately

and after fusing them. Notice that in plots showing fusion results, only two cases are

considered, owing to color and depth modalities share the same original FG masks.

Table 4.2: Overlap results of the individual predictions for each description

HOG SM HOOF HIOG HON
0 62.10 % 63.12 % 56.97 % 46.35 % 56.76 %
1 64.71 % 65.85 % 59.41 % 47.99 % 59.09 %
3 67.59 % 69.02 % 62.13 % 50.85 % 61.70 %
5 68.65 % 70.40 % 63.20 % 53.02 % 62.77 %
7 68.65 % 70.72 % 63.28 % 54.45 % 62.94 %

Table 4.3: Overlap results of fusion using Stacked Linear SVM for each modality

DCR Thermal Color/Depth
0 49.64 % 64.65 %
1 51.33 % 67.39 %
3 54.29 % 70.43 %
5 56.56 % 71.58 %
7 58.11 % 71.63 %
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Figure 4.1: Overlap results for the different individual and fusion prediction approaches.
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4.4 Discussion

The obtained results show that, effectively, fusing different descriptions enhances the rep-

resentation of the scene, thus increasing the final overlap when segmenting subjects and

discriminating from other artifacts present in the scene. However, the selection of the

fusion approach is crucial. Our proposed naive approach for fusing individual confidences

of each modality decreases the overlap of the color modalities up to 8%. On the other

hand, as observed by the SVM experiments and in particular the stacked SVM experi-

ments including the prediction labels as new features, we obtain significant performance

improvements regarding each individual modality and the naïve fusion strategy. More

precisely, we achieve the best results using the stacked version of the linear SVM kernel,

thereby increasing the overlap considerably. Surprisingly, linear kernel outperforms RBF

by 2%, and stacked versions slightly improve the simple ones.

Figure 4.1a demonstrates that the most informative descriptions are HOG and SM. It is

important to note that thermal descriptions cannot reach as good overlap values as the

other modalities owing to the fact that the binary masks FGthermal were created from

FGdepth using the registration algorithm, which cannot be accurate up to pixel level, in

such a way that the ground truth and registered masks will moderately differ, especially

in left and right sides of the image. Therefore, we cannot state whether the proposed

thermal description performs accurately.

Furthermore, an upward trend is observed as DCR grows, although at higher DCR levels

it stabilizes. This is comprehensible because usually the contours of the predicted masks

are not accurately defined. Indeed, an accurate pixel-level segmentation is a rather

complex task in state of the art techniques.

Having analyzed the experimental results, it is worth investigating the causes of some

misclassifications. One of the problems is originated in the beginning of the chain. Since

background subtraction reduces the search space, it may reject some actual person parts.

That mainly happens when a person is in the same depth than something which belongs

to the background model. Another issue is that some regions considered as unknown –

mostly those generated when one person overlaps other – considerably differ from those

that are used to train the different models. Consequently, the classification of such regions

is not a trivial task.
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Conclusions and future work

In this master thesis project it has been proposed a solution for human body segmentation

in multi-modal data. A baseline method to segment people using different cues has

been proposed. Furthermore, a novel registered and annotated multi-modal RGB-Depth-

Thermal data set of several video sequences has been introduced, which contains several

subjects interacting with everyday objects.

The first contribution of this work was an adaptive multi-modal background subtraction

approach in order to extract the regions of interest that belong to a user or a moving

object in the scene with high confidence. From the set of regions of interest coming

from the different data modalities, different state of the art descriptors have been used

and adapted to describe different feature vectors from each region. In particular, HOG,

HOF, and gabor-based features have been computed from RGB still images and image

sequences, histogram of intensity gradients from thermal data, and histograms of normal

vectors from depth maps coming from infrared sensors. The set of descriptors have

been selected as the most discriminative ones given the results previously reported in

literature.

Given the proposed and adapted descriptions, we learnt a Gaussian mixture model for

each distribution of feature vectors from both objects and users in a grid fashion, ob-

taining a set of confidence score from each region of interest part belonging to user or

object. Those confidence scores were used independently to segment users in the differ-

ent modalities. As shown in our results, the segmentation performance by each modality
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varies and they offer complementary information. In this sense, we proposed two fu-

sion strategy methodologies to combine the scores of independent modalities. In our

first naïve approach, a simple combination and threshold-based rule is proposed, which

did not offer improved accuracy. Our second proposal was to combine the confidence

scores and previous GMM predictions as new feature vectors for SVM classifiers, in a

stacked learning fashion. As a result, we found significant performance improvements

of the proposed fusion strategy in comparison to each isolate modality. More inter-

estingly, the included predictions from previous classifiers enhanced final segmentation

performance. Thus, in conclusion, the results have shown variable performance for the

different modalities when segmenting people with multi-modal information, being the

multi-modal GMM-SVM stacked learning method the one that has achieved the best

results.

Despite the obtained results, this proposal clearly leaves further room of improvement. To

begin with, the first background subtraction stage could combine the different modalities

in order to learn the model. Furthermore, a clustering of poses at cell-level could be

added before learning the GMMs. GrabCuts could also be applied to the predicted

segmentation binary masks to refine and smooth the contours, which would also produce

a rise in the segmentation accuracy. Finally, if all the modalities were aligned up to pixel

level, local-based feature extraction and description could be carried out. In that sense,

as future work we plan to use that local information to allow the method to discard from

the final segmented binary masks those objects that are next to the segmented subjects

because of user-object interactions.
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