
GPGPU Volume Classification using SimpleOpenCL

Oscar Amoros1, Sergio Escalera1,2, Anna Puig1, and Maria Salamó1

1Dept. Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Spain 2Centre de Visió per Computador, Spain
1Dept. Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Spain

2Centre de Visió per Computador, Universitat Autònoma de Barcelona, Spain
E-mail: morousg@gmail.com, sescalera@cvc.uab.es, anna@maia.ub.es, maria@maia.ub.es

Abstract

In volume visualization, the definition of the re-
gions of interest is inherently an iterative trial-
and-error process finding out the best parameters
to classify and render the final image. In this
work, we present a general framework for training
multi-class classifiers using Error-Correcting Out-
put Codes. Moreover, we propose a GPGPU paral-
lelization system using SimpleOpenCL, an Open-
Source library we created to make easier the use of
OpenCL. Results show accurate classification re-
sults as well as good speed ups.
Keywords: Volume visualization, Multi-class Clas-
sification, GPGPU, Parallel Computing, OpenCL.

1 Introduction
Knowledge expressiveness of scientific data is one
of the most important visualization goals. The ab-
straction process the final user should carry out in
order to convey relevant information in the under-
lying data use to be a difficult task. Automatic and
user-guided segmentation strategies based on im-
age processing are used to obtain classified data
sets. In this paper, we propose a general frame-
work of supervised statistical classification meth-
ods to label on-demand multiple regions of inter-
est (see Fig. 1). The framework is composed by a
pre-learning stage and an on-demand testing stage
included in the renderer. The learning step gets
a subset of pre-classified samples to train a set of

Adaboost classifiers [1], which are codified as TFs,
and combined in an ECOC design [2]. Next, the
testing stage multi-classifies and labels a subset of
volume classes based on user interaction. The label
mapping defines clusters of the selected classes,
and then it assigns optical properties and impor-
tance values to the final output classes to be visu-
alizated. Moreover, we propose a GPGPU paral-
lelization system using SimpleOpenCL, an Open-
Source library we created to make easier the use of
OpenCL. Results show accurate classification re-
sults as well as good speed ups. The rest of the
paper goes as follow: Section 2 reviews the ECOC
framework and presents our methodology for vol-
ume labelling. Section 3 explains implementation
and the SimpleOpenCL library. Section 4 shows
the experimental results, and finally, Section 5 con-
cludes the paper.

2 Multi-class volume labelling
In this section, we present our automatic system
for multi-class volume labelling.

2.1 ECOC overview
Given a set of N classes (volume structures or
regions with certain properties) to be learnt in
an ECOC framework, n different bi-partitions
(groups of classes) are formed, and n binary prob-
lems over the partitions are trained. As a result,
a codeword of length n is obtained for each class,
where each position (bit) of the code corresponds

to a response of a given classifier h (coded by +1
or -1 according to their class set membership, or 0
if a particular class is not considered for a given
classifier). Arranging the codewords as rows of
a matrix, we define a coding matrix M , where
M ∈ {−1, 0,+1}N×n. Fig. 2(a) and (b) show
a volume data set example and a coding matrix M ,
respectively. The matrix is coded using 15 classi-
fiers {h1, ..., h15} trained using a few voxel sam-
ples for each class of a 6-class problem {c1, ..., c6}
of respective codewords {y1, ..., y6}. The classi-
fiers h are trained by considering the pre-labelled
training data samples {(ρ1, l(ρ1)), ..., (ρk, l(ρk))},
for a set of k data samples (voxels in our case),
where ρ is a data sample and l(ρk) its label. For
example, the first classifier h1 is trained to dis-
criminate c1 against c2, without taking into account
the rest of classes. During the decoding or testing
process, applying the n binary classifiers, a code
X is obtained for each data sample ρ in the test
set. This code is compared to the base codewords
(yi, i ∈ [1, .., N]) of each class defined in the ma-
trix M , and the data sample is assigned to the class
with the closest codeword. In fig. 2(b), code X is
compared to the class codewords using the Ham-
ming Decoding, and the test sample is classified
by class c1 with a measure of 0.5.

2.2 All-pairs multi-class learning
Given a set of pre-labelled samples for each vol-
ume structure, we use the one-versus-one ECOC
design to train the set of all possible pairs of labels.
An example for a 6-class foot problem is shown in
Fig. 2(a) and (b). The positions of the matrix M
coded by +1 are considered as one class for its re-
spective classifier hj , and the positions coded by
-1 are considered as the other one (e.g. the first
classifier is trained to discriminate c1 against c2).

2.3 ECOC submatrix definition
Given a volume that can be decomposed into N
different possible labels, we want to visualize in
rendering time the set of labels requested by the
user. For this purpose, we use a small set of ground
truth voxels features to train the set of N(N−1)/2

Figure 1: Visualization framework.

Adaboost binary problems that defines the one-
versus-one ECOC coding matrix M of size N ×n.
Then, let us define the interaction of the user as the
set I = {I0, .., Iz} = {{ci, .., cj}, ..{ck, .., cl}},
where I, |I| ∈ {1, .., N} is the set of groups of
labels selected by the user, and I0 contains the
background (always referred as c1) plus the rest of
classes not selected for rendering, I0 = {ci},∀ci /∈
{I1, .., Iz},

∪
ci∈I = {c1, .., cN},

∩
ci∈I = ∅.

Then, the submatrix SM ∈ {−1, 0,+1}N×Z is
defined, where Z ≤ n is the number of classi-
fiers selected from M that satisfies the constraint
hi|∃j,Mji ∈ {−1, 1}, cj ∈ I \ I0. For in-
stance, in a 6-class problem of 15 one-versus-
one ECOC classifiers (see Fig. 2(b)), the user de-
fines the interaction {c3, c6}, resulting in the in-
teraction model I = {{c1, c2, c4, c5}, {c3, c6}}
in order to visualize two different labels, one for
background and other one for those voxels with
label c3 or c6. Then, from the original matrix
M ∈ {−1, 0,+1}6×15, the submatrix SM ∈
{−1, 0,+1}6×9 is defined, as shown in Fig. 2(c).
Note that the identifier i of each classifier hi in SM

refers to its original location in M . Finally, we use
the Loss-Weighted decoding (LW) [3] to obtain the
final ECOC submatrix classification.

2.4 Label mapping
Given the submatrix SM and the user inter-
action model I , after classification of a voxel
ρ applying the LW decoding, the obtained la-
bel ci, i ∈ {1, ..N} is relabelled applying the

mapping LM (I, ci) =


l1 if ci ∈ I1
...
lz if ci ∈ Iz

, where

li, i ∈ {1, .., z} allows to assign RGBα or im-

(a) (b) (c) (d)

Figure 2: (a) True labels for a foot volume of six classes; (b) One-versus-one ECOC coding matrix M for the 6-class problem.
An input test codeword X is classified by class c1 using the Hamming Decoding; (c) Submatrix SM defined for an interaction set
I = {{c1, c2, c4, c5}, {c3, c6}}; (d) Visualization in the new label space.

portance values to all voxels that belong to the
corresponding selected classes in Ii. As an
example, applying the interaction model I =
{{c1, c2, c4, c5}, {c3, c6}} for the 6-class prob-
lem of Fig. 2(a), we obtain the submatrix SM

of Fig. 2(c). Applying the Loss-Weighted de-
coding over SW , and the mapping function
{{c1, c2, c4, c5}, {c3, c6}} −→ {0, 1}, the new
volume representation is shown n Fig. 2(d).

3 Implementation
Here, we describe our proposed classifier represen-
tation, analyze its parallelization possibilities, and
describe the novel SimpleOpenCL library.

3.1 Adaboost Look up table
We propose to define a new and equivalent repre-
sentation of Adaboost classifier that facilitate the
parallelization of the testing. We define the matrix
V of size 3 × |ρ| · L), where |ρ| corresponds to
the dimensionality of the feature space and L the
number of weak classifiers used in Adaboost train-
ing step. First row of V codifies the weight values
of weak classifiers. In this sense, each position i
of the first row of V contains the weight value for
the feature mod(i, |ρ|) if mod(i, |ρ|) ̸= 0 or |ρ|,
otherwise. The next weight value for that feature
is found in position i + |ρ|. The positions corre-
sponding to features not considered during train-
ing are set to zero. The second and third rows of
V for column i contains the values of polarity and
threshold used in a decision stump weak classifier

training. Thus, in our proposal, each “weak classi-
fier” is codified in a channel of a 1D-Texture.

3.2 GPU and Multi-CPU implementation
In order to make the application usable, we aim to
improve the testing stage execution times as much
as possible. The critical section in our applica-
tion is a triple for-loop that traverses all the data.
Each iteration is data independent with each other
so they can be executed concurrently. Each itera-
tion can be divided into two steps: a binary classifi-
cation and a multi-class final decision. The latter is
the multi-class decision made by using the ECOC
matrix and the results of the first binary step.

One of the languages we have considered is
ANSI C + OpenMP because not all computers
have an OpenCL capable GPU. We have also con-
sidered testing Apple’s GCD (Grand Central Dis-
patch) API, that passes the management of the
threads to the system and takes in account the work
load of the CPU cores to reduce context switch-
ing. At the programmer level GCD substitutes the
threads with queues. It allows the programmer to
only focus on deciding which part of the code will
be synchronous or not regarding the main program,
using lots of lightweight queues that will feed a
few system controlled threads.

On the other hand, we have also analyzed
OpenCL due to the huge speedups it can deliver
when running on high end GPU’s and the possi-
bility of OpenGL integration. Nevertheless, pro-
ductivity continues to be a major concern. Then,
CUDA could be an option but we preferred to stick

with OpenCL’s compatibility and portability be-
tween GPU’s and CPU’s. We maintain a correla-
tion of one Work Item per one sample. It would
have been feasible to use more than a Work Item
per sample in the above mentioned steps in order
to achieve a more fine-grained parallelization and
a more scalable code. Nevertheless, at the end of
the two steps we only obtain a value per sample.
As a consequence, the extra Work Items need to
communicate through local memory and so, the
performance is drastically reduced. In addition,
maintaining the same Work Group and Work Item
dimensions through all the process allowed us to
code a single kernel, integrating also an initial gra-
dient calculation step.

3.3 SimpleOpenCL library
SimpleOpenCL is an OpenSource library and
Google code project 1 that we created. It is writ-
ten in ANSI C with single device performance and
portability goals in mind. The main goal of Sim-
pleOpenCL has been reducing the code needed to
run the experiments on the GPU with OpenCL,
but also supports managing CPU devices. With
OpenCL we can control the data flow between dif-
ferent kinds of computing devices that use different
types of interconnect with the CPU and main mem-
ory, compile code for each of them, send the proper
binary code for each of them, order execution etc.
This is a very powerful tool since allows for com-
puter architects to create any sort of accelerator and
make it compatible with existing code. It is neces-
sary because there are some technology constraints
when increasing CPU performance. The tendency
is to increase the parallelism and heterogeneity of
the computing architectures, so OpenCL gives a
way to recycle code that can be executed on all of
them. OpenCL is an open standard managed by
Khronos group 2. OpenCL provides so much con-
trol over the system that it requires a lot of code.
So with SimpleOpenC we are providing two levels
of programming. The first level provides the sim-

1http://code.google.com/p/simple-opencl/
2http://www.khronos.org/

Figure 3: SimpleOpenCL programming levels.

Figure 4: SimpleOpenCL first level function example.

plest way to do an OpenCL program, but doesn’t
allow to do some very low level improvements and
optimizations. For that purpose we provide a sec-
ond level, where the programmer has more control,
but also has to write more code, although less than
with plain OpenCL.

As seen in Fig. 3 the first level uses internally
second level functions, and the second level uses
both OpenCL and some utilities or third level func-
tions. At the first level, we provide a function that
allows to execute a kernel in a single line, passing
standard C pointers as arguments, and some infor-
mation about them in a printf fashion. That way,
the function knows what to do with the parame-
ters and automatically does all the repetitive work
a developer should do with native OpenCL. This
reduces lots of code into a single line.

As seen in Fig. 4 we use a variable argument
function where the variable arguments are pre-
ceded by a string whose contents are explained
in the wiki manual of SimpleOpenCL OpenSource
project web page. The function internally will cre-
ate all the necessary buffers attached to the ”hard-
ware” context, copy the data, set all the kernel ar-
guments, launch the kernel and capture an event
on it to query the time it lasted, wait for the kernel
to finish execution, update the host pointers that

(a) (b)

Figure 5: ”Hello world” (a) SimpleOpenCL and (b) OpenCL.

have to be updated with device results and return
an OpenCL event to query execution times. This
behavior is what would be expected on a typical C
sequential execution, but OpenCL provides more
advanced execution options. We can enqueue sev-
eral kernel executions on different queues for dif-
ferent devices without waiting for every single ker-
nel. We can wait for all of them or for some of
them in a given queue or for a given kernel to fin-
ish. All that possibilities are accessible through the
second level functions. An example just to see the
proportion of the difference between OpenCL and
SimpleOpenCL is shown in Fig. 5. In fact, in the
OpenCL version there are 15 extra missing lines
and it doesn’t include printing error names, that
would add a huge function. The larger the code,
the bigger the code reduction.

3.3.1 SimpleOpenCL future work
The development road for SimpleOpenCL is to
provide a simplified set of advanced functionality
on second level, to be used internally on first level.
The proper management of memory transfers be-
tween host and device is a very important matter
since every transfer has a minimum of something
like 6000 cycles overhead when using PCIe de-
vices like discreet GPU’s. The ideal is to trans-
fer data once, do all the processing needed and
then read the results. Nevertheless, some advanced
functionality to be added on the future is advanced
memory transfer management. You can find an

elaborated idea of it for CUDA on Google code
project GMAC 3. If there where an OpenCL ver-
sion of GMAC it would be ideal to use it inside sec-
ond or first level SimpleOpenCL functions since it
resolves very low level performance and program-
ability issues. The only problem is that GMAC
may need to manually add support for each new
device that appears. By now, SimpleOpenCL relies
only on a working OpenCL 1.1 implementation re-
gardless of the devices being used.

4 Simulations and Results
This section describes the experimental setup and
shows the performance evaluation in terms of clas-
sification accuracy and execution time.

4.1 Setup
• Data: We used three data sets, Thorax data set

of size 400×400×400 represents a MRI phantom hu-
man body; Foot and Brain4 of sizes 128×128×128 and
256×256×159 are CT scans of a human foot and a hu-
man brain, respectively.

• Methods: We use the one-versus-one ECOC de-
sign, Discrete Adaboost as the base classifier, and we
test it with different number of decision stumps. For
each voxel sample ρ, we considered eight features: x,
y, z coordinates, the respective gradients, gx, gy , gz ,
the gradient magnitude, |g| and the density value, v.
The system is compared in C++, OpenMP, GCD, and
OpenCL codes.

• Hardware/Software: For the CPU versions we
used a Core i5 750 processor and for the GPGPU an
NVIDIA GTX 470. The viewport size is 700×650. We
used the MoViBio software by the GIE Group at the
UPC university.

• Measurements: We compute the mean execution
time from 500 code runs. For the accuracy analysis, we
performed 50 runs of cross-validation with a 5% strati-
fied samplings.

4.2 Classification accuracy analysis
Fig. 6 shows the classification accuracy of the
framework for the data sets considering different
number of decision stumps M. The accuracies

3http://code.google.com/p/adsm/
4http://www.voreen.org, http://www.slicer.org/archives

Figure 6: Classification accuracies for different number of decision stumps in the Adaboost-ECOC framework.

Figure 7: Comparison of the pre-labelled (left) and the classified data set (right) for the data sets.

are shown individually for each volume structure.
From Fig 6 one can see that even for different com-
plexity of volume structures, most of the categories
obtain upon 90% of accuracy. Qualitative results
are shown in Fig. 7.

4.3 Execution time analysis
We compared the time performance of our GPU
testing with the CPU implementations based on se-
quential C-code, OpenMP, and GCD approaches.
In table 1, the averaged time of the 500 executions.
We employ different sized data sets with several
number of classes to be labelled and distinct user-
selections. Our proposed SimpleOpenCL-based
optimization has an average of speed up of 109x,
31.11x, and 31.14x over the sequential C-coded al-
gorithm, the OpenMP and the GCD based algo-
rithms, respectively. In table 1, we can observe
that time values are proportional to three features:
the data set sizes, the number of classes,N , and
the number of classifiers, Z, used for the selected
classes. Note that we obtain real-time in the Foot
data set.

5 Conclusions
We proposed o a two-level GPU-based labelling al-
gorithm based on the novel SimpleOpenCL library
that computes in time of rendering voxel labels us-

ing the ECOC framework with the Adaboost clas-
sifier. After a training step using few volume voxel
features from different structures, the user is able
to ask for different volume visualizations and opti-
cal properties. Additionally, to exploit the inherent
parallelism of the proposal, we implemented the
testing stage in C++, OpenMP, GCD, and GPU-
OpenCL. Our results indicate that the proposal has
the potential to deliver worthwhile accuracy and
speeds up execution time.

Data
set

N Sel.
classes

Z CPU OpenMP GCD OpenCL

Foot 3 2 2 0.387 0.111 0.111 0.008
9 9 36 8.319 1.787 1.777 0.091

Brain 9 2 15 39.396 11.190 11.177 0.358
9 9 36 96.859 27.642 27.557 1.263

Thorax 2 2 1 26.849 7.604 7.600 2.694
9 9 36 971.915 270.751 269.751 7.763

Table 1: Testing step times in seconds for a C implementation
running on CPU, parallel CPU implementations in OpenMP and GCD
and GPGPU implementation in OpenCL C.

References
[1] J. Friedman, T. Hastie, R. Tibshirani, Additive logistic regres-

sion: a statistical view of boosting, Annals of Statistics 28.

[2] S. Escalera, D. Tax, O. Pujol, P. Radeva, R. Duin, Subclass
problem-dependent design of error-correcting output codes, in:
IEEE Transactions in Pattern Analysis and Machine Intelligence,
Vol. 30, 2008, pp. 1–14.

[3] S. Escalera, O. Pujol, P. Radeva, On the decoding process in
ternary error-correcting output codes, IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 32 (2010) 120–134.

