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Abstract

Error Correcting Output Codes technique (ECOC)
represents a general framework capable to extend
any binary classification process to the multi-class
case. In this work, we present a novel decoding
strategy that takes advantage of the ECOC cod-
ing to outperform the up to now existing decod-
ing strategies. The results show that the presented
methodology considerably increases the perfor-
mance of the state-of-the-art ECOC designs.
Keywords: Ensemble Methods and Boosting,
Learning, Classification.

1 Introduction

Multi-class categorization in a Machine Learning
is based on assigning labels to instances that be-
long to a finite set of object classes N (N > 2).
Nevertheless, designing a multi-classification tech-
nique is a difficult task. In this sense, it is com-
mon to conceive algorithms that distinguish be-
tween two classes and combine them following a
special criterion. Pairwise (one-versus-one) vot-
ing scheme [6] or one-versus-all [8] grouping strat-
egy are the procedures most frequently used. Error
Correcting Output Codes were born as a frame-
work for handling multi-class problems using bi-
nary classifiers [3]. ECOC has shown to dramati-
cally improve the classification accuracy of super-
vised learning algorithms in the multi-class case by
reducing the variance of the learning algorithm and
correcting errors caused by the bias of the learners
[4]. Furthermore, ECOC has been successfully ap-

plied to a wide range of applications, such as face
recognition, text recognition or manuscript digit
classification.

The ECOC framework consists of two steps: a
coding step, where a codeword! is assigned to each
class, and a decoding technique, where given a test
sample the method looks for the most similar class
codeword. One of the first designed binary cod-
ing strategies is the one-versus-all approach, where
each class is discriminated against the rest. How-
ever, it was not until Allwein et al. [1] introduced
a third symbol (the zero symbol) in the coding
process that the coding step received special at-
tention. The ternary ECOC gives more expressiv-
ity to the ternary ECOC framework by allowing
some classes to be ignored by the binary classi-
fiers. Thanks to this, strategies such as one-versus-
one [6] and random sparse coding [1] are pos-
sible. However, these predefined codes are inde-
pendent of the problem domain, and recently, new
approaches involving heuristics for the design of
problem-dependent output codes have been pro-
posed [10][5] with successful results.

The decoding step was originally based on error-
correcting principles under the assumption that the
learning task can be modelled as a communication
problem, in which class information is transmitted
over a channel [3]. In this sense, the Hamming
and the Euclidean distances were the first tenta-
tive for decoding [3]. Still very few alternative de-

The codeword is a sequence of bits (called code) repre-
senting each class, where each bit identifies the class mem-
bership by a given binary classifier.



coding strategies have been proposed in the liter-
ature. In [11], Inverse Hamming Distance (IHD)
and Centroid distance (CEN) for binary problems
are introduced. Other decoding strategies for nom-
inal, discrete and heterogeneous attributes have
been proposed in [7]. With the introduction of the
zero symbol, Allwein et al. [1] show the advantage
of using a loss based function of the margin of the
base classifier on the ternary ECOC. Also, there
have been several attempts to introduce probabili-
ties in the ECOC decoding process [9][2]. In [9],
the authors use conditional probabilities to esti-
mate the class membership in a kernel machine ap-
proach. An alternative probabilistic design of the
coding and decoding strategies is proposed in [2].
Nevertheless, none of the few proposed decoding
strategies in the literature takes into account the ef-
fect of the third (0) symbol during the decoding
step, leaving this fact as an open issue worthy of
exploring.

In this paper, we present a novel decoding tech-
nique, that we call Loss-Weighted decoding strat-
egy (LW). LW is based on a combination of prob-
abilities that adjusts the importance of each coded
position in a ternary ECOC matrix given the per-
formance of a classifier. The formulation of our
decoding process allows the use of discrete out-
put of the classifier as well as the margin when
it is available. The traditional Euclidean distance,
the Loss-based decoding, the probabilistic model
presented in [9], and the proposed LW decoding
are compared with 5 state-of-the-art coding strate-
gies, showing the high performance of the pre-
sented strategy in public databases.

2 Error Correcting Output Codes

Given a set of IV, classes to be learned, n different
bi-partitions (groups of classes) are formed, and n
binary problems (dichotomies) are trained. As a
result, a codeword of length n is obtained for each
class, where each bin of the code corresponds to
a response of a given dichotomy. Arranging the
codewords as rows of a matrix, we define a ”cod-
ing matrix” M, where M € {—1,0,1}<*" in the

ternary case. In fig.1 we show an example of a
ternary matrix M. The matrix is coded using 7
dichotomies {h1, ..., h7} for a four class problem
(c1, €2, c3, and c4). The white regions are coded
by 1 (considered as positive for its respective di-
chotomy, h;), the dark regions by -1 (considered
as negative), and the grey regions correspond to the
zero symbol (not considered classes by the current
dichotomy).

During the decoding process, applying the n
trained binary classifiers, a code x is obtained
for each data point in the test set. This code
is compared to the base codewords of each class
{y1,...,y4} defined in the matrix M, and the
data point is assigned to the class with the “clos-
est” codeword [1][11]. Although different dis-
tances can be applied, the most frequently used are
the Hamming (HD) and the Euclidean distances
(ED). In fig.1, a new test input x is evaluated by
all the classifiers and the method assigns label c;
with the closest decoding distances.
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Figure 1: Example of ternary matrix M for a 4-
class problem. A new test codeword is classified
by class ¢; when using the HD and ED decoding
strategies.

2.1 Coding designs

Different coding strategies were proposed for the
design of the ECOC matrix M. One-versus-all
[8] was the first ECOC design, where each learner
is trained to distinguish one class from the rest of
classes. The one-versus-one [6] strategy considers
all pairs of classes. The Dense and Sparse random
strategies were proposed for the binary and ternary
ECOC framework, respectively [10]. These strate-
gies must assure that the randomly generated ma-
trix rows and columns are as different as possible
in terms of the Hamming distance. The Dense



random strategy generates a random coding ma-
trix M, where the values {41, —1} have a certain
probability to appear. The sparse random strategy
is similar to the dense case, but includes the third
symbol 0 with another probability of appearance.

Due to the great number of bits involved in the
traditional coding strategies and the low robustness
of the one-versus-all strategy in comparison with
one-versus-one, new coding approaches have been
proposed [5][10]. The techniques take into account
the knowledge of the problem domain by selecting
the representative binary classifiers that increase
the generalization performance while keeping the
code length small. The DECOC method proposed
in [10] is based on the embedding of discriminant
tree structures derived from the problem domain.
In the work of [5], the authors propose the ECOC-
ONE coding strategy as an extension of any ini-
tial ECOC configuration. The method uses a cod-
ing process that learns relevant binary problems
guided by a validation subset.

2.2 Decoding designs

The decoding step decides the final category of an
input test by comparing the codewords. In this
way, a robust decoding strategy is required to ob-
tain accurate results. Several techniques for the bi-
nary decoding step have been proposed in the liter-
ature [11][7][9][2], though the most common ones
are the Hamming and the Euclidean approaches
[11]. In the work of [10], authors showed that
usually the Euclidean distance was more suitable
than the traditional Hamming distance in both the
binary and the ternary cases. Nevertheless, little
attention has been paid to the ternary decoding ap-
proaches.

In [1], the authors propose a Loss-based tech-
nique when a confidence on the classifier output is
available. For each row of M and each data sam-
ple g, the authors compute the similarity between
f7(p) and M (i, j), where f7 is the j** dichotomy
of the set of hypothesis F', considering a loss esti-
mation on their scalar product, as follows:

D(p,yi) = Y LM(,3) - () M
=1

where L is a loss function that depends on the
nature of the binary classifier. The most common
loss functions are the linear and the exponential
one. The final decision is achieved by assigning
a label to example g according to the class ¢; with
the minimal distance.

Recently, the authors of [9] proposed a proba-
bilistic decoding strategy based on the margin of
the output of the classifier to deal with the ternary
decoding. The decoding measure is given by:

II

D(y;, F) = —log ( P(a? = M(i,5)|£7) + a)
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where « is a constant factor that collects the
probability mass dispersed on the invalid codes,
and the probability P(x/ = M(i,7)|f7) is esti-
mated by means of:

. o 1
P! =y]|f7) = ——
i i+ B))
Vectors A and B are obtained by solving an op-
timization problem [9].

3 Loss-Weighted decoding (LW)

As mentioned above, the 0 symbol allows to in-
crease the number of bi-partitions of classes (thus,
the number of possible binary classifiers), result-
ing in a higher number of binary problems to be
learned. However, the effect of the ternary symbol
is still an open issue. Since a zero symbol means
that the corresponding classifier is not trained on
a certain class, to consider the “decision” of this
classifier on those zero coded position does not
make sense. Moreover, the response of the clas-
sifier on a test sample will always be different to 0,
so obligatory an error will be registered. Let return
to fig. 1, where an example about the effect of the
0 symbol is shown. The classification result using
the Hamming distance as well as the Euclidean dis-
tance is class ¢;. Note that class co has only coded
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first both positions, thus it is the only information
provided about class co. The first two coded loca-
tions of the codeword x correspond exactly to these
positions. Thus, the correct classification should
be class ¢y instead of ¢;. The use of standard de-
coding techniques that do not consider the effect
of the third symbol (zero) frequently fails. In the
figure, the HD and ED strategies accumulate an
error value proportional to the number of zero sym-
bols by row, and finally miss-classify the sample x.

Given a coding matrix M,

1) Calculate the matrix of hypothesis H:

1 .
H(i,j) = — E v(hj (k) i 5) @)
k=1

1 if @ = M(i,4)

basedon ~y(zj,1,5) = { 0 otherwise. ©
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Given a test input g, decode based on:

dlo.) = Y My )L ) F(20) O

Jj=1

Table 1: Loss-Weighted algorithm.

To solve the commented problems, we propose
a Loss-Weighted decoding. The main objective
is to find a weighting matrix My, that weights a
loss function to adjust the decisions of the classi-
fiers, either in the binary and in the ternary ECOC.
To obtain the weighting matrix My, we assign to
each position (7, j) of the matrix of hypothesis H
a continuous value that corresponds to the accu-
racy of the dichotomy h; classifying the samples
of class ¢ (4). We make H to have zero probability
at those positions corresponding to unconsidered
classes (5), since these positions do not have rep-
resentative information. Next step is to normalize
each row of the matrix H so that My can be con-
sidered as a discrete probability density function
(6). This step is very important since we assume

that the probability of considering each class for
the final classification is the same (independently
of number of zero symbols) in the case of not hav-
ing a priori information (P(c;) = ... = P(cn,)).
In fig. 2 a weighting matrix My for a 3-class prob-
lem with four hypothesis is estimated. Figure 2(a)
shows the coding matrix M. The matrix H of
fig. 2(b) represents the accuracy of the hypothesis
classifying the instances of the training set. The
normalization of H results in the weighting matrix
My of fig. 2(c)>.

1
=(1-100 0.900 0.800 0.000 0.000
11141 1.000 0.905 0.805 0.805

11 O:| |:0.955 0.955 1.000 0.000:|
H=

(a)

My=

(b)

0.328 0.328 0.344 0.000
0.529 0.471 0.000 0.000
0.285 0.257 0.229 0.229

(©)

Figure 2: (a) Coding matrix M of four hypotheses
for a 3-class problem. (b) Matrix H of hypothesis
accuracy. (c) Weighting matrix Myy .

The Loss-weighted algorithm is shown in table
1. As commented before, the loss functions ap-
plied in equation (6) can be the linear or the ex-
ponential ones. The linear function is defined by
L(#) = 6, and the exponential loss function by
L(#) = e~%, where in our case @ corresponds to
M(i,7) - f7(p). Function f7(g) may return either
the binary label or the confidence value of applying
the j** ECOC classifier to the sample g.

4 Results

The methodology of the validation affects the data,
applications, strategies of the comparative, and
measurements.

a) Data and applications: We consider the UCI
classification using 13 datasets from the public
UCI Machine Learning repository database.

b) Strategies and measurements: The strategies
used to validate the classification are 40 runs of

*Note that the presented Weighting Matrix My can also
be applied over any decoding strategy.



Discrete Adaboost with decision stumps, and the
OSU implementation of SVM with RBF kernel
(v = 1)3. These two classifiers generate the set
of binary problems to embed in the ECOC con-
figurations: one-versus-one, one-versus-all, dense-
random, DECOC, and ECOC-ONE. Each of the
ECOC strategies is evaluated using different de-
coding strategies: the Euclidean distance, Loss-
based decoding with exponential loss function, the
probabilistic model of [9], and four variants of the
Loss-Weighted decoding strategy: linear LW with
output label of the classifier, linear LW with out-
put margin of the classifier, exponential LW with
output label of the classifier, and exponential LW
with output margin of the classifier. The number of
classifiers used for each methodology is the prede-
fined or the provided by the authors in the case of
problem-dependent designs, except for the dense
random case, where we selected n binary classi-
fiers. The classification tests are performed using
stratified ten-fold cross-validation with two-tailed
t-test at 95% for the confidence interval.

4.1 UCI Repository Database

The characteristics of the data set are shown in ta-
ble 2. The classification ranking results for Dis-
crete Adaboost and RBF SVM are shown in fig. 3.
The ranking for Discrete Adaboost in fig. 3(a)
shows that the label approaches of our LW de-
coding tend to outperform the rest of the decod-
ing strategies for all databases and coding strate-
gies. The Loss-based decoding strategy and the
probabilistic model show similar behavior, and the
Euclidean strategy obtains the lower performance.
Observe that one-versus-one and ECOC-ONE cod-
ing strategies show the best accuracy. On the other
hand, the output margin provided by Adaboost
seems to be not robust enough to increase the per-
formance of the LW decoding strategies. In the

3We decided to keep the parameter fixed for sake of sim-
plicity, though we are aware that this parameter might not be
optimal for all data sets. Since the parameters are the same for
all compared methods any weakness in the results will also be
shared.

ranking of SVM, one-versus-one and ECOC-ONE
codings also attain the best accuracy, and the la-
bel variants of LW increase the performance of
the Euclidean, Loss-based and probabilistic decod-
ings. Besides, in this case the LW output margin
outperforms in most cases the label approaches. In
particular, the exponential LW variant is clearly
superior to the linear approach in this case, which
supports the use of the prediction obtained by the
margin of SVM.

Problem #Train #Test #Attributes #Classes
Dermathology 366 - 34 6
Iris 150 - 4 3
Ecoli 336 - 8 8
Wine 178 - 13 3
Glass 214 - 9 7
Thyroid 215 - 5 3
Vowel 990 - 10 11
Balance 625 - 4 3
Yeast 1484 - 8 10
Satimage 4435 2000 36 7
Letter 20000 - 16 26
Pendigits 7494 3498 16 10
Segmentation 2310 - 19 7

Table 2: UCI repository databases characteristics.

5 Conclusions

In this paper, we presented the Loss-Weighted de-
coding strategy, that obtains a very high perfor-
mance either in the binary and in the ternary ECOC
framework. The Loss-Weighted algorithm shows
higher robustness and better performance than the
state-of-the-art decoding strategies. The validation
of the results is performed using the state-of-the-art
coding and decoding strategies with Adaboost and
SVM as base classifiers, categorizing a wide set
of datasets from the UCI Machine Learning repos-
itory. The high success of the experiments shows
the suitability of the present methodology to be ap-
plied over any type of Machine Learning and Com-
puter Vision multi-class classification problems.
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