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Abstract

This paper presents an automatic method for external and
internal segmentation of the caudate nucleus in Magnetic
Resonance Images (MRI) based on statistical and structural
machine learning approaches. This method is applied in
Attention-Deficit/Hyperactivity Disorder (ADHD) diagnosis.
The external segmentation method adapts the Graph Cut
energy-minimization model to make it suitable for segmenting
small, low-contrast structures, such as the caudate nucleus. In
particular, new energy function data and boundary potentials
are defined and a supervised energy term based on contextual
brain structures is added. Furthermore, the internal segmen-
tation method learns a classifier based on shape features of
the Region of Interest (ROI) in MRI slices. The results show
accurate external and internal caudate segmentation in a real
data set and similar performance of ADHD diagnostic test to
manual annotation.
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Graph Cut Framework, Brain Caudate Nucleus, ADHD Di-
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I. INTRODUCTION

Significant effort has been put into automated segmentation
of different structures in brain Magnetic Resonance Images
(MRI) (see reviews [1], [2]). A good example of these efforts
can be found in the Caudate Segmentation Evaluation chal-
lenge (CAUSE07) [3]. The most popular segmentation meth-
ods adopt the atlas-based approaches, which use data obtained
from different subjects to construct a common anatomy for the
brain image and apply it to further segmentations. However,
the target object is not necessarily correctly represented by the
atlas shapes. In this case, a more flexible and adaptive tech-
nique can be useful in order to ensure accurate segmentation
results.

In this sense, machine learning can be applied to learn
useful information and improve segmentation approaches.

Figure 1. Overview of the diagnostic test pipeline.

The approach applied in this paper combines the power
of atlas-based segmentation with a new supervised energy-
based scheme based on the Graph Cut (GC) framework to
obtain a globally optimal segmentation of the caudate structure
in MRI [4]. GC theory has been used in many computer
vision problems [5], such as binary segmentation [6], [7]. The
original GC definition is limited to image information, and
can fail when the brain structure in MRI is subtle and contrast
is low. In order to overcome this problem, a variation of the
classical GC model is defined adding supervised contextual



information. Previously-learned shape relations are exploited
and moreover, boundary detection is reinforced using a new
multi-scale edgeness measure.

In [8], a manual strategy for internal caudate segmentation
was proposed based on a simple geometric criterion. In this
work, an automatic internal segmentation to separate caudate
head and body parts is used based on learning a classifier
based on shape features of the Region of Interest (ROI) [9].
Moreover, an automatic diagnostic test is evaluated, following
the manual test proposed in [8]. Figure 1 shows the overview
of the the diagnostic test method used in this paper. The
obtained results by the fully-automatic method on real data
are similar to the manual ones provided in [8].

The rest of the paper is organized as follows: Section II
and Section III present the external and internal segmentation
algorithms, respectively. Section IV reports and discuss the
results of experiments on caudate nucleus segmentation, as
well as ADHD diagnosis. Finally, Section V concludes the
paper.

II. EXTERNAL CAUDATE SEGMENTATION

Graph-Cut Framework. Let us define X =
(x1, ...,xp, ...,x|P|) as the set of pixels for a given
grayscale image I; P = (1, ..., p, ..., |P|) as the set of
indexes for I; N as the set of unordered pairs {p, q} of
neighboring pixels of P under a 4-(8-) neighborhood system,
and L = (L1, ..., Lp, ..., L|P|) as a binary vector whose
components Lp specify assignments to pixels p ∈ P . Each Lp

can be either ”foreground” or ”background”, or equivalently
”cau” or ”back” for our problem (abbreviations for caudate
and background), indicating whether pixel p belongs to the
caudate or background, respectively. Thus, the array L defines
a segmentation of image I . The GC formulation defines the
cost function E(L) which describes soft constraints imposed
on boundary and region properties of L:

E(L) = U(L) + δB(L), (1)

where U(L) is the unary term (or region properties term),

U(L) =
∑
p∈P

Up(Lp),

and B(L) is the boundary property term,

B(L) =
∑

{p,q}∈N

B{p,q} Ω(Lp, Lq),

where,

Ω(Lp, Lq) =

{
1, if Lp ̸= Lq

0, otherwise.

The goal of GC is to compute the global minimum of
Eq. (1) from all segmentations L satisfying the hard constraints
∀p ∈ C, Lp = ”cau”, ∀p ∈ B, Lp = ”back”, where
C ⊂ P,B ⊂ P, C ∩ B = ∅ denote the subsets of caudate
and background seeds, respectively. Final segmentation is

computed over a defined graph using the min-cut algorithm
to minimize E(L).

Seed Initialization. In order to achieve a fully automatic
method, the result of an atlas-based method, mainly based in
[10] is used to define an initial segmentation. Caudate and
background seeds are defined by performing morphological
operations on the ROI obtained R0 in the atlas-based mask,
as follows: caudate seeds, C = Erodeke(R0), where Erodeke

denotes an erosion with a structural element of ke pixels; and
background seeds, B = P \ Dilatekd

(R0), where Dilatekd

denotes a dilatation with a structural element of kd pixels.

Unary Energy Term. The unary term is defined as the
addition of two parts (unsupervised and supervised terms) as
follows:

Up(”cau”) = UUp(”cau”) + SUp(”cau”),

Up(”back”) = UUp(”back”) + SUp(”back”).

The unsupervised unary term is defined using caudate and
background models based on graylevel information pertaining
to the seeds. The unary potentials at each pixel p is initialized
as:

UUp(”cau”) = − ln(Pu(Lp = ”cau”)),

UUp(”back”) = − ln(Pu(Lp = ”back”)).

The probability Pu(Lp = ”cau”) is computed using the
histogram of graylevels of caudate seeds and the probability
Pu(Lp = ”back”) = 1− Pu(Lp = ”cau”), since background
seeds contain different tissues and it is difficult to extract a
model directly from them.

The unsupervised unary term estimates image-dependent
caudate pixel probabilities based on caudate seeds. However,
given the noisy information of MRI images and the small
number of caudate seed pixels, a high generalization based
on this term is not always guaranteed.

In order to define the supervised unary term, a binary
classifier is trained using a set of MRI slices as a training set.
In particular, a pixel descriptor is extracted using a correlogram
structure. The correlogram structure captures contextual inten-
sity relations from circular bins around the pixel analyzed [11].

Given a pixel p, a correlogram Cc×r is defined, where c
and r define the number of circles and radius of the structure.
Then, each bin b from the set of n bins, with n = c · r, is
defined as the area delimited by two consecutive circles of the
given radius. Given the pixel p and its correlogram structure
Cp

c×r, its supervised caudate descriptor is defined as:

dp = {∂1, .., ∂k, .., ∂n·(n−1)/2},

where ∂k is the signed substraction of graylevel information
within a pair of bins in Cc×r. In this sense, the descriptor
contains the n · (n − 1)/2 graylevel derivatives of all pairs
of bins within Cc×r, which captures all spatial relations of
graylevel intensities in the neighborhood of p.



The descriptors for a subset of pixels on C and B are ex-
tracted from the training set data. Given the set of descriptors,
a linear SVM classifier is trained in order to predict caudate
confidence on image pixels from new test data. In our case,
the output confidence of the classifier is used as a measure of
the ”probability” of a pixel belonging to the caudate. Then,
the supervised unary potentials at each pixel p are:

SUp(”cau”) = − ln(Ps(Lp = ”cau”)),

SUp(”back”) = − ln(Ps(Lp = ”back”)).

The probability of a pixel being marked as ”cau” is com-
puted using the confidence of the SVM classifier over its
correlogram descriptor Ps(Lp = ”cau”) = SVM(p). The
probability of a pixel being marked as ”back” is computed
as the negative of the output margin of the classifier Ps(Lp =
”back”) = −SVM(p).

Boundary Energy Term. The boundary potential is defined
as the following convex linear combination:

B{p,q} = J(αN{p,q} + (1− α)O{p,q}).

Terms N{p,q} and O{p,q} are defined using first and second
intensity derivatives of the image to represent the intensity and
geometric information, as follows:

N{p,q} =
1

||xp − xq||2
exp

(
− (Ip − Iq)

2

2σ2

)
,

O{p,q} =
1

||xp − xq||2
exp

(
−
θ2{p,q}

2β2

)
. (2)

The term θ{p,q} denotes the angle between two unitary vectors
codifying the directions of minimum gradient variation in
pixel p and q based on the Hessian eigenvectors. Moreover,
given the high variability in contrast between the caudate and
background in different parts of the images, the boundary term
is weighted using an image-dependent multi-scale edgeness
measure, J = (J∗

1 , ..., J
∗
p , ..., J

∗
|P|). See [4] for more details.

Finally, by applying the min-cut algorithm over the defined
energy function and image graph, the final caudate segmenta-
tion is obtained.

III. INTERNAL CAUDATE SEGMENTATION

Given the external segmentation of the caudate nuclei in
the MRI slices, the images corresponding to caudate head and
body can be identified. Prior information of caudate shape in
axial view of MRI volumes asserts that caudate head structure
tends to be wider, while the body one tends to be elongate [12].
Moreover, first caudate slices in the axial projection of the
MRI correspond to the head and the last ones to the body.
An example of head and body caudate regions are shown in
Figure 2.

In order to perform the caudate head and body separation,
the proposed method is based on the extraction of an extended
set of caudate region features and the classification using

Figure 2. Example of caudate head image (left), and caudate body image
(right), with caudate nuclei marked in red and green, respectively.

SVM. The set of features is composed by: ROI area, ratio
between height and width of the ROI, height, width and area
of the bounding box containing the ROI, extent (ratio of pixels
in the ROI and pixels in the total bounding box), major and
minor axis length of the ellipse that has the same normalized
second central moments as the ROI, orientation of the ellipse,
eccentricity (ratio of the distance between the foci of the
ellipse and its major axis length), perimeters ratio (relation
between the perimeter of the circle with the same area as the
ROI, and the perimeter of the ROI), and x and y coordinates of
the centroid. Once the set of features of the caudate regions are
computed, SVM classifier is used to classify head and body
caudate regions.

In order to correct possible isolated misclassifications from
SVM classifiers, contiguous slices are analyzed and post-
filtered using the Decision Stump (DS) weak classifier. The
DS technique is a machine learning model that consists of one-
level decision tree. A DS makes a polarity prediction based
on the value of just a single input feature. DS is often used
as a weak classifier in machine learning ensemble techniques.
Here, DS is used to find a unique separation between caudate
head and body areas. The procedure used is as follows, the
error weight for each class is set to:

ωe(Head) =
1

#Head images
,

ωe(Body) =
1

#Body images
.

A loss function describing the importance in the order of
appearance of head and body images is defined for each
case. The loss function Fx for head and body are linear and
cubic to penalize the apparition of body regions in the first
positions. Previous analysis says that 60% to 70% of the total
of caudate slices belongs to caudate head. Once the weight
and loss function are defined, the system searches for the
optimal division between caudate head and body sections in
terms of error, computing it as ωe ·Fx. The position giving the
smallest error will be selected as the separation position and
the images will be consequently relabeled. After applying DS,
most of the cases where there are images classified as head in
the middle of a body section or vice versa disappear, and the
global classification is, consequently, improved.



IV. EXPERIMENTS

The experiments are devoted to evaluate the automatic
external and internal caudate nucleus segmentation, as well
as the ADHD diagnostic test.

A. Data and Validation Measures

The study population includes 39 children with ADHD
according to DSM-IV (referred from the Unit of Child Psy-
chiatry at Hospital Vall Hebron in Barcelona) and 39 control
subjects. Children with ADHD received a consensus diagnosis
by an expert team (see [13] for a detailed explanation). For
all subjects in the population MRI 1.5-T system volumes were
used. MRI volumes were analyzed by its axial projection,
which consists on 60 image planes with a resolution of
256×256 pixels. The volume of each voxel is 0.94×0.94×2
mm3. Ground truth was build by means of an expert team as
is described in [4] and [9].

For evaluation of the external segmentation, different volu-
metric measures were considered: Volumetric similarity index
(or mean overlap), in percent,

SI = 2

∣∣∣∣R ∩G

R+G

∣∣∣∣ · 100.
Volumetric union overlap, in percent,

VO =

∣∣∣∣R ∩G

R ∪G

∣∣∣∣ · 100.
Relative absolute volume difference, in percent,

VD =

∣∣∣∣VOLR −VOLG

VOLG

∣∣∣∣ · 100,
where VOLR and VOLG correspond to the total volume of
the R and G segmentations, respectively. Average symmetric
surface distance, in millimeters,

AD =

(
N∑
i=1

d(BSi,BR)
2 +

M∑
i=1

d(BS,BRi)
2

)
|BS | · |BR|

,

where BS and BR correspond to the set of border voxels in R
and G, respectively, and d(·, ·) returns the minimum Euclidean
distance between two sets of voxels. Root Mean Square (RMS)
symmetric surface distance, in millimeters,

RMSD =
√
AD.

Maximum symmetric surface distance, in millimeters,

MD = max
i,j

(
d(BSi,BR),d(BS,BRj)

)
.

For evaluation of the internal segmentation, the following
three validation measures based on True Positive (TP), False
Positive (FP), True Negative (TN) and False Negative (FN)
were computed:

Sensitivity =
TP

TP + FN
,

SIE VOE VD AD RMSD MD
−3

−2

−1

0

1

2

 

 

AB
CaudateCut

Figure 3. Quantitative results of AB and CaudateCut methods applied to
URNC databases. Validation measures are, SIE: volumetric similarity index
error (in %); VOE: volumetric overlap error (in %); VD: relative absolute
volume difference (in %); AD: average symmetric surface distance (in mm);
RMSD: root mean square symmetric surface distance (in mm); MD: maximum
symmetric surface distance (in mm).

Specificity =
TN

TN + FP
,

Accuracy =
TP + TN

TP + TN + FP + FN
.

In this validation, 1039 caudate images from the 78 subjects
were available, head corresponds to positive and body to
negative. In the diagnostic test validation, ADHD patients
corresponds to positive and control subjects to negative.

B. Results

The results are divided into three parts corresponding to a)
the evaluation of the external segmentation method, denoted
CaudateCut, and its comparison with an Atlas-based method
(AB), b) the evaluation of the internal segmentation method,
and c) the evaluation of the automatic ADHD diagnostic test,
and its comparison with the manual test.

External Segmentation. The performance of the Caudate-
Cut, AMAS, and AB methods is compared. Figure 3 shows
the results obtained in the experiments on both URNC and
IBSR datasets for the six validation measures. SIE, VOE, and
VD are measured in %, AD, RMSD, and MD are measured
in mm, and all the measures are displayed in base 10 loga-
rithm. For all validation measures, CaudateCut produced better
results than both AB for URNC database. With regard to the
volumetric measures, CaudateCut achieved good mean rates of
19.25% for SIE (equivalently, 80.75% SI), 31.98% for VOE
(equivalently, 68.02% VO), and 16.22 for VD. Voxel by voxel
mean measures are also acceptable, with 0.0024mm for AD,
0.0733mm for RMSD, and 35.70mm for MD. The large MD
values are due to the recurrent errors present in the internal
boundaries of the caudate defined between caudate head and
body. It is important to note that CaudateCut showed robust-
ness to AB results. Figure 4 shows qualitative CaudateCut



Figure 4. Example of CaudateCut results. GT is shown in green and
CaudateCut segmentation in red.

results for the MRI slices of a control subject. In most of the
slices, the CaudateCut segmentation result (red line) is highly
comparable to the GT (green line). However, segmentation dif-
ferences occur in the first and last caudate frames, where some
voxels are classified as caudate by CaudateCut, but not by the
GT (false positives). The inherent ambiguity of the caudate
boundaries makes the expert’s task of manually defining the
caudate start and end slices arduous. This introduces variability
and produces errors in MRI atlas information corresponding
to the end slices. It is difficult for CaudateCut to rectify this
kind of error. The AB method introduces fake seeds in these
positions and CaudateCut propagates these errors, since it can
not remove the seeds. In the second column of the second row,
some voxels are not classified as caudate, while they should be,
according to GT (false negatives). This particular sample slice
corresponds to the transition between caudate head and body,
where the caudate shape changes abruptly from the rounded
head to the elongated body [8].

Internal Segmentation. In order to evaluate the proposed
methods we performed a leave-one-out validation strategy
on the whole set of 1039 images. The performance of the
method is shown in Table I, where the accuracy, sensitivity,
and specificity of linear SVM with DS are shown. As it can
be seen, results are accurate enought.

ADHD Diagnostic Test. The objective of the diagnostic
test is to discriminate between MRI volumes corresponding
to ADHD and healthy subjects. In [8], authors present a
diagnostic test to assist in the diagnosis of ADHD in children
based on the ratio rCBV/bCBV. Using the Receiver Operating
Characteristic (ROC) curve analysis on the defined ratio, the
Optimal Cut-Off Value (OCOV) is estimated as the optimal ra-

TABLE I
RESULTS OBTAINED FOR THE INTERNAL CAUDATE SEGMENTATION USING

THE LEAVE-ONE-OUT VALIDATION STRATEGY.

Accuracy Sensitivity Specificity
92.38% 92.27% 92.50%

TABLE II
STATISTICAL ANALYSIS: MEAN OF THE RATIO RCBV/BCBV AND
STANDARD DEVIATION (σ) FOR CONTROL AND ADHD GROUPS,

DIFFERENCE OF MEANS OF THE GROUPS, T-VALUE OF THE T-TEST (WITH
0.05%), P-VALUE AND CONFIDENCE INTERVAL.

Mean σ Mean Diff. t p
Control 0.53 0.06 0.05 2.4086 0.0092ADHD 0.48 0.05

TABLE III
COMPARISON OF MANUAL AND AUTOMATIC ADHD DIAGNOSTIC TEST.

SENSITIVITY, SPECIFICITY, AREA UNDER CURVE (AUC), AND OPTIMAL
CUT-OFF VALUE (OCOV) ON THE TRAINING SET FOR MANUAL AND

AUTOMATIC OF EXTERNAL AND INTERNAL SEGMENTATIONS. AUTO/ AUTO
STANDS FOR CAUDATECUT AND SVM LINEAR+DS, RESPECTIVELY.

Ext. seg./Int. seg. Sensitivity Specificity AUC OCOV
Manual/Manual [8] 60% 95% 0.84 0.4818

Manual/Manual 55% 85% 0.73 0.483
Auto / Auto 68.42% 89.47% 0.75 0.491

tio for which the specificity is greater or equal than a threshold
Thspec, which can be applied to classify new subjects.

First, to analyze the significance of the ratio (rCBV/bCBV)
in discriminating ADHD and control groups, we performed
a Student’s t-test (with a threshold of p < 0.05). Table II
summarizes the obtained statistics. In particular, mean ratio
values, their standards deviation, the difference of means
between the two groups and the results of the t-test are
included. The result of the t-test was positive, confirming the
statistical significance of the ratio measure.

Second, in order to compare the proposed automatic strategy
with the manual one we followed the validation steps indicated
in [8]. In particular, we divided the set of 78 subjects in
two subsets, one used for training and another for testing.
We performed a ROC curve analysis using the training set
to learn the OCOV as the optimal ratio threshold where the
specificity was greater or equal than 85%. Table III shows the
discriminative power of the system to differentiate between
control and ADHD subjects. First row includes the results
obtained in [8]. Second row correspond to the ”replica” of
these results using the manual external and internal segmenta-
tion on the test set randomly defined by us. Finally, third row
includes the results for the fully-automatic system, composed
by the automatic external segmentation with CaudateCut and
the automatic internal segmentation with linear SVM and DS.
This fully-automatic system is giving results comparable with
manual results, and can detect 68.42% of ADHD children
correctly with only 11% of incorrect diagnostics on healthy
subjects.

Finally, we used a leave-one-out validation strategy on
the set of 78 subjects to completely evaluate the proposed
diagnostic test in the whole data set. In each test, we used
ROC curve analysis to learn the OCOV as the optimal volume
ratio threshold (specificity ≥ 85%). Table IV contains the
mean sensitivity, specificity and OCOV of the leave-one-
out validation. This fully-automatic system shows acceptable



TABLE IV
RESULTS OBTAINED FOR THE DIAGNOSTIC TEST USING THE

LEAVE-ONE-OUT VALIDATION STRATEGY.

Sensitivity Specificity OCOV
48.72% 84.62% 0.4828

results to assist the diagnostic of ADHD.

V. CONCLUSION

Inspired in a previously presented manual study stating that
the ratio between rCBV and bCBV was statistically different
in ADHD and control groups, we apply an automatic approach
for external and internal caudate segmentation, followed by the
brain classification in ADHD or control cases.

The proposed external caudate segmentation combines the
power of an atlas-based strategy and the adaptiveness of the
defined energy function within the GC energy-minimization
framework, in order to segment the small and low-contrast cau-
date structure. We defined the new energy function with data
potentials by using intensity and geometry information, and
also information of supervised learned local brain structures.
Boundary potentials are also improved using a new multi-scale
edgeness measure. The internal caudate segmentation classifies
head and body regions based on shape features and a ma-
chine learning approach. The automatic segmentation method
was completely validated on a datasets showing accurate
performance. Finally, the automatic segmentation approach
was applied in the ADHD diagnostic test, obtaining results
comparable to manual test.

Future lines of research include the use of multiple-
hypotheses for the GC initialization in order to increase the
robustness to possible errors and the incorporation of 3D
information in the caudate segmentation. From the clinical
point of view, new features based on the caudate appearance
can be added to analyze ADHD abnormalities in an automatic
way.
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mal+insect: Improved cortical structure segmentation. In IPMI,
Springer 1999:210–223.

[11] Escalera S, Fornés A, Pujol O, Lladós J, Radeva P: Circular
Blurred Shape Model for Multiclass Symbol Recognition. IEEE
Transactions on Systems, Man, and Cybernetics 2010.

[12] Tremols V, Bielsa A, Soliva JC, Raheb C, Carmona S, Tomas J,
Gispert JD, Rovira M, Fauquet J, Tobeña A, Bulbena A, Vilarroya
O: Differential abnormalities of the head and body of the caudate
nucleus in attention deficit-hyperactivity disorder. Psychiatry Res
2008, 163(3):270–8.

[13] Carmona S, Vilarroya O, Bielsa A, Trèmols V, Soliva JC, Rovira
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