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Abstract

In this paper, we present a full-automatic real-time sys-
tem for recognizing the head pose in uncontrolled envi-
ronments over a cotinouos spatio-temporal behavior by
the subject . The method is based on tracking facial fea-
tures through Active Appearance Models. To differenti-
ate and identify the different head pose we use a multi-
classifier composed of different binary Support Vector
Machines. Finally, we propose a continuous solution to
the problem using the Tait-Bryan angles, addressing the
problem of the head pose as an object that performs a
rotary motion in dimensional space.

1 Introduction

Recognition of head pose has been a challenging
problem in recent years, mainly due to interest
in the technology industry to develop new inter-
faces to interact with the new generation of gad-
gets and applications. When we speak about head
pose, we refer to its spatial location, treating the
head like a point in a coordinate space, which can
perform positional and rotational movements in
any of the axes of the space where it moves. In
most articles, the problem is addressed in a two-
dimensional space, where a subject can make head

movements on the horizontal and vertical axes. In
a majority of published works[1] a two-stage se-
quential approach is adopted, aiming at locating
the regions of interest and verifying the hypotheses
on the head pose’s presence (detection stage), and
subsequently determining the type of the detected
head pose (recognition stage).

In this paper, we perform a detection of a set
of facial features. For both, detection and track-
ing, we base on Active Appearance Models. The
face pose recovery is obtained by the analysis of
image sequences from uncontrolled environments,
performing detection and tracking based on con-
tinuous spatio-temporal constraints.

2 Method

Since the method should work in uncontrolled en-
vironments, we do not have information about the
localization of the face. In this sense, we apply a
windowing strategy using frontal and profile Viola-
Jones [4] detectors, which provide positive bound-
ing boxes for the initialization of face features lo-
cation.



2.1 Detection and tracking of facial fea-
tures

Once we have reduced the original image informa-
tion into a region of interest where facial features
are present, the next step is to fit all of them in a
contextual model by means of a mesh using Ac-
tive Appearance Models[2] (AAM). AMM benefit
from Active Shape Models[3], providing informa-
tion to the combination of shape and texture. Ac-
tive Appearance Model is generated by combining
a model of shape and texture variation. First, a
set of points are marked on the face of the train-
ing images that are aligned, and a statistical shape
model is built. Each training image is warped so
the points match those of the mean shape. This
is raster scanned in a texture vector, g, which is
normalized by applying a linear transformation,
g → (g−µg1)

σg
, where 1 is a vector of ones, and

µg and σ2g are the mean and variance of elements
of g. After normalization gT 1 = 0 and |g| = 1.
Then, eigenanalysis is applied to build a texture
model. Finally, the correlations between shape and
texture are learnt to generate a combined appear-
ance model. The appearance model has parameter
c controlling the shape and texture according to:

x = x̂+Qsc

g = ĝ +Qgc

where x̂ is the mean shape, ĝ the mean texture
in a mean shaped patch, and Qs, Qg are matri-
ces designing the modes of variation derived from
the training set. A shape X in the image frame
can be generated by applying a suitable transfor-
mation to the points, x : X = St(x). Typ-
ically, St will be a similarity transformation de-
scribed by a scaling s, an in-plane rotation, θ, and a
translation (tx, ty). Once constructed the AAM, it
is deformed on the image to detect and segment
the face appearance as follows. During match-
ing, we sample the pixels in the region of interest
gim = Tu(g) = (u1+1)gim+u21, where u is the
vector of transformation parameters, and project

into the texture model frame, gs = T−1u (gim). The
current model texture is given by gm = ĝ + Qgc.
The current difference between model and image
(measured in the normalized texture frame) is as
follows:

r(p) = gs − gm

Given the error E = |r|2, we compute the pre-
dict displacements δp = −Rr(p), where R =

(∂r
T

∂r
∂p
∂p)
−1 ∂rT

∂p . The model parameters are updated
p 7→ p + κδ, where initially κ = 1. The new
points and model X

′
frame texture g

′
m are esti-

mated, and the image is sampled at the new points
to obtain gmi, obtaining the new error vector as
r
′
= T−1

u′
−gm. A final condition guides the end of

each iteration: if
∣∣∣r′ ∣∣∣2 < E, the we accept the new

estimate, otherwise, we set to κ = 0.5, κ = 0.25,
and so on. The procedure is repeated until no im-
provement is made to the error. Finally, we get a
description of facial features through shape infor-
mation (X

′
) and texture (gm). As for the perfor-

mance of tracking, the acquisition of the features
of shape and texture on the time t+ 1, it is a slight
variation of the facial features (shape and texture)
on the previous time (t), therefore, the cost of con-
vergence to the new pose is low, this is satisfied if
met spatiotemporal behavior by the subject.

2.2 Head pose recovery

The description of facial features through AAM
provides a vector descriptor of shape, consisting
of 21 points which form the silhouette of a mesh.
The target is to discretize the different types of
mesh that can form, which will produce different
head poses. We use a training set, labeling each
point structure, and then perform discrete classifi-
cation. The outputs of the classifier are as follows:
right, middle-right, frontal, middle-left, and left. In
order to get the discrete classifier, we establish a
training set with different structures of points re-
lating the head pose. These structures of points
should be aligned. The support vector machine
classifier[6] is used in a one-against-all design in



order to perform five-class classification. The final
choice of the discrete output is done by majority
voting. Taking into account the discontinuity that
appears when a face moves from frontal to profile
view we use three different AAM corresponding to
three meshes: frontal view =F , right lateral view
=R, left lateral view =L. In order to include tem-
poral and spatial coherence, meshes at frame t+ 1
are initialized by the fitted mesh points at frame t.
Additionally. we include a temporal change-mesh
control procedure, as follows

=t+1 = min=t+1{E<F
, E<R

, E<L
},=t+1εν(=t)

where ν(=t) corresponds to the meshes contigu-
ous to the mesh t fitted at time t (including the
same mesh). This constraint avoids false jumps
and imposes smoothness in the temporal face be-
havior (e.g. a jump from right to left profile view
is not allowed).

In order to obtain a continuous output. The goal
is to extract the angles of pitch and yaw movement
between two consecutive frames. The angles are
extracted from the following transformations:

Ry,θ =

 cos θ 0 sin θ
0 1 0
− sin θ 0 cos θ



Rx,ψ =

 1 0 0
0 cosψ − sinψ
0 sinψ cosψ


The transformation that will cause the motion is

R = Ry,θRx,ψ. Getting in Vi the information of
shape in the frame t (trough AMM), and Vf rela-
tive to frame t+1, θ and ψ angles will be extracted
by solving the following trigonometric equation:

RVi = Vf

3 Results

First we clarify which data has been subjected for
evaluation. Regarding the creation of the train-
ing set for the detection of facial features, we used

Figure 1: Discrete samples of the classifier output

Figure 2: Shape projected on three PCA components

the database called Labeled Faces in the Wild[5].
This data set is composed of several samples from
frontal, right, and left profiles. In Figure 2, shape
characteristics of each of the classes are shown us-
ing 98.45% of principal components after manual
labeling.

On the other hand, we get a representation of
texture features as shown in Figure 3. Unlike
the previous case, the projection of the character-
istics of texture has a similar trend for all three
classes. This is because the texture features are
based mainly on skin color. Figure 3.

The next phase of testing is to evaluate the
method on a video sequence. The results are shown
in the next table.

Head poses % on a sequence of 7269 frames
Head % of Occurrence System success
Left 0.1300 87

Middle-left 0.1470 73
Frontal 0.2940 95

Middle-right 0.1650 76
Right 0.2340 89

Finally we elaborated different tests to observe
the continuous system output for the same problem
(Figure 4 ).



Figure 3: Texture projected on three PCA components

Figure 4: Initial frame φ = 0 and θ = 0 and final
frame φ = 18.44 and θ = −6.0385

4 Conclusion

It is noted that AAM is able to detect a high num-
ber of facial features from different views in a ro-
bust and reliable way. Another quality that AAM
is its ability to work with success in different sit-
uations from uncontrolled environments, such as
partial occlusion or noise. It has also been ob-
served that the robustness and reliability of facial
feature extraction is very dependent on the number
of points of the model. A greater number of points
a more difficult to detect and track. Another im-
portant factor regarding the number of points that
form a mesh is its computational cost, since this is
entirely dependent on the density of dots forming a
pattern. This is of paramount importance for real-
time applications, since a high number of points
can make the system unsustainable. In our work, a
number of points greater than 21 can lead to prob-
lems of a slowdown in existing home computers.

Referring to the discrete outputs obtained by the
classifier, we observed that the results were suc-

cessful when the ”head pose was near-fully frontal
or profile”. For the continuous output of the sys-
tem, its success rate is totally dependent and sensi-
tive to the monitoring carried out by AAM. Actu-
ally, the computational cost of calculating the an-
gle difficulties the system to work in real time.
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