
Metadata of the chapter that will be visualized in
SpringerLink

Book Title Computer Vision - ECCV 2014 Workshops
Series Title

Chapter Title Subspace Procrustes Analysis

Copyright Year 2015

Copyright HolderName Springer International Publishing Switzerland

Corresponding Author Family Name Perez-Sala
Particle

Given Name Xavier
Prefix

Suffix

Division

Organization Fundació Privada Sant Antoni Abat

Address 08800, Vilanova i la Geltrú, Spain

Division Computer Vision Center

Organization Universitat Autònoma de Barcelona

Address Bellaterra, Spain

Division

Organization Universitat Politècnica de Catalunya

Address 08800, Vilanova i la Geltrú, Spain

Email xavier.perez-sala@upc.edu

Author Family Name Torre
Particle De la
Given Name Fernando
Prefix

Suffix

Division Robotics Institute

Organization Carnegie Mellon University

Address Pittsburgh, PA, 15213, USA

Email

Author Family Name Igual
Particle

Given Name Laura
Prefix

Suffix

Division Computer Vision Center

Organization Universitat Autònoma de Barcelona

Address Bellaterra, Spain

Division

Organization Universitat de Barcelona

Address 08007, Barcelona, Spain



Email

Author Family Name Escalera
Particle

Given Name Sergio
Prefix

Suffix

Division Computer Vision Center

Organization Universitat Autònoma de Barcelona

Address Bellaterra, Spain

Division

Organization Universitat de Barcelona

Address 08007, Barcelona, Spain

Email

Author Family Name Angulo
Particle

Given Name Cecilio
Prefix

Suffix

Division

Organization Universitat Politècnica de Catalunya

Address 08800, Vilanova i la Geltrú, Spain

Email
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rigid and non-rigid deformations of the -D object. We propose a discrete (DSPA) and continuous (CSPA)
formulation for SPA, assuming that -D samples of an object are provided. DSPA extends the traditional
PA, and produces unbiased -D models by uniformly sampling different views of the -D object. CSPA
provides a continuous approach to uniformly sample the space of -D rotations, being more efficient in
space and time. Experiments using SPA to learn -D models of bodies from motion capture data illustrate
the benefits of our approach.
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Abstract. Procrustes Analysis (PA) has been a popular technique to
align and build 2-D statistical models of shapes. Given a set of 2-D
shapes PA is applied to remove rigid transformations. Then, a non-rigid
2-D model is computed by modeling (e.g., PCA) the residual. Although
PA has been widely used, it has several limitations for modeling 2-D
shapes: occluded landmarks and missing data can result in local minima
solutions, and there is no guarantee that the 2-D shapes provide a uni-
form sampling of the 3-D space of rotations for the object. To address
previous issues, this paper proposes Subspace PA (SPA). Given several
instances of a 3-D object, SPA computes the mean and a 2-D subspace
that can simultaneously model all rigid and non-rigid deformations of the
3-D object. We propose a discrete (DSPA) and continuous (CSPA) for-
mulation for SPA, assuming that 3-D samples of an object are provided.
DSPA extends the traditional PA, and produces unbiased 2-D models
by uniformly sampling different views of the 3-D object. CSPA provides
a continuous approach to uniformly sample the space of 3-D rotations,
being more efficient in space and time. Experiments using SPA to learn
2-D models of bodies from motion capture data illustrate the benefits of
our approach.

1 Introduction

In computer vision, Procrustes Analysis (PA) has been used extensively to align
shapes (e.g., [4,19]) and appearance (e.g., [13,20]) as a pre-processing step to
build 2-D models of shape variation. Usually, shape models are learned from a
discrete set of 2-D landmarks through a two-step process [8]. Firstly, the rigid
transformations are removed by aligning the training set w.r.t. the mean using
PA; next, the remaining deformations are modeled using Principal Component
Analysis (PCA) [5,18].

PA has been widely employed despite suffering from several limitations: (1)
The 2-D training samples do not necessarily cover a uniform sampling of all 3-D
rigid transformations of an object and this can result in a biased model (i.e., some
poses are better represented than others). (2) It is computationally expensive
c© Springer International Publishing Switzerland 2015
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(a) (b) (c)

Fig. 1. Illustration of Continuous Subspace Procrustes Analysis (CSPA), which builds
an unbiased 2-D model of human joints’ variation (b) by integrating over all possible
viewpoints of a 3-D motion capture data (a). This 2-D body shape model is used to
reconstruct 2-D shapes from different viewpoints (c). Our CSPA model generalizes
across poses and camera views because it is learned from a 3-D model.

to learn a shape model by sampling all possible 3-D rigid transformations of an
object. (3) The models that are learned using only 2-D landmarks cannot model
missing landmarks due to large pose changes. Moreover, PA methods can lead
to local minima problems if there are missing components in the training data.
(4) Finally, PA is computationally expensive, it scales linearly with the number
of samples and landmarks and quadratically with the dimension of the data.

To address these issues, this paper proposes a discrete and a continuous
formulation of Subspace Procrustes Analysis (SPA). SPA is able to efficiently
compute the non-rigid subspace of possible 2-D projections given several 3-D
samples of a deformable object. Note that our proposed work is the inverse
problem of Non-Rigid Structure From Motion (NRSFM) [3,21,22]. The goal of
NRSFM is to recover 3-D shape models from 2-D tracked landmarks, while SPA
builds unbiased 2-D models from 3-D data. The learned 2-D model has the same
representational power of a 3-D model but leads to faster fitting algorithms [15].
SPA uniformly samples the space of possible 3-D rigid transformations, and it
is extremely efficient in space and time. The main idea of SPA is to combine
functional data analysis with subspace estimation techniques.

Fig. 1 illustrates the main idea of this work. In Fig. 1 (a), we represent many
samples of 3-D motion capture data of humans performing several activities.
SPA simultaneously aligns all 3-D samples projections, while computing a 2-D
subspace (Fig. 1 (b)) that can represent all possible projections of the 3-D motion
capture samples under different camera views. Hence, SPA provides a simple,
efficient and effective method to learn a 2-D subspace that accounts for non-
rigid and 3-D geometric deformation of 3-D objects. These 2-D subspace models
can be used for detection (i.e., constrain body parts, see Fig. 1 (c)), because
the subspace models all 3-D rigid projections and non-rigid deformations. As we
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656 X. Perez-Sala et al.

will show in the experimental validation, the models learned by SPA are able
to generalize better than existing PA approaches across view-points (because
they are built using 3-D models) and preserve expressive non-rigid deformations.
Moreover, computing SPA is extremely efficient in space and time.

2 Procrustes Analysis Revisited

This section describes three different formulations of PA with a unified and
enlightening matrix formulation.

Procrustes Analysis (PA): Given a set of m centered shapes (see footnote for
notation1) composed by � landmarks Di ∈ R

d×�,∀i = 1, . . . , m, PA [2,6,8–10]
computes the d-dimensional reference shape M ∈ R

d×� and the m transfor-
mations Ti ∈ R

d×d (e.g., affine, Euclidean) that minimize the reference-space
model [2,8,10] (see Fig. 2 (a)):

ER(M,T) =
m∑

i=1

||TiDi − M||2F , (1)

where T = [TT
1 , · · · ,TT

m]T ∈ R
dm×d. In the case of two-dimensional shapes

(d = 2), Di =
[
x1 x2 . . . x�

y1 y2 . . . y�

]
. Alternatively, PA can be optimized using the

data-space model [2] (see Fig. 2 (b)):

ED(M,A) =
m∑

i=1

||Di − AiM||2F , (2)

where A = [AT
1 , · · · ,AT

m]T ∈ R
dm×d. Ai = T−1 ∈ R

d×d is the inverse trans-
formation of Ti and corresponds to the rigid transformation for the reference
shape M.

The error function Eq. (1) of the reference-space model minimizes the differ-
ence between the reference shape and the registered shape data. In the data-space
model, the error function Eq. (2) compares the observed shape points with the
transformed reference shape, i.e., shape points predicted by the model and based
on the notion of average shape [23]. This difference between the two models leads
to different properties. Since the reference-space cost (ER, Eq. (1)) is a sum of
squares and it is convex in the optimization parameters, it can be optimized
globally with Alternated Least Squares (ALS) methods. On the other hand, the
data-space cost (ED, Eq. (2)) is a bilinear problem and non-convex. If there is

1 Bold capital letters denote a matrix X, bold lower-case letters a column vector x. xi

represents the ith column of the matrix X. xij denotes the scalar in the ith row and
jth column of the matrix X. All non-bold letters represent scalars. In ∈ R

n×n is an

identity matrix. ‖x‖2 = 2
√∑

i |xi|2 and ‖X‖F =
√∑

ij x2
ij denote the 2-norm for

a vector and the Frobenius norm of a matrix, respectively. X ⊗ Y is the Kronecker
product of matrices and X(p) is the vec-transpose operator, detailed in Appendix A.

A
u

th
o

r 
P

ro
o

f



Subspace Procrustes Analysis 657

(a) (b)

Fig. 2. (a): Reference-space model. (b): Data-space model. Note that Ai = T−1
i .

no missing data, the data-space model can be solved using the Singular Value
Decomposition (SVD). A major advantage of the data-space model is that it is
gauge invariant (i.e., the cost does not depend on the coordinate frame in which
the reference shape and the transformations are expressed) [2]. Benefits of both
models are combined in [2]. Recently, Pizarro et al. [19] have proposed a convex
approach for PA based on the reference-space model. In their case, the cost func-
tion is expressed with a quaternion parametrization which allows conversion to a
Sum of Squares Program (SOSP). Finally, the equivalent semi-definite program
of a SOSP relaxation is solved using convex optimization.

PA has also been applied to learn appearance models invariant to geometric
transformations. When PA is applied to shapes, the geometric transformation
(e.g., Ti or Ai) can be directly applied to the image coordinates. However, to
align appearance features the geometric transformations have to be composed
with the image coordinates, and the process is a bit more complicated. This is
the main difference when applying PA to align appearance and shape. Frey and
Jojic [7] proposed a method for learning a factor analysis model that is invari-
ant to geometric transformations. The computational cost of this method grows
polynomially with the number of possible spatial transformations and it can be
computationally intensive when working with high-dimensional motion models.
To improve upon that, De la Torre and Black [20] proposed parameterized com-
ponent analysis: a method that learns a subspace of appearance invariant to
affine transformations. Miller et al. proposed the congealing method [13], which
uses an entropy measure to align images with respect to the distribution of the
data. Kookinos and Yuille [12] proposed a probabilistic framework and extended
previous approaches to deal with articulated objects using a Markov Random
Field (MRF) on top of Active Appearance Models (AAMs).

Projected Procrustes Analysis (PPA): Due to advances in 3-D capture
systems, nowadays it is common to have access to 3-D shape models for a variety
of objects. Given n 3-D shapes Di ∈ R

3×�, we can compute r projections Pj ∈
R

2×3 for each of them (after removing translation) and minimize PPA:
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658 X. Perez-Sala et al.

EPPA(M,Aij) =
n∑

i=1

r∑

j=1

‖PjDi − AijM‖2F , (3)

where Pj is an orthographic projection of a 3-D rotation R(ω) in a given domain
Ω, defined by the rotation angles ω = {φ, θ, ψ}. Note that, while data and
reference shapes are d-dimensional in Eq. (1) and Eq. (2), data Di and reference
M ∈ R

2×� shapes in Eq. (3) are fixed to be 3-D and 2-D, respectively. Hence,
Aij ∈ R

2×2 is a 2-D transformation mapping M to the 2-D projection of the
3-D data. ALS is a common method to minimize Eq. (2) and (3). ALS alternates
between minimizing over M and Aij ∈ R

2×2 with the following expressions:

Aij = PjDiMT (MMT )−1 ∀i, j, (4)

M = (
n∑

i=1

r∑

j=1

AT
ijAij)−1(

n∑

i=1

(
r∑

j=1

AT
ijPj)Di). (5)

Note that PPA and its extensions deal with missing data naturally. Since
they use the whole 3-D shape of objects, the enhanced 2-D dataset resulting
of projecting the data from different viewpoints can be constructed without
occluded landmarks.

Continuous Procrustes Analysis (CPA): A major limitation of PPA is
the difficulty to generate uniform distributions in the Special Orthogonal group
SO(3) [17]. Due to the topology of SO(3), different angles should be sampled fol-
lowing different distributions, which becomes difficult when the rotation matrices
must be confined in a specific region Ω of SO(3), restricted by rotation angles
ω = {φ, θ, ψ}. Moreover, the computational complexity of PPA increases linearly
with the number of projections (r) and 3-D objects (n).

In order to deal with these drawbacks, a continuous formulation (CPA) was
proposed in [10] by formulating PPA within a functional analysis framework.
CPA minimizes:

ECPA(M,A(ω)i) =
n∑

i=1

∫

Ω
‖P(ω)Di − A(ω)iM‖2F dω, (6)

where dω = 1
8π2 sin(θ)dφdθdψ ensures uniformity in SO(3) [17]. This continuous

formulation finds the optimal 2-D reference shape of a 3-D dataset, rotated and
projected in a given domain Ω, by integrating over all possible rotations in that
domain. The main difference between Eq. (3) and Eq. (6) is that the entries
in P(ω) ∈ R

2×3 and A(ω)i ∈ R
2×2 are not scalars anymore, but functions of

the integration angles ω = {φ, θ, ψ}. After some linear algebra and functional
analysis, it is possible to find an equivalent expression to the discrete approach
(Eq. (3)), where A(ω)i and M have the following expressions:

A(ω)i = P(ω)DiMT (MMT )−1 ∀i, (7)

M =

(
n∑

i=1

∫

Ω
A(ω)T

i A(ω)idω

)−1 (
n∑

i=1

(∫

Ω
A(ω)T

i P(ω)dω

)
Di

)
. (8)
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Subspace Procrustes Analysis 659

It is important to notice that the 2-D projections are not explicitly computed
in the continuous formulation. The solution of M is found using fixed-point
iteration in Eq. (6):

M = (ZMT (MMT )−1)−1Z, (9)

where X =
∫
Ω P(ω)T P(ω)dω ∈ R

3×3 averages the rotation covariances and2

Z = (MMT )−1M
(∑n

i=1(D
T
i ⊗ DT

i ) vec(X)
)(�). Note that the definite integral

X is not data dependent, and it can be computed off-line.
Our work builds on [10] but extends it in several ways. First, CPA only com-

putes the reference shape of the dataset. In this paper, we add a subspace that is
able to model non-rigid deformations of the object, as well as rigid 3-D transfor-
mations that the affine transformation cannot model. As we will describe later,
adding a subspace to the PA formulation is not a trivial task. For instance, mod-
eling a subspace following the standard methodology based on CPA would still
require to generate r rotations for each 3-D sample. Hence, the CPA efficiency is
limited to rigid models while our approach is not. Second, we provide a discrete
and continuous formulation in order to provide a better understanding of the
problem, and experimentally show that it converges to the same solution when
the number of sampled rotations (r) increases. Finally, we evaluate the models in
two challenging problems: pose estimation in still images and joints’ modeling.

3 Subspace Procrustes Analysis (SPA)

This section proposes Discrete Subspace Procrustes Analysis (DSPA) and Con-
tinuous Subspace Procrustes Analysis (CSPA) to learn unbiased 2-D models
from 3-D deformable objects.

Discrete Subspace Procrustes Analysis (DSPA): Given a set of r view-
points Pj ∈ R

2×3 of the n 3-D shapes, where di = vec(Di) ∈ R
3�×1, DSPA

extends PA by considering a subspace B ∈ R
2�×k and the weights cij ∈ R

k×1

which model the non-rigid deformations that the mean M and the transforma-
tion Aij are not able to reconstruct. DSPA minimizes the following function:

EDSPA(M,Aij ,B, cij) =
n∑

i=1

r∑

j=1

∥∥∥PjDi − AijM − (cT
ij ⊗ I2)B(2)

∥∥∥
2

F
= (10)

n∑

i=1

r∑

j=1

‖(I� ⊗ Pj)di − (I� ⊗ Aij)μ − Bcij‖22 , (11)

where Pj is a particular 3-D rotation, R(ω), that is projected using an ortho-
graphic projection into 2-D, μ = vec(M) ∈ R

2�×1 is the vectorized version of
the reference shape, cij are the k weights of the subspace for each 2-D shape
projection, and B(2) ∈ R

2k×� is the reshaped subspace. Observe that the only
2 See Appendix A for an explanation of the vec-transpose operator.
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660 X. Perez-Sala et al.

difference with Eq. (3) is that we have added a subspace. This subspace will com-
pensate for the non-rigid components of the 3-D object and the rigid component
(3-D rotation and projection to the image plane) that the affine transformation
cannot model. Recall that a 3-D rigid object under orthographic projection can
be recovered with a three-dimensional subspace (if the mean is removed), but PA
cannot recover it because it is only rank two. Also, observe that the coefficient
cij depends on two indexes, i for the object and j for the geometric projection.
Dependency of cij on the geometric projection is a key point. If j index is not
considered, the subspace would not be able to capture the variations in pose
and its usefulness for our purposes would be unclear. Although Eq. (10) and the
NRSFM problem follow similar formulation [3], the assumptions are different and
variables have opposite meanings. For instance, the NRSFM assumptions about
rigid transformations do not apply here, since Aij are affine transformations in
our case.

Given an initialization of B = 0, DSPA is minimized by finding the transfor-
mations A∗

ij and reference shape M∗ that minimize Eq. (3), using the same ALS
framework as in PA. Then, we substitute A∗

ij and M∗ in Eq. (11) that results
in the expression:

EDSPA(B, cij) =
n∑

i=1

r∑

j=1

∥∥∥D̃ij − (cT
ij ⊗ I2)B(2)

∥∥∥
2

F
= (12)

n∑

i=1

r∑

j=1

∥∥∥d̃ij − Bcij

∥∥∥
2

2
=

∥∥∥D̃ − BC
∥∥∥
2

F
, (13)

where D̃ij = PjDi−A∗
ijM

∗ ∈ R
2×�, d̃ij = vec(D̃ij) ∈ R

2�×1, D̃ = [d̃1 . . . d̃nr] ∈
R

2�×nr, and C ∈ R
k×nr. We can find the global optima of Eq. (13) by Singular

Value Decomposition (SVD): B = U and C = SVT , where D̃ = USVT .

Continuous Subspace Procrustes Analysis (CSPA): As it was discussed
in the previous section, the discrete formulation is not efficient in space nor
time, and might suffer from not uniform sampling of the original space. CSPA
generalizes DSPA by re-writting it in a continuous formulation. CSPA minimizes
the following functional:

ECSPA(M,A(ω)i,B, c(ω)i) =
n∑

i=1

∫

Ω

∥∥∥P(ω)Di − A(ω)iM − (c(ω)T
i ⊗ I2)B(2)

∥∥∥
2

F
dω = (14)

n∑

i=1

∫

Ω
‖(I� ⊗ P(ω))di − (I� ⊗ A(ω)i)μ − Bc(ω)i‖22 dω, (15)

where dω = 1
8π2 sin(θ)dφdθdψ. The main difference between Eq. (15) and Eq. (11)

is that the entries in c(ω)i ∈ R
k×1, P(ω) ∈ R

2×3 and A(ω)i ∈ R
2×2 are not

scalars anymore, but functions of integration angles ω = {φ, θ, ψ}.
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Given an initialization of B = 0, and similarly to the DSPA model, CSPA
is minimized by finding the optimal reference shape M∗ that minimizes Eq. (6).
We used the same fixed-point framework as CPA. Given the value of M∗ and the
expression of A(ω)∗

i from Eq. (7), we substitute them in Eq. (15) resulting in:

ECSPA(B, c(ω)i) =
n∑

i=1

∫

Ω

∥∥∥P(ω)D̄i − (c(ω)T
i ⊗ I2)B(2)

∥∥∥
2

F
dω = (16)

n∑

i=1

∫

Ω

∥∥(I� ⊗ P(ω))d̄i − Bc(ω)i

∥∥2

2
dω, (17)

where D̄i = Di(I� − (M∗T (M∗M∗T )−1M∗)) and d̄i = vec(D̄i). We can find the
global optima of Eq. (17) by solving the eigenvalue problem, ΣB = BΛ, where
Λ are the eigenvalues corresponding to columns of B.

After some algebra (see Appendix B) we show that the covariance matrix
Σ = ((I� ⊗ Y) vec(

∑n
i=1

∑r
j=1 d̄ijd̄T

ij))
(2�) where the definite integral Y =∫

Ω P(ω) ⊗ (I� ⊗ P(ω))dω ∈ R
2�×2� can be computed off-line, leading to an

efficient optimization in space and time. Though the number of elements in
matrix Y increase quadratically with the number of landmarks �, note that the
integration time is constant since Y has a sparse structure with only 36 different
non-zero values (recall that P(ω) ∈ R

2×3).
Although A(ω)i and c(ω)i are not explicitly computed during training, this

is not a limitation compared to DSPA. During testing time, training values of
c(ω)i are not needed. Only the deformation limits in each principal direction of
B are required. These limits also depend on eigenvalues [4], which are computed
with CSPA.

4 Experiments and Results

This section illustrates the benefits of DSPA and CSPA, and compares them
with state-of-the-art PA methods to build 2-D shape models of human skeletons.
First, we compare the performance of PA+PCA and SPA to build a 2-D shape
model of Motion Capture (MoCap) bodies using the Carnegie Mellon University
MoCap dataset [1]. Next, we compare our discrete and continuous approaches
in a large scale experiment. Finally, we illustrate the generalization of our 2-D
body model in the problem of human pose estimation using the Leeds Sport
Dataset [11]. For all experiments, we report the Mean Squared Error (MSE)
relative to the torso size.

4.1 Learning 2-D Joints Models

The aim of this experiment is to build a generic 2-D body model that can
reconstruct non-rigid deformations under a large range of 3-D rotations. For
training and testing, we used the Carnegie Mellon University MoCap dataset
that is composed of 2605 sequences performed by 109 subjects. The sequences
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(a) (b) (c)

Fig. 3. Comparisons as a function of the number of training viewpoint projections. (a)
Rigid and (b) Deformable models (using a subspace of 9 basis) from Experiment 1,
respectively; (c) CSPA and DSPA deformable models (using a subspace of 12 basis)
from Experiment 2.

cover a wide variety of daily human activities and sports. Skeletons with 31 joints
are provided, as well as RGB video recordings for several sequences. We trained
our models using the set of 14 landmarks as is common across several databases
for human pose estimation.

Experiment 1: Comparison with State-of-the-Art PA Methods. This
section compares DSPA, CSPA methods with the state-of-the-art Stratified Gen-
eralized Procrustes Analysis (SGPA) [2]3. For training we randomly selected 3
sequences with 30 frames per sequence from the set of 11 running sequences of the
user number 9 (this is due to the memory limitations of SGPA). For testing we
randomly selected 2 sequences with 30 frames from the same set. We rotated the
3-D models in the yaw and pitch angles, within the ranges of φ, θ ∈ [−π/2, π/2].
The angles were uniformly selected and we report results varying the number of
considered angles (i.e., rotations) between 1 ∼ 100 angles in training, and fixed
300 angles for testing.

There are several versions of SGPA.We selected the “Affine-factorization”with
thedata-spacemodel tomake a fair comparisonwith ourmethod.Recall that under
ourassumptionofnon-missingdata“Affine-All” and“Affine-factorization”achieve
the same solution, with “Affine-factorization” being faster.

Fig. 3 shows the mean reconstruction error and 0.5 of the standard deviation
for 100 realizations. Fig. 3 (a) reports the results comparing PA, CPA and SGPA.
As expected, PA and SGPA converge to CPA as the number of training rotations
increased. However, observe that CPA achieves the same performance, but it is
much more efficient. Fig. 3 (b) compares DSPA, CSPA, and SGPA followed
by PCA (we will refer to this method SGPA+PCA). From the figure we can
observe that the mean error in the test for DSPA and SGPA+PCA decrease
with the number of rotations in the training, and it converges to CSPA. CSPA
provides a bound on the lower error. Observe, that we used 90 3-D bodies (3

3 The code was downloaded from author’s website (http://isit.u-clermont1.fr/∼ab).
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Fig. 4. Experiment 2 results with 1 (top), and 30 (bottom) rotations. Examples show
skeleton reconstructions from continuous (CSPA in solid red lines) and discrete (SPA
in dashed blue lines) models over ground truth (solid black lines).

sequences with 30 frames) within rotating angles φ, θ ∈ [−π/2, π/2], and DSPA
and SGPA+PCA needed about 30 angles to achieve similar result to CSPA. So,
in this case, discrete methods need 30 times more space than the continuous
one. The execution times with 30 rotations, on a 2.2GHz computer with 8Gb of
RAM, were 1.44 sec. (DSPA), 0.03 sec. (CSPA) and 3.54 sec. (SGPA+PCA).

Experiment 2: Comparison between CSPA and DSPA. This experiment
compares DSPA and CSPA in a large-scale problem as a function of the number
of rotations. For training we randomly selected 20 sequences with 30 frames
per sequence. For testing we randomly selected 5 sequences with 30 frames.
We rotated the 3-D models in the yaw and pitch angles, within the ranges of
φ, θ ∈ [−π/2, π/2]. The angles were uniformly selected and we report results
varying the number of angles (i.e., rotations) between 1 ∼ 100 angles in training,
and 300 angles for testing.

Fig. 3 (c) shows the mean reconstruction error and 0.5 of the standard devi-
ation for 100 realizations, comparing DSPA and CSPA. As expected, DSPA con-
verges to CSPA as the number of training rotations increases. However, observe
that CSPA achieves the same performance, but it is much more efficient. In
this experiment, with 6000 3-D training bodies (20 sequences with 30 frames)
and domain: φ, θ ∈ [−π/2, π/2] discrete method required, again, around 30 2-D
viewpoint projections to achieve similar results to CSPA. Thus, discrete model
DSPA needs 30 times more storage space than CSPA. The execution times with
30 rotations, on a 2.2GHz computer with 8Gb of RAM, were 14.75 sec. (DSPA)
and 0.04 sec. (CSPA).

Qualitative results from CSPA and DSPA models trained with different num-
ber of rotations are shown in Fig. 4. Note that training DSPA model with 1 rota-
tion (top) results in poor reconstruction. However, training it with 30 rotations
(bottom) leads to reconstructions almost as accurate as made by CSPA.
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4.2 Experiment 3. Leeds Sport Dataset

This section illustrates how to use the 2-D body models learned with CSPA
to detect body configurations from images. We used the Leeds Sport Dataset
(LSP) that contains 2000 images of people performing different sports, some of
them including extreme poses or viewpoints (e.g., parkour images). The first
1000 images of the dataset are considered for training and the second set of 1000
images for testing. One skeleton manually labeled with 14 joints is provided for
each training and test image.

We trained our 2-D CSPA model in the CMU MoCap dataset [1] using
1000 frames. From the 2605 sequences of the motion capture data, we randomly
selected 1000 and the frame in the middle of sequence is selected as represen-
tative frame. Using this training data, we built the 2-D CSPA model using the
following ranges for the pitch, roll and yaw angles: φ, θ, ψ ∈ [−3/4π, 3/4π]. We
will refer to this model as CSPA-MoCap. For comparison, we used the 1000 2-D
training skeletons provided by the LSP dataset and run SGPA+PCA to build an
alternative 2-D model. We will refer to this model as SGPA+PCA-LSP. Observe,
that this model was trained on similar data as the test set.

Table 1 reports MSE of reconstructing the test skeletons with rigid and
deformable models. A subspace of 12 basis is used for both deformable models.
Results show that CSPA-MoCap has less reconstruction error than the standard
method SGPA+PCA-LSP, even trained in a different dataset (CMU MoCap)
than the test. Qualitative results from CSPA-MoCap and SGPA+PCA-LSP
models are shown in Fig. 5. Note that CSPA-MoCap provides more accurate
reconstructions than SGPA+PCA-LSP because it is able to generalize to all
possible 3-D rotations in the given interval.

Table 1. Experiment 3 results. MSE of our continuous model (CSPA-MoCap) trained
with 3-D MoCap data, the discrete model trained in the LSP dataset (SGPA+PCA-
LSP), and both rigid models (CPA-MoCap, SGPA-LSP).

Model CPA-MoCap SGPA-LSP CSPA-MoCap SGPA+PCA-LSP

MSE 0.16405 0.16231 0.01046 0.01366

Fig. 5. Experiment 3 examples, reconstructing ground truth skeletons of LSP dataset
with CSPA-MoCap (solid red lines) and SGPA+PCA-LSP (dashed blue lines) models
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5 Conclusions

This paper proposes an extension of PA to learn a 2-D subspace of rigid and non-
rigid deformations of 3-D objects. We propose two models, one discrete (DSPA)
that samples the 3-D rotation space, and one continuous (CSPA) that integrates
over SO(3). As the number of projections increases DPSA converges to CSPA.
SPA has two advantages over traditional PA, PPA: (1) it generates unbiased mod-
els because it uniformly covers the space of projections, and (2) CSPA is much
more efficient in space and time. Experiments comparing 2-D SPA models of bod-
ies show improvements w.r.t. state-of-the-art PA methods. In particular, CSPA
models trained with motion capture data outperformed 2-D models trained on
the same database under the same conditions in the LSP database, showing how
our 2-D models from 3-D data can generalize better to different viewpoints. In
future work, we plan to explore other models that decouple the rigid and non-rigid
deformation by providing two independent basis in the subspace.
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and Innovation (projects TIN2012-38416-C03-01, TIN2012-38187-C03-01, TIN2013-
43478-P), project 2014 SGR 1219, and the Comissionat per a Universitats i Recerca
del Departament d’Innovació, Universitats i Empresa de la Generalitat de Catalunya.

A Appendix. Vec-transpose

Vec-transpose A(p) is a linear operator that generalizes vectorization and trans-
position operators [14,16]. It reshapes matrix A ∈ R

m×n by vectorizing each ith

block of p rows, and rearranging it as the ith column of the reshaped matrix,
such that A(p) ∈ R

pn× m
p ,

⎡

⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43

a51 a52 a53

a61 a62 a63

⎤

⎥⎥⎥⎥⎥⎥⎦

(3)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a41

a21 a51

a31 a61

a12 a42

a22 a52

a32 a62

a13 a43

a23 a53

a33 a63

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡

⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43

a51 a52 a53

a61 a62 a63

⎤

⎥⎥⎥⎥⎥⎥⎦

(2)

=

⎡

⎢⎢⎢⎢⎢⎢⎣

a11 a31 a51

a21 a41 a61

a12 a32 a52

a22 a42 a62

a13 a33 a53

a23 a43 a63

⎤

⎥⎥⎥⎥⎥⎥⎦
.
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Note that (A(p))(p) = A and A(m) = vec(A). A useful rule for pulling a
matrix out of nested Kronecker products is, ((BA)(p)C)(p) = (CT ⊗ Ip)BA =
(B(p)C)(p)A , which leads to (CT ⊗ I2)B = (B(2)C)(2) .

B Appendix. CSPA formulation

In this Appendix, we detail the steps from Eq. (14) to Eq. (17), as well as the
definition of the covariance matrix, introduced in Section 3.

Given the value of M∗ and the optimal expression of A(ω)∗
i from Eq. (7),

we substitute them in Eq. (14) resulting in:

ECSPA(B, c(ω)i) =
n∑

i=1

∫

Ω

∥∥∥P(ω)Di − P(ω)DiH − (c(ω)T
i ⊗ I2)B

(2)
∥∥∥
2

F
dω, (18)

where H = M∗T (M∗M∗T )−1M∗ and Di ∈ R
3×�. Then,

ECSPA(B, c(ω)i) =

n∑

i=1

∫

Ω

∥∥∥P(ω)Di(I� − H) − (c(ω)T
i ⊗ I2)B

(2)
∥∥∥
2

F
dω (19)

leads us to Eq. (16) and Eq. (17), where D̄i = Di(I� − H) and d̄i = vec(D̄i).
From Eq. (17), solving ∂ECSPA

∂c(ω)i
= 0 we find:

c(ω)∗
i = (BT B)−1BT (I� ⊗ P(ω))d̄i. (20)

The substitution of c(ω)∗
i in Eq. (17) results in:

ECSPA(B) =
n∑

i=1

∫

Ω

∥∥∥(I� ⊗ P(ω))d̄i − B(BT B)−1BT (I� ⊗ P(ω))d̄i

∥∥∥
2

2
dω = (21)

n∑

i=1

∫

Ω

∥∥∥
(
I − B(BT B)−1BT

)
(I� ⊗ P(ω))d̄i

∥∥∥
2

2
dω = (22)

n∑

i=1

∫

Ω
tr
[(

I − B(BT B)−1BT
)

(I� ⊗ P(ω))d̄i

(
(I� ⊗ P(ω))d̄i

)T ]
dω = (23)

tr
[(

I − B(BT B)−1BT
)
Σ
]
, (24)

where:

Σ =

∫

Ω
(I� ⊗ P(ω))

(
n∑

i=1

d̄id̄
T
i

)

(I� ⊗ P(ω))T dω. (25)

We can find the global optima of Eq. (24) by solving the eigenvalue problem,
ΣB = BΛ, where Σ is the covariance matrix and Λ are the eigenvalues corre-
sponding to columns of B. However, the definite integral in Σ is data dependent.
To be able to compute the integral off-line, we need to rearrange the elements
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in Σ. Using vectorization and vec-transpose operator4:

Σ = (vec [Σ])(2�) = (26)
(

vec

[∫

Ω
(I� ⊗ P(ω))

(
n∑

i=1

d̄id̄
T
i

)

(I� ⊗ P(ω))T dω

])(2�)

= (27)

((∫

Ω
(I� ⊗ P(ω)) ⊗ (I� ⊗ P(ω))dω

)
vec

[
n∑

i=1

d̄id̄
T
i

])(2�)

, (28)

which finally leads to:

Σ =

(

(I� ⊗ Y) vec

[
n∑

i=1

d̄ijd̄
T
ij

])(2�)

, (29)

where the definite integral Y =
∫
Ω P(ω) ⊗ (I� ⊗ P(ω))dω ∈ R

4�×9� can be
computed off-line.
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