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Abstract: In this study, the authors propose the spatial codification of label predictions within the multi-scale stacked sequential
learning (MSSL) framework, a successful learning scheme to deal with non-independent identically distributed data entries. After
providing a motivation for this objective, they describe its theoretical framework based on the introduction of the blurred shape
model as a smart descriptor to codify the spatial distribution of the predicted labels and define the new extended feature set for the
second stacked classifier. They then particularise this scheme to be applied in volume segmentation applications. Finally, they test
the implementation of the proposed framework in two medical volume segmentation datasets, obtaining significant performance
improvements (with a 95% of confidence) in comparison to standard Adaboost classifier and classical MSSL approaches.
1 Introduction

One of the most widely used assumptions in supervised
learning is that data is independent and identically
distributed (iid). However, there are many real world
applications in which this assumption does not necessarily
hold. Consider the case of object recognition in image or
volume segmentation. It is clear that if one pixel or voxel
belongs to a certain object category, it is very likely that its
spatial neighbours also belong to the same object.
Sequential learning [1] breaks the iid assumption and

assumes that samples are not independently drawn from a
joint distribution of the data samples X and their labels G.
In sequential learning, the training data consists of
sequences of pairs (x, g) so that neighbouring examples
exhibit some kind of correlation. In the literature, sequential
learning has been addressed from different perspectives
[2–6]. One of the most successful and flexible approaches
in this scenario, especially in image segmentation
applications, has been the multi-scale stacked sequential
learning (MSSL) [7] and its multi-class extension [8].
In short, the MSSL approach in image segmentation

proceeds in a two-level learning scheme. First, a base
classifier outputs a label prediction for each image pixel.
Then, the original feature set of each pixel is augmented
(stacked) with the predicted label densities in several
neighbouring scales around that pixel as new features.
Finally, training a second classifier in this new training set
outputs the final pixel classifications. Note that this rather
simple framework has shown high performance results
without assuming any specific correlation properties within
the neighbouring pixels, that is, by letting the second
classifier learn these particular dependencies on any given
dataset.
Although the MSSL model covers some flexibility in

choosing the neighbouring lattices (cubical, spherical,
Gaussian etc.) and scales, it relies only on the predicted
labels density information for each scale in the design of
the new features to be stacked. Specifically, these features
do not encode the spatial distribution of the predicted
labels, only its presence. While in many scenarios this
approach may meet the performance criteria, we claim that
the inclusion of the spatial distribution information of the
predicted labels could enhance the performance results in
many images and volume segmentation applications.
Therefore in this work, we propose a smart codification of

the spatial distribution of the predicted labels to be stacked as
new features within the MSSL framework. To accomplish this
task, we focus on grid techniques to describe the spatial
information using linear computation time and in particular
in the use of the blurred shape model (BSM) [9] to obtain a
robust descriptor that accounts for small shape variation
independence (in contrast with the Zoning model [10]). The
BSM has been successfully applied in several
two-dimensional (2D) image analysis and classification
tasks [9, 11].
Our contribution consists, on the one hand, in proposing

the spatial codification of the predicted labels in multi-class
MSSL and defining the corresponding mathematical
scheme. On the other hand, we describe the adaptation of
the proposed framework in multi-class volume segmentation
problems, and show its performance results in two medical
1
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Fig. 1 Multiclass MSSL using ECOCs
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volume datasets within a comparative analysis with respect to
a direct AdaBoost [12, 13, 14] implementation and the
original MSSL framework. This field of application is
particularly relevant for different reasons. First, quantitative
analysis derived from the segmentation of medical image or
volume data provides essential clinical information in a
number of diagnostic scenarios [13]. Second, carrying out
the segmentation procedure manually or semi-automatically
(especially in 3D datasets) by a trained specialist is
sometimes highly time-inefficient in the clinical setting and
suffers from inter- and intra-observer variabilities. Finally,
any machine learning framework working in this domain
should include a powerful contextual learning model to
obtain accurate segmentations of the regions of interest,
since in some applications even a small increase in
accuracy may be very convenient for subsequent processing
stages such as the computation of clinical indicators. To the
best of our knowledge, very few works have addressed the
use of MSSL in 3D medical data [15] and this is the first
proposal to consider a spatial coherent descriptor of label
predictions within the MSSL framework.
The rest of this paper is organised as follows. Section 2

introduces the mathematical framework of our contribution,
Section 3 describes its performance results on two
multi-class medical volume segmentation applications and
Section 4 concludes the paper and points out some future
work.

2 Methods

In this section, we describe the building blocks of our
proposed learning framework and its adaptation to volume
segmentation scenarios.

2.1 General framework

First, we revisit the principal building blocks of the
multi-class MSSL framework (Fig. 1). As it has been
Fig. 2 ECOC design example
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mentioned, the main idea of this model is to first train a
base classifier (C0) from the original training set X and their
ground truth labels g. In a multi-class setting of L classes, a
convenient extra layer to select the class output (y) should
be added. In this work, we focus on error correcting output
codes (ECOCs) to extend the MSSL framework to the
multi-class case because of its demonstrated performance
[16, 17]. A short description of this methodology is
introduced as follows.
Given that most state-of-the-art learning strategies are

defined to deal with two-class problems, extension to
multi-class problems requires an ensemble of binary
classifiers. In this sense, the ECOC approach has shown to
be a powerful framework for the combination of classifiers
to deal with multi-class data. In short, given an L-class
problem, a coding matrix M∈ {−1, 0, +1}L × n is designed,
where each of the n columns represents a binary classifier
or dichotomiser (hi), the L rows are defined as the
codewords codifying each class ci, i∈ [1, …, L], and +1,
−1 identifies the class membership for a binary classifier,
being 0 if the class is not considered by the classifier. Then,
for any given test instance x, its codeword W is computed
applying all binary classifiers, and its classification
prediction is defined by the class with codeword at
minimum distance given a distance metric. An ECOC
design example is shown in Fig. 2.
Given the label predictions y of the base classifier, for each

entry (e.g. pixel/voxel) we inspect its neighbourhood (with a
given lattice such as cubical, spherical or Gaussian) at
different scales s and compute a descriptor J(y, s) that seeks
to model the distribution of the predicted labels for each
neighbourhood scale. Then, the original feature set is
augmented with the new descriptors (Z ) obtained from
J(y, s) and therefore all the entries of the training matrix X
are extended with this new features obtaining an augmented
training set X′. Finally, a second classifier C is now trained
with this computed contextual information (X′) and outputs
the final classification label y′.
IET Comput. Vis., pp. 1–8
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Fig. 3 Different spatial distributions for the same label density codification
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The objective of this work is to discuss the role of the
descriptor function J(y, s). As it has been mentioned, the
original definition of MSSL assumes that J(y, s) encodes
only the density of the predicted labels; that is, for each
neighbourhood s, the proportion of y = yi, ∀i∈ [1, …, L]
within the neighbourhood entries is recorded. Although
computationally convenient and performance efficient in
many applications, we claim that codifying not only the
predicted label densities but also its spatial distribution
within the neighbourhood scale may prove useful in some
applications by increasing the overall performance results.
Consider the illustrative example in Fig. 3, where clearly all
the drawings have the same label density information but a
substantially different spatial distribution. If these drawings
were the neighbour label predictions for the central pixel of
a circular lattice for a given scale, it is clear that by
encoding the spatial distribution as new features, the
contextual classifier could derive a much more accurate
re-classification rule for the pixel under consideration than
when only providing the label density information.
To further illustrate the point, consider the simplified

MSSL scenario in Fig. 4. Fig. 4a shows a ground truth
segmentation of three objects (blue, red and green) in a
given sample image. Suppose that the base classifier
predictions are the ones in Fig. 4b. Now, without loss of
generality, assume a single-scale stacked sequential learning
scheme where a square lattice of a given size is used (the
orange square in Fig. 4c). Consider the J(y, s) computation
of the pixel located at the centre of the orange square.
Using the density descriptor for J(y, s), the only

information provided in the new features for this pixel is
that there is a certain proportion of green predictions and
blue predictions around him (optionally including the
background proportion). Notice that there is no apparent
reason to think that the contextual classifier would learn
that the pixel under consideration should change its label,
since it seems coherent that a green pixel may be nearby a
blue object (as there are other examples in the bottom region).
Fig. 4 Simple example showing the relevance of encoding the spatial s

a Ground truth image
b Base classifier prediction
c Neighbourhood around the relevant misclassified pixel
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Now consider instead a possible J(y, s) that encodes the
spatial distribution of the predicted labels within the
neighbourhood scale. For instance, consider the simplest
case of selecting as new features the number of predictions
of each label in each quadrant in a 2 × 2 grid decomposition
of the neighbourhood as shown in Fig. 4c. Now the
contextual classifier will have more information and may
learn that it is suspicious that a green pixel has in its right a
blue object, since this is not observed anywhere else in the
image, and consider refining its prediction to red in the final
classification.
In this work, we propose the codification of the spatial

distribution of the predicted labels J(y, s) in each scale
through the BSM [9, 11]. This model is a particular grid
technique (with linear complexity for each scale) that is also
robust to small shape variations. Its general properties are
described as follows. In short, the BSM provides a simple
and fast descriptor that defines a probability density
function of the shape of an object by encoding its
probabilistic spatial variability. This model has proven
useful in multi-class 2D symbol categorisation problems
(within an ECOC framework) because of its robustness to
symbol’s rigid and elastic deformations, successfully
recognising clefs in music scores, and multiple object
categories in public image categorisation datasets [9, 11].

2.2 MSSL–BSM framework adaptation to volume
segmentation applications

We now particularise the general framework to be applied in
volume segmentation scenarios. In this context, the
neighbourhood lattices are defined in the 3D space.
Examples include cubical, spherical or Gaussian lattices.
Therefore the BSM needs to be adapted to be applied in a
3D context. Taking into account the general high
computational demands in volume processing scenarios, our
proposal modification of the BSM descriptor computation is
presented in Fig. 5. Note that for simplicity, we assume the
tructure of the predicted labels
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Fig. 5 Adaptation of the BSM descriptor computation algorithm in the 3D setting for a particular label y
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same discretisation scale on the three dimensions (height,
width and depth), but this decision could be modified
depending on the application.
We also revisit the ECOC framework within a volume

segmentation scenario. Basically, in this context the data
entries x are the voxel’s features (with W its associated
codeword) and the possible classification labels correspond
to the voxel’s belonging to the different segmentation
regions. In [18], the authors shown that using the Hamming
distance (HD) metric [17] as the ECOC decoding measure
has proven successful results in volume segmentation
scenarios (Fig. 6).
The final BSM-based spatial descriptor J to be stacked

within the MSSL framework is therefore obtained by a
vectorisation of the BSM descriptors of each label yi at each
scale si, with a total size L·Ns (Ns being the number of
scales). Note that this new feature set can become very
large and the curse of dimensionality must be taken into
consideration. However, most volume datasets contain a
large number of voxels and therefore in general this
Fig. 6 ECOC decoding measure has proven successful results in volum

a Input volume
b One-vs-one ECOC coding matrix of L(L – 1)/2 classifiers and HD decoding for
For each column, 1 and −1 indicate the two classes learned by hi and 0 correspon
Given a new voxel sample x and its associated codeword W, the HD computation
Therefore in this case, the classification label for sample x would be 3, correspond
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increase in the number of features should not be an issue.
Fig. 7 summarises the global proposed scheme in an
illustrative manner.
Finally, a unifying picture of the proposed methodology is

described. The main point is that any machine learning
framework working in medical volume segmentation
problems needs to model appropriately the context of the
particular voxel to be classified. Unfortunately, given the
high heterogeneity and irregular morphology of most
regions of interest to be segmented in these applications,
modelling the context properties analytically is too restrictive.
Therefore an interesting approach is to actually learn the

context properties through the predicted labels of the
learning algorithm. The MSSL framework is a successful
setting designed to accomplish this task by augmenting the
original voxel feature set with the proportions of predicted
labels by the learning algorithm for each class and in
several context scales, and then training a contextual
classifier on this extended feature set. Our contribution
relies on proposing a new methodology where we improve
e segmentation scenarios

a four-class problem
ds to the classes not considered for training by its correspondent classifier hi
is obtained counting the number of different entries between W and each ci
ing to the codeword of the class at the minimum HD
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Fig. 7 Illustration of a voxel processing instance within the proposed MSSL–BSM framework

Neighbourhood of a voxel x is analysed at different scales (s1,… sNs), and in each one of them a BSM descriptor is computed to model the spatial distribution of the
predicted labels
Final voxel descriptor dBSM(v) is obtained by the concatenation of the descriptors in each scale
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the context description of the MSSL framework by
introducing a smart spatial codification (based on the BSM)
of the predicted labels.
At the implementation level, the process is summarised as

follows: at the training stage, given the original voxel training
set, a base classifier is trained. Then, the original training set
is augmented by appending as new features the BSM
descriptors of the predicted labels of the base classifier at
different context scales (having the entry voxel as the centre
voxel of the context neighbourhood lattices). The final
contextual classifier is then obtained by learning the
augmented training set. At the test level, first all the test
voxel entries are classified using the learned base classifier.
Then, for each test entry, its augmented feature vector is
computed by combining the original features with the BSM
descriptors obtained from the predicted labels at different
context scales (with the same protocol as in the training
phase). Finally, the learned contextual classifier is applied
to this augmented entry and the final voxel classification
label is obtained.
3 Results and discussion

In this section, we present and discuss the results of applying the
proposed methodology in two medical volume segmentation
datasets. The first one aims to segment a brain volume model
of size 181 × 217 × 181 (http://www.slicer.org/archives) in
three compartments (right hemisphere, left hemisphere and
cerebellum) providing as input only a small ground truth
Fig. 8 Brain dataset (three labels) and thorax dataset (eight
labels)
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subset of voxels of each of the four classes. The second one
is analogous to the first but using a thorax volume model of
size 128 × 128 × 128 (http://www.fredsampedro.com/other/
thorax_volume_model_8labs.dat), which we are interested
to divide in eight structures (spine, bones, heart and
circulatory system, lungs, pancreas, liver, kidneys and
intestine) providing again as a training set only a small
subset of labelled voxels of each of the eight classes
(Fig. 8). For both cases, the voxel feature set includes the
voxel 3D coordinates, intensity, gradient magnitude and
gradient along each of the three dimensions, defining an
initial feature set for each voxel of eight features. These
datasets have been used, among others, to test classification
performance of different state-of-the art classifiers (such as
AdaBoost [12]) in volume segmentation scenarios [18].
The settings defined to test our system are defined as

follows. Without loss of generality, we chose AdaBoost
[12] (with 200 decision stumps) as the learning algorithm
for both the base and the contextual classifier and use
cubical lattice neighbourhoods with BSM grids of 4 × 4 × 4
voxels. The multi-class classification is then performed by
the one-versus-one ECOC framework [19]. The main goal
of this section is to compare the performance results on
different settings applying a standard AdaBoost classifier,
the standard MSSL framework using density descriptors
and our proposed MSSL framework with the spatial
codification of the predicted features using BSM.
We first conducted a single-scale sequential learning

experiment on the brain dataset. For computational reasons,
we chose a cubical neighbourhood lattice of 18 × 18 × 18
voxels. We also chose a sampled version of the original
volume to conduct the experiments in a reasonable amount
of time. Accuracy results are shown in Table 1 for a
Table 1 Accuracy segmentation results of each label (y1, y2,
y3) in the brain volume dataset using a single-scale framework

y1 y2 y3

base classifier 0.981811 0.972827 0.973386
contextual classifier – density
codification

0.984056 0.972469 0.980048

contextual classifier – BSM
codification

0.988299 0.977877 0.985226
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Table 2 Accuracy of each label (y1, y2, y3) in the brain volume
dataset using a two-scale framework

y1 y2 y3

base classifier 0.981811 0.972827 0.973386
contextual classifier – Density
codification

0.988066 0.972603 0.982736

contextual classifier – BSM
codification

0.990090 0.976581 0.984343

www.ietdl.org
training set of randomly chosen voxels of size 0.5% for each
label from the total dataset.
Note that as it has been mentioned, the standard single-scale

sequential learning framework provides substantial
performance improvements with respect to a pure AdaBoost
classifier. Also, as claimed, a global overall performance
improvement is observed using the BSM codification.
The situation is analogous when a multi-scale approach is

used. In this case, we chose two scales of sizes 4 and 12
within the same model and the same ground truth sample.
Table 2 shows the results of this configuration. Note that in
this case we observe both the performance improvement of
the multi-scale against the single-scale scheme and the
BSM against density codification. Fig. 9 shows the visual
results in this scenario. However, most part of the
Fig. 9 Visual results on a sampled version of the brain dataset

Regions of highest improvement as marked with rectangles in the MSSL–BSM co

Table 3 Accuracy of each label (y1, …, y8) in the thorax volume datas

y1 y2 y3

base classifier 0.991308 0.986269 0.990308
MSSL– density codification 0.990456 0.992298 0.990650
MSSL–BSM codification 0.996194 0.995947 0.990906
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improvement is not easily appreciated visually since it is
mainly focused on correcting a small number of voxels
from very specific boundaries, as discussed in Section 2.1.
Finally, using the thorax dataset which models an 8-class

classification problem, using two scales of size 4 and 12
and a 10% random sample as training set (to account for
the substantial increase in the number of features), similar
results are obtained (Table 3). Fig. 10 shows the associated
visual results for some of the volume regions.
A statistical analysis is carried out in order to justify the

significance of these improvements. Note that the results
shown above are for a particular experiment after randomly
selecting a small percentage of voxels as ground truth.
Logically, a different random selection of the ground truth
voxels will lead to slightly different accuracy results in
absolute value, since the voxels located near the region
boundaries are more informative than the others. However,
in this setting we are interested on the relative performance
improvement of the BSM contextual classifier with respect
to the density one. Therefore, regarding the relative
improvement of both approaches, after running a number of
experiments (N = 10 because of computational reasons), the
maximum empirical standard deviation recorded was
inferior to 0.001%. If we take that value as a worst-case
scenario we can conduct several statistical tests to show the
significance of the obtained results.
lumn

et using a two-scale framework

y4 y5 y6 y7 y8

0.997527 0.995772 0.995192 0.990414 0.992561
0.997332 0.995772 0.995277 0.990180 0.993834
0.997420 0.995257 0.995379 0.991349 0.993962
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Fig. 10 Visual results on the thorax dataset

Note that in order to visually appreciate the difference, instead of the classified volumes by MSSL and MSSL–BSM only the misclassified voxels are shown for
each method
Regions of highest improvement as marked with rectangles in the MSSL–BSM column
Only those labels where the performance improvement is easily appreciated visually are shown (y1, y2, y7)
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In particular, we applied the Friedman and Nemenyi
statistics in order to look for statistical significance among
the obtained performances [20]. In order to compare the
performances obtained for each of the three methods on the
two datasets, Table 4 shows the mean rank of each method
considering the 14 different scores, corresponding to the
different label performances. The rankings are obtained by
estimating each particular ranking pji for each method i and
score j, and computing the mean ranking P for each result
as Pj = (1/Q)

∑
i p

j
i, where Q is the total number of scores.

One can see that, as expected, our method achieves the best
rank position, followed by the MSSL approach, and finally
by the base classifier results.
To reject the null hypothesis that the measured ranks do not

differ from the mean rank, and therefore the ranks are affected
by randomness in the results, we use the Friedman test. The
Friedman statistic value is computed as follows

X 2
F = 12Q

k(k + 1)

∑
j

P2
j −

k(k + 1)2

4

[ ]

In our case, for k = 3 methods to compare, the result for X 2
F is
Table 4 Mean rank for the three methods on the performed
experiments

Base AdaBoost MSSL MSSL–BSM

rank 2.5714 2.2857 1.1429

IET Comput. Vis., pp. 1–8
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15.99. Since this value is undesirable conservative, Iman and
Davenport proposed a corrected statistic [21]

FF = (Q− 1)X 2
F

Q(k − 1)− X 2
F

Applying this correction we obtain 17.32 as the value of FF.
With 3 methods and 14 scores FF is distributed according to
the F distribution with (k – 1, (k – 1)·(Q – 1)) = (2, 26) degrees
of freedom. The critical value of F(2, 26) for a 95% of
confidence is 3.36. Since the obtained value for FF is
higher than the one obtained by F(2, 26) we can reject the
null hypothesis.
Once we have checked for the non-randomness of the

results, we can perform a post hoc test to check if one of
the methods can be statistically singled out. For this
purpose we use the Nemenyi test. The Nemenyi statistic is
obtained as follows

CD = qa

���������
k(k + 1)

6Q

√

In our case, the CD value with a 95% of confidence
corresponding to a qα is 0.88. In order to illustrate the
intersections of the CD interval with the method ranks,
Fig. 11 plots the corresponding values.
One can see that the rank of our proposal (MSSL–BSM)

does not intersect with the other methods rank for the
computed CD value. Thus, we can guarantee that our
7
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Fig. 11 Nemenyi confidence intervals for comparative results
(AdaBoost, MSSL and MSSL–BSM)
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achieved results are statistically significant for the performed
experiments. On the other hand, the ranks of Adaboost and
MSSL approaches intersect for the computed CD value.
This means that although MSSL achieves a better rank
value (and better performance than Adaboost for most of
the test labels), we cannot guarantee that there exists a
statistical significance difference between Ababoost and
MSSL on the performed experiments. Therefore, we have
provided empirical evidence for the motivation of the
spatial codification of the predicted labels within the MSSL
framework.
4 Conclusion

MSSL has proven to be a successful framework to deal with
non-independent identically distributed dataset entries. In this
work, we proposed the spatial codification of the label
predictions within the MSSL framework as a method for
improving its overall performance, in contrast with its
original density based codification. In particular, we
introduced an adaptation the BSM that provides a smart
codification of the predicted labels’ spatial distribution,
which is used as a descriptor for the new stacked features.
In comparison with Adaboost and standard MSSL, our
method showed significant performance improvement (with
a 95% of confidence) at classifying multiple label structures
on two public medical volume segmentation problems.
Future work include reducing the running time of our
approach by designing appropriate parallel computation
schemes optimised for this scenario as well as building
more volume segmentation datasets to test the proposed
methodology.
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