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Abstract—Multiple classifier systems, also known as classifier
ensembles, have received great attention in recent years because
of their improved classification accuracy in different applications.
In this paper, we propose a new general approach to ensemble
classification, named generic subclass ensemble, in which each
base classifier is trained with data belonging to a subset of classes,
and thus discriminates among a subset of target categories.
The ensemble classifiers are then fused using a combination
rule. The proposed approach differs from existing methods that
manipulate the target attribute, since in our approach individual
classification problems are not restricted to two-class problems.
We perform a series of experiments to evaluate the efficiency of
the generic subclass approach on a set of benchmark datasets.
Experimental results with multilayer perceptrons show that the
proposed approach presents a viable alternative to the most
commonly used ensemble classification approaches.

Keywords—Multiple classifier systems, ensemble classification,
class decomposition, multiclass classification.

I. INTRODUCTION

The efficiency of pattern classification by a single classifier
has been recently challenged by multiple classifier systems
[1]–[5]. A multiple classifier system is a classification system
made up of an ensemble of individual classifiers whose outputs
are combined in some way to obtain a final classification
decision. By combining a set of base classifiers, the combined
efficiency of the ensemble of classifiers can compensate for a
deficiency in one classifier. However, the ensemble approach
depends on the assumption that single classifiers’ errors are
uncorrelated, which is known as classifier diversity in the
background literature [6]. The intuition is that if each classifier
makes different errors, then the total errors can be reduced by
an appropriate combination of these classifiers.

The design process of a multiple classifier system generally
involves two main stages: the collection of an ensemble of clas-
sifiers and the design of the combination rule [2]. Kuncheva
summarized three primary approaches to creating an ensemble
of classifiers [1]. These approaches can be considered as
different ways to achieve diversity across base classifiers. The
straightforward approach is to use different learning algorithms
or variations of the parameters of the base learners. The
second approach, which has been getting more attention in
the ensemble literature, is to use different training sets to train
base classifiers. Such sets are often obtained from the original
training set by resampling techniques. The third approach is
to train the individual classifiers with datasets that consist of
different feature subsets [7], [8].

Another effective approach, which has not been paid much
attention in the ensemble literature, is to ”manipulate the target
attribute”, in which individual classifiers are built with different
and usually simpler representations of the target classes [3],
[9]. This approach was initially developed to solve the dilemma
of extending binary classification algorithms to multiclass
problems [10] and usually referred to as ”class binarization”
[11] in the multiclass classification literature. Existing methods
based on this approach decompose the original multiclass
problem into a series of smaller two-class problems. In this
way, two-class problems can be solved by binary classifiers
and their results can then be combined so as to provide a
solution to the original problem. The procedure to decompose
the multiclass problem into a set of binary problems is usually
defined within the framework of Error Correcting Output
Codes [12]–[15].

In this paper, we propose a new general approach to
ensemble classification, named generic subclass ensemble, in
which each base classifier is trained with data belonging to
a subset of classes, and thus discriminates among a subset
of target categories. The ensemble classifiers are then fused
using a combination rule. The proposed approach differs from
existing methods that manipulate the target attribute, since
in our approach individual classification problems are not
restricted to two-class problems. In light of this approach,
class binarization techniques are considered special cases of
the generic subclass ensemble approach. We also perform a
series of experiments to evaluate the efficiency of the subclass
approach on a set of benchmark datasets.

II. GENERIC SUBCLASS ENSEMBLE CLASSIFICATION

In this section, we first introduce the generic subclass
approach and explain its training and testing phases. Then,
we propose three methods based on this approach.

A. The generic subclass approach

1) Training phase: In the training phase, different sub-
problems are generated and a base classifier is trained on each
sub-problem using samples belonging to a subset of the origi-
nal set of classes. For each sub-problem, the subset of classes
is divided into two or more meta-classes, where each meta-
class consists of some combinations of the original classes.
Accordingly, each classifier discriminates among classes that
have been seen in its training. Here, similar to the ECOC
framework, the process of decomposing the multiclass problem
into a set of smaller binary/multiclass problems is represented
by a matrix. This matrix is interpreted as a set of L learning
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TABLE I. AN EXAMPLE OF A CLASS DECOMPOSITION MATRIX IN THE

GENERIC SUBCLASS APPROACH.

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

ω1 1 0 1 0 0 1 0 0 1 0
ω2 1 0 0 1 0 2 1 2 1 0
ω3 0 1 2 0 0 3 0 1 2 1
ω4 2 2 3 0 1 0 2 0 1 1
ω5 0 3 4 2 2 0 0 1 4 0
ω6 0 3 2 0 1 0 2 1 5 2

problems, one for each column. Table I shows an example of
a class decomposition matrix for a six-class problem that uses
10 classifiers. In this matrix, each column is associated with
a subclass classifier, hj , and each row is a unique codeword
that is associated with an individual target class. For example,
the second classifier, h2, discriminates among samples of four
classes: ω3, ω4, ω5 and ω6. These classes are split into three
meta-classes: {ω3}, {ω4}, and {ω5, ω6}. Similar to the sparse
ECOC matrix [16], the zero value means that a given class is
not considered in the training phase of a particular classifier

2) Testing phase: When testing an unlabeled pattern, x∗,
each classifier casts a vote for one of the classes used in its
training, creating an L long output code vector. This output
vector is compared to each class codeword in the matrix,
and the class whose codeword has the closest distance to
the output vector is chosen as the predicted class. Similar
to the ECOC method, the process of merging the outputs of
individual classifiers is called decoding [17], [18]. Here, we
propose a simple decoding technique:

y = argmin

∑L
i=1 wi ∗ sign(M(r, i)) ∗ (M(r, i) <> hi(x))

sum(M(r, i) <> 0)
,

where sign(z) is +1 if z > 0, -1 if z < 0 and 0 otherwise
and a <> b is 1 if a �= b and 0 otherwise. Here, wi represents
each classifier’ weight, which is set to the accuracy of classifier
on the training data. M(r, .) designates the codeword r in the
matrix and y ∈ {1, . . . , Nc} is the predicted class.

B. Three methods based on the generic subclass approach

Utilizing the subclass approach will pose an important
challenge: how to decompose the original multiclass problem
into smaller problems? For a given problem of c classes, the
number of valid partitions is Bn − 1, where Bn is the total
number of partitions of a set with n members, named the Bell
number.

Here, we propose three decomposition techniques: a
problem-independent technique based on the exhaustive de-
composition and two problem-dependent techniques based on
the partitioning of the class space.

1) Exhaustive decomposition: One straightforward tech-
nique for class decomposition is to consider all possible
partitions of classes, except the one that puts all classes in
one partition. For problems with a large number of classes,
however, the number of partitions and the number of selected
classes for each sub-problem become very large. In order to
limit the computational complexity, we employ two strategies
to reduce the length of the codematrix, i.e. the number of
classifiers. The first strategy is to have only one class in
each meta-class. Second, we limit the number of classes

to be taken for each classifier. Based on preliminary sets
of experiments, choosing from two up to four classes for
each sub-problem leads to high classification results. Still,
for problems with a large number of classes, the number of
possible permutations of three or four classes out of the number
of classes increases dramatically. As a result, a large number of
classifiers is required in the training and testing phases. In these
cases, we propose a new version of exhaustive coding, named
equidistant coding, where the distances between all pairs of
class codewords are equal 1. In this version, a subset of all
permutations is chosen such that the sum of the number of
each pair of classes is identical.

2) Decomposition based on a hierarchical clustering of
class space: In this strategy, the class decomposition process
is performed based on clustering of the class space that
maximizes class discrimination in the patterns. Using a cluster-
ing technique, classes within each cluster are generally more
similar which make them more difficult to be discriminated by
a classifier. In this work, generating class subsets are guided
through the hierarchical clustering of classes. The hierarchical
clustering algorithm groups classes by creating a cluster tree
or dendrogram. The dendrogram is not a single set of clusters,
but rather a multilevel hierarchy, where clusters at one level are
merged in clusters at the next level. Each node of the cluster
tree defines a partition of the classes. The partition at each
node should be highly separable in terms of discrimination.

Using the generated cluster tree, the procedure of class
partitioning, i.e. generating the class decomposition matrix,
will be performed and the decomposition matrix will be
generated. The procedure is composed of two main modules.
Each module creates one decomposition matrix, and the final
matrix is made by concatenating these two matrices.

In the first module, class partitioning is performed at
different clustering levels (1 < level < 6). At each level,
all classes are grouped into different partitions (clusters). An
example of a clustering tree for a six class problem as well
as the corresponding decomposition matrix is shown in Fig.1a.
For instance, consider the horizontal line at the fifth level. This
line intersects five lines of the dendrogram. These five lines
partition the classes into five clusters: Ψ1

5 = {c1, c3},Ψ2
5 =

{c2},Ψ3
5 = {c4},Ψ4

5 = {c5}, and Ψ5
5 = {c6}. The second

module partitions classes under each internal node into two
clusters. As an example, Fig.1b shows four internal nodes for a
six-class problem. For example, the first node partitions classes
below the right-hand side, namely c5 and c6, belonging to one
cluster, while the class below the left-hand line, namely c4,
belongs to the other cluster. This partitioning is represented in
the first column of the matrix.

3) Two methods based on hierarchical class partitioning:
The clustering procedure involves defining a dissimilarity
measure between objects in order to optimize the within- and
between-cluster structure. Here, we employed two measures
that aim to satisfy the condition of the high separability of
classes: 1) the distance between the centroid of classes; and
2) the mutual information. Based on these two measures,
two different methods are proposed. In the first method, the
centroid of each class is computed as the average of patterns
belonging to the corresponding class. The distance between

1distance is defined as the number of corresponding bits that differ.
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Fig. 1. An example of class partitioning using the hierarchical clustering
technique; (a) class partitioning at different clustering level; (b). Class parti-
tioning under each internal node.

two class centroids is a rough estimation of how separate
two classes are. These centroid patterns are then hierarchically
clustered. In the second method, the class portioning is based
on the mutual information, which has been shown to be an
effective criterion in terms of class separation. For more details
on computing the mutual information between classes, please
refer to [19].

III. EXPERIMENTAL COMPARISON

A. Experimental settings

Data: The proposed generic subclass approach is evaluated
on 15 multiclass datasets from the UCI machine learning
repository [20]. Table II shows the number of classes, in-
stances, and features of each dataset.

TABLE II. SUMMARY OF THE DATASETS USED.

Dataset # Samples # Classes # Features
Abalone 4177 3 8
Cleafs 4758 8 64
Cmc 1473 3 9
Derm 358 6 34
Ecoli 336 8 7
Glass 214 6 9
Mfeat-fou 2000 10 76
Mfeat-pix 2000 10 240
Pendigits 10992 10 16
Sat 6435 6 36
Semeion 1593 10 256
Vowel 528 11 10
Waveforms 5000 3 40
Wine 178 3 13
Yeast 1484 10 8

Methods: We compare our proposed method with well-
know ensemble classification methods, including bagging,
AdaBoost, and RSM. For AdaBoost, we implemented the
AdaBoost.M1 algorithm [21] which is a stable version of
boosting for multiclass classification problems. The ensemble

TABLE III. CLASSIFICATION ACCURACIES OF THE SUBCLASS-BASED

METHODS

Datasets EquiDist ClsPart Dist ClsPart MI
Abalone 66.41 65.62 65.31
Cleafs 75.08 78.53 79.18
Cmc 53.56 50.58 50.92
Derm 97.55 95.37 94.92
Ecoli 86.56 84.67 85.28
Glass 68.08 64.66 65.05
Mfeat-fou 84.25 79.65 80.20
Mfeat-pix 96.45 92.05 92.35
Pendigits 99.38 96.85 96.78
Sat 88.90 87.32 87.10
Semeion 92.48 79.75 81.32
Vowel 97.88 84.59 85.07
Waveforms 84.72 85.44 85.32
Wine 96.53 95.19 95.72
Yeast 60.40 56.90 58.05
Average 83.22 79.81 80.17

size, i.e. the number of base classifiers of the bagging and
RSM and the number of iterations of the AdaBoost algorithm,
is set to 25 [22].
In this study, a multilayer perceptron (MLP) with 10 hidden
nodes and the hyperbolic tangent transfer function is chosen
as the base learner.

Evaluation measurements: The classification accuracy is
obtained by means of stratified 10-fold cross-validation.

B. Determination of the best proposed method based on the
generic subclass approach

As stated earlier, we proposed three different methods
based on the subclass approach. The one based on the
equidistant coding, named Subclass.Equidistant, and two meth-
ods based on the partitioning of the class space using
two measures, the distance between class centroids and the
mutual information, which we respectively named as Sub-
class.ClsPart Dist and Subclass.ClsPart MI.

Our first set of experiments is aimed at comparing these
three methods. Table III shows the classification accuracies of
these methods using the neural network as the base learner
and Table IV shows the statistical comparison of these results
based on the Wilcoxon sign rank test. These record present
the number of datasets in which the algorithm in the row
was better than the algorithm in the column (win), was worse
(loss), or was equal (tie) As can be seen in these tables,
Subclass.Equidistant performs better than the other two meth-
ods. The difference between Subclass.ClsPart MI and Sub-
class.ClsPart Dist is not significant, although the win/loss/tie
record favors Subclass.ClsPart MI.

TABLE IV. STATISTICAL COMPARISON OF THE RESULTS OF THE

GENERIC SUBCLASS-BASED METHODS USING THE WILCOXON SIGN RANK

TEST.

Subclass(ClsPart dist) Subclass (ClsPart MI)

Subclass (Equidistant) 11/2/2 8/3/4
Subclass (ClsPart dist) 1/3/11

In general, comparing the three versions of the generic
subclass-based methods shows that in terms of classification
accuracy the subclass ensemble based on the equidistance
decomposition achieves better overall results. The main reason
behind this improvement might be that by using the equidistant
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TABLE V. CLASSIFICATION ACCURACIES OF DIFFERENT ENSEMBLE

METHODS USING MLP NEURAL NETWORK AS THE BASE LEARNER.

Datasets Single
Classifier

Bagging RSM AdaBoost Subclass
(EquiDist)

Abalone 66.1 67.25 65.57 66.12 66.41
Cleafs 75.03 75.46 78.13 69.45 75.08
Cmc 52.34 55.46 52.20 53.02 53.56
Derm 94.53 97.16 97.37 97.43 97.55
Ecoli 84.72 87.21 84.4 81.76 86.56
Glass 62.94 67.75 68.16 67.84 68.08
Mfeat-fou 76.80 81.75 81.05 81.9 84.25
Mfeat-pix 81.75 92.8 95.4 92.55 96.45
Pendigits 92.11 96.19 91.31 99.02 99.38
Sat 86.70 87.33 87.75 88.31 88.90
Semeion 65.08 85.96 90.91 85.14 92.48
Vowel 65.62 81.70 75.92 94.36 97.88
Waveforms 85.34 85.92 86 84.5 84.72
Wine 94.86 97.76 98.21 97.32 96.53
Yeast 56.23 58.65 54.68 59.66 60.4
Average 76.01 81.22 80.47 81.22 83.22

TABLE VI. STATISTICAL COMPARISON OF THE DIFFERENT ENSEMBLE

METHODS USING THE WILCOXON SIGN RANK TEST.

Bagging RSM AdaBoost Subclass(EquiDist)
Single classifier 0/12/3 0/9/6 3/10/2 0/10/5
Bagging 6/3/6 5/5/5 3/9/3
RSM 5/5/5 2/10/3
AdaBoost 2/9/4

coding more classifiers are usually generated. In ensemble
systems, larger numbers of classifiers, especially when non-
deterministic classifiers like neural networks are used as the
base learner, usually lead to better classification accuracy.
Similarly, the results of ECOC studies show that the ECOC
method with longer codes is able to significantly improve
the accuracy [11], [16]. In addition, in the second and third
versions of the subclass approach, the class partitioning is
performed by the hierarchical partition of classes that max-
imizes a discriminative criterion, i.e. the distance between
class centroids in the second version and mutual information
in the third version. However, there is no guarantee that this
partitioning fits the underlying distribution of data. Therefore,
the errors from a classifier at higher level are propagated to
the lower levels. Due to the outperformance of the equidistant
version of the subclass approach, in the following, we compare
other ensemble methods with this version.

C. Comparison with standard ensemble methods

The average accuracy of the standard ensemble methods
over 10 runs for each dataset is presented in Table V. For ref-
erence, we also show the accuracy of a single MLP classifier.

1) Statistical analysis of the classification results: Table VI
shows the comparison of the different method using the
Wilcoxon sign rank test. In this table, we show the win-loss-
tie (WLT) comparison record of the algorithm in the column
against the algorithm in the row.

The results in Tables V and VI indicate that overall the
generic subclass approach obtained better results with many
datasets. As an additional analysis, the improved accuracies
of the Subclass.Equidistant method in comparison with other
methods are shown in Fig. 2. In this figure, the obtained results
are presented in the order of the number of dataset classes.
The results of datasets with a larger number of classes are

shown in order from the left side of the figure. From this
arrangement, it can be seen that the generic subclass ensemble
works better when there is a larger number of classes. In these
cases, instead of combining individual classifiers trained with
different subsets of samples or features, the more efficient
approach is to train classifiers on a subset of classes. In this
way, the problem that each classifier is going to be applied
to is relatively smaller and can be solved more efficiently. On
the other hand, when there is a large number of features, the
subspace approach seems to be a good choice.

2) Analyzing the effect of ensemble size: Here, we investi-
gate the performance of rival ensemble methods with different
ensemble sizes; 1 ≤ Ens.Size ≤ 50. For the generic subclass
approach, however, the initial number of required classifiers for
a given problem is fixed; which is equivalent to the number
of columns of the class decomposition matrix. Therefore, to
evaluate the performance of the ensemble system all classifiers
should cast a vote.

In the case of the Subclass.Equidistant method, for prob-
lems with a large number of classes, the number of classifiers
may be very large. In these cases, as we mentioned earlier, we
limit the number of considered classes for each classifier to two
or three. That is, each classifier discriminates between samples
of two or three classes. For this design, the class decomposition
matrix begins with all permutations of two classes, like the
one-versus-one technique, and then continues until the number
of classifiers is less than a pre-defined number, fixed at 50
in our experiments. On the other hand, for problems with
small numbers of classes, the initial ensemble size is relatively
small. One strategy to increase the number of classifiers is to
duplicate the decomposition matrix. In this way, the ensemble
size is the multiple of the initial number of classifiers, i.e.
the length of codewords of the original class decomposition
matrix. Even though the same sub-problems will be produced,
the larger ensemble system can benefit from the variation of
non-deterministic classifiers like neural networks.

Fig. 3 shows the classification accuracy of rival methods as
a function of the ensemble size for 8 representative datasets.
From these results, some general findings are summarized
below:

• These experiments indicate that, in general, ensemble
methods follow a similar trend. That is, their classi-
fication performance first improves as the ensemble
size increases and then plateaus after a demarcation
point, e.g. a value around 15-25. This observation is
consistent with the results of many studies, see [7],
[23], [24] as few examples.

• The underperformance of the Subclass.Equidistant
method in problems with a small number of classes
is mainly due to the significantly smaller number of
classifiers. However, by increasing the ensemble size
by duplicating the class decomposition matrix, classi-
fication accuracy was improved for many datasets.

• In problems with a larger number of classes, bagging,
boosting, and RSM ensemble methods cannot continue
to further improve with larger ensemble sizes. In
these cases, the subclass approach shows the best
performance.
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Fig. 2. The relative accuracy of different ensemble methods compared to the Subclass.Equidistant method.

IV. CONCLUSION

In this paper, we have proposed a new general approach
to ensemble classification, named generic subclass ensemble.
In this approach, an ensemble of classifiers is generated, in
which each base classifier aims to discriminate between a
subset of target categories. The proposed approach provides a
general framework that can incorporate a wide range of class
binarization techniques.

Based on the generic subclass approach, three meth-
ods are introduced: Subclass.Equidistant, Subclass.ClsPart MI,
and Subclass.ClsPart Dist. Using the neural network as the
base learner, we evaluated the efficiency of the generic subclass
ensemble on a set of benchmark datasets. Experimental results
show that the subclass approach presents a viable alternative to
the most commonly used ensemble classification approaches.
Specifically, this approach shows a better performance in prob-
lems with a larger number of classes. In these cases, instead of
combining individual classifiers trained with different subsets
of samples or features, the more efficient approach is to train
classifiers on a subset of classes.
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Fig. 3. Accuracy of ensemble classification methods versus the ensemble size.
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