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Abstract. One of the major difficulties of handwriting recognition is
the variability among symbols because of the different writer styles. In
this paper we introduce the boosting of blurred shape models with er-
ror correction, which is a robust approach for describing and recognizing
handwritten symbols tolerant to this variability. A symbol is described
by a probability density function of blurred shape model that encodes the
probability of pixel densities of image regions. Then, to learn the most
distinctive features among symbol classes, boosting techniques are used
to maximize the separability among the blurred shape models. Finally,
the set of binary boosting classifiers is embedded in the framework of
Error Correcting Output Codes (ECOC). Our approach has been evalu-
ated in two benchmarking scenarios consisting of handwritten symbols.
Compared with state-of-the-art descriptors, our method shows higher
tolerance to the irregular deformations induced by handwritten strokes.

1 Introduction

The analysis of handwritten documents has been a subject of intensive research
for the last decades. The interest devoted to this field is not only explained from
the scientific point of view, but also in terms of the social benefits that convey
those systems. Two examples of interesting applications are the analysis of old
handwritten archive manuscripts and sketching or calligraphic interfaces. The
analysis of ancient documents is a growing interest in Europe and its main con-
cern is not only the digitization but the extraction of knowledge from ancient
documents to convert them to digital libraries, so that these documents can be
edited and published, contributing to the diffusion and preservation of artistic
and cultural heritage. Concerning to sketching interfaces, it is a joint interest be-
tween the fields of Pattern Recognition and Human Computer Interaction, which
allows computers to integrate a natural way of interaction based on handwritten
strokes which are interpreted as textual annotations or graphical gestures.

Although the analysis of textual handwritten documents has an intensive
activity, the analysis of hand-drawn documents with graphical alphabets is an
emerging subfield. Due to the fact that architectural, cartographic and musical
documents use their own alphabets of symbols (corresponding to the domain-
dependent graphic notations used in these documents), the automatic interpre-
tation of such documents requires specific processes, within the field of Graphics
Recognition, more than the field of Cursive Script Recognition. Two major dif-
ferences between the two problems can be stated. Cursive script recognition has
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the context information in one dimensional way, but graphical alphabets usually
are bidimensional. In addition, the use of syntactical knowledge, and lexicons,
is more effective in text recognition than in diagrammatic notations because of
the variability of structures and alphabets of the latter.

Symbol recognition is one of the central topics of Graphics Recognition [3]. A
lot of effort has been made in the last decade to develop good symbol and shape
recognition methods inspired in either structural or statistic pattern recognition
approaches. The presence of handwritten symbols increases the difficulty of clas-
sification: there is a high variability in writing style, with different sizes, shapes
and intensities, increasing the number of touching and broken symbols. In addi-
tion, working with old documents even increases the difficulties in these stages
because of paper degradation and the frequent lack of a standard notation.

Symbol recognition in document images can be seen as a particular case of
Shape Recognition. Two major focus of interest can be stated: the definition of
expressive and compact shape description signatures, and the formulation of ro-
bust classification methods according to such descriptors. Zhang [7] reviews the
main techniques used in this field, mainly classified in contour-based descriptors
(i.e. polygonal approximations, chain code, shape signature, and curvature scale
space) and region-based descriptors (i.e. Zernike moments, ART, and Legendre
moments [9]). A good shape descriptor should guarantee inter-class compacity
and intra-class separability, even when describing noisy and distorted shapes.
It has been proved that some descriptors, robust with some affine transforma-
tions and occlusions in printed symbols, are not efficient enough for handwritten
symbols. Thus, the research of other descriptors for elastic and non-uniform
distortions is required, coping with variations in writing style and blurring.

Concerning classification, numerous techniques (not necessary independent
from each other) have been investigated based on statistical or structural ap-
proaches [3]. Elastic deformations of shapes modelled by probabilities tend to
be learnt using statistical classifiers. One of the most well-known techniques in
this domain is the Adaboost algorithm due to its ability for feature selection,
detection, and classification problems [1]. Most classification algorithms are de-
signed for multiclass problems. Nevertheless, this extension is normally hardly
difficult. In such cases, the usual way to proceed is to reduce the complexity of
the problem into a set of simpler binary classifiers and combine them. An usual
way to combine these simple classifiers is the voting scheme (one-versus-one or
one-versus-all grouping schemes are the most frequently applied). Dietterich et.
al. [2] proposed a framework inspired in the signal processing coding and decod-
ing techniques to benefit from error correction properties. The method is based
on combining the weak classifiers as codified columns of a matrix and generate
a codeword for each class. Thus, a test sample is evaluated with all the binary
classifiers, and codewords are compared in the classification stage [2].

In this paper we present an approach to model and classify handwritten sym-
bols. The method uses the context of the shape and defines a blurred region of
the shape that makes the technique robust against elastic deformations (sec-
tion 2). The Adaboost algorithm (section 3) is proposed to learn the descriptor
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features that best split classes, and the pairwise scheme (one-versus-one) with
ECOC increases the classification accuracy by correcting possible weak classifiers
errors. Finally, results (section 4) and the concluding remarks are exposed.

2 BSM: Blurred Shape Model

Handwritten symbol recognition is a hard task due to the high variability of
symbol appearance because of the differences in writer sytles, and even also by
the degradation in old documents (resolution, noise). The Blurred Shape Model
(BSM) is based on the object shape parametrization, allowing the definition of
spatial regions where some parts of the shape can be involved: Given a binary
handwritten symbol, it is first skeletonized, and skeleton points are used as
features to compute the BSM signature. The skeleton is applied to normalize
the object shape in order to assign to each contour point the same importance
and also to prevent different widths at some parts of the object. Then, the image
is divided in a grid of n × n equal-sized subregions (where n × n identifies the
blurring level allowed for the shapes). Each bin receives votes from the shape
points in it and also from the shape points in the neighboring bins. Thus, each
shape point contributes to a density measure of its bin and its neighboring ones.
This contribution is weighted according to the distance between the point and
the bin centroid of each neighbor.

(a) (b)

Fig. 1. (a) Shape pixel distances estimation respect to neighbor centroids. (b) Vector
actualization of the region 16th, where d1+d2+d3+d4=1.

In Fig. 1, a letter shape parametrization is shown. Figure 1(a) shows the
distances estimation of a shape point respect to the nearest centroids. To give
the same importance to each shape point, all the distances to the neighbors
centroids {d1, d2, d3, d4} are normalized so that d1 + d2 + d3 + d4 = 1. The
output descriptor is a vector histogram v of length n × n, where each position
corresponds to the amount of shape points in the context of the sub-region.
The estimated normalized distances di for each affected sub-region r is used to
actualize their corresponding vector locations adding the 1 − di values. Fig. 1
(b) shows the vector at this stage for the analyzed point of Fig. 1(a).

The resulting vector histogram, obtained by processing all feature points, is
normalized in the range [0..1] to obtain the probability density function (pdf)
of n × n bins. In this way, the output descriptor represents a distribution of
probabilities of the object shape considering spatial distortions. In Fig. 2, an
input shape is processed. The symbol is filtered to obtain a thin shape, and the
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(a) (b) (c) (d) (e) (f)

Fig. 2. (a) Input image. (b) Thinned image. (c) 64 regions blurred shape. (d) 32 regions
blurred shape. (e) 16 regions blurred shape. (f) 8 regions blurred shape.

sequent figures correspond to the blurred parameterizations considering 64×64,
32 × 32, 16 × 16, and 8 × 8 sub-regions, respectively. The whole algorithm is
summarized in Table 1.

Given a binary image I,
Obtain the skeleton S of I
Divide I in n× n equal size sub-regions

for each point (x, y) ∈ S,
let be rx,y ∈ R the sub-region containing (x, y),

for rx,y and each r
′
x,y = {r′ ⊂ R|r′ is neighbor of rx,y}

dr = |cen(r), (x, y)|

Normalize each distance dr as:
dr = drP

∀i∈r
′
i

di

Actualize the probabilities vector v for rx,y and each r
′
x,y

positions as:
v(r) = v(r) + (1− dr)

Obtain the blurred pdf normalizing the vector v as:
v = v(i)Pn2

j=1 v(j)
∀i ∈ [1, ..., n2]

Table 1. Blurred Shape Model algorithm. |.| Is the Euclidean distance and cen(r) is
the centroid coordinates of the sub-region r.

3 Classification

In this section, the architecture of the classifier for the Blurred Shape Model
descriptor and its benefits for handwritten symbols recognition is described.
The whole process of the classification system is shown in Fig. 3.

Fig. 3. Boosted blurred shape model with error correction scheme.
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Adaboost [1] is used to train the classifier from Blurred Shape Model descrip-
tors. The BSM has a probabilistic parametrization on the object shape consid-
ering its possible shape distortions. Different types of objects may share local
features [4] (see Fig. 4(a)). For this reason, Adaboost has been chosen to boost
the BSM model in order to define a classifier based on the features that best
discriminate one classes against the others. In particular, we use the Discrete
Adaboost version [1] with 50 iterations of decision stumps. To outperform the
Adaboost behavior, we embed the Adaboost binary classifiers in the framework
of Error Correcting Output Codes.

(a) (b)

Fig. 4. (a) Discriminate features for symbols that shares features. (b) Error Correcting
Output Codes coding matrix for a 4 multiclass problem {c1, ..., c4} using 5 binary
classifiers {h1, ..., h4}. A test sample x is tested and classified by class c4 applying the
distance D(x, y) between the test codeword and each class codeword.

The basis of the ECOC framework is to create a codeword for each of the
Nc classes. Arranging the codewords as rows of a matrix, a ”coding matrix” M
is defined, where M ∈ {−1, 0, 1}Nc×n, being n the code length. From the point
of view of learning, M is constructed by considering n binary problems (di-
chotomies), each corresponding to a matrix column. Joining classes in sets, each
dichotomy defines a partition of classes (coded by +1, -1, according to their class
set membership, or 0 if the class is not considered by the dichotomy). In Fig. 4(b)
an example of a matrix M is shown. The matrix is coded using 5 dichotomies
{h1, ..., h5} for a four multiclass problem (c1, c2, c3, and c4). The white regions
are coded by 1 (considered as positive for its respective dichotomy, hi), the dark
regions by -1 (considered as negative), and the grey regions correspond to the
zero symbol (not considered classes for the current dichotomy). Applying the n
trained binary classifiers, a code is obtained for each data point in the test set.
This code is compared to the base codewords of each class defined in the matrix
M , and the data point is assigned to the class with the ”closest” codeword. In
Fig. 4(b), an input test sample x is shown. This input is tested using the five
classifiers, and assigning the outputs to each codeword position (down of the
figure). Finally, the hamming distance is applied between each class codeword
and test codeword in the form D(x, y) =

∑n
i=1 |xi − yi|/2, where y is a class

codeword, n is the number of classifiers, and |.| is the absolute value. Finally the
test input x is classified by the class at minimum distance c4.

The ECOC framework shown increases the classification performance by the
embedding of binary classifiers [2], [5]. In [8], it has been proved that the one-
versus-one coding strategy outperforms the other traditional pre-defined coding
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strategies, and also that the Euclidean distance outperforms the traditional Ham-
ming distance decoding. For this reason, the former strategy is used to evaluate
the distance between the test sample and the class codewords. The estimation
applied for each class candidate is d(x, y) =

√∑n
i=1(x(i)− y(i))2, where n is

the code length, and x and y are the codewords for a test sample and a class.

4 Results

Two benchmarking databases of handwritten symbols have been used, namely
clefs symbols from old musical scores, and architectural symbols from a sketching
interface in a CAD framework. The database of clefs is obtained from a collection
of modern and old musical scores (19th century) of the Archive of the Seminar
of Barcelona. The database contains a total of 2128 samples between the three
different types of clefs from 24 different authors. The images have been obtained
from original image documents using a semi-supervised segmentation approach
[6]. The main difficulty of this database is the lack of a clear class separability
because of the variation of writer styles and the absence of a standard notation.
In Fig. 5(a), one of the used old musical score is shown. The high variability of
clefs’ appearance from different authors can be observed in the segmented clefs
of Fig. 5(b). The database of architectural hand-drawn symbols has 2762 total
samples organized in the 14 classes shown in Fig. 6. Each class consists of an
average of 200 samples drawn by 13 different authors. This database has been
used to test the scalability of our method.

Fig. 5. (a) Old musical score, (b) High variability of clefs appearance: first row shows
treble clefs, second row shows alto clefs and the third one shows bass clefs.

Fig. 6. Architectural handwriting classes.

To better assess the performance of our approach, it is compared with ART,
Zoning, and Zernike descriptors [7][10]. The compared descriptors are also in-
troduced in the classification framework to quantify the robustness of each de-
scriptor at the same conditions. For all the experiments, stratified ten-fold cross-
validation at 95% of the confidence interval is used. The descriptors for BSM
and Zoning techniques are of length 8× 8, from the considered sub-regions. The
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parameters for ART are radial order with value 2 and angular order with value
11; and for the Zernike descriptor, 7 Zernike moments are used.

The accuracy and confidence ranges results for the old musical score clefs are
shown and graphically represented in Fig.7(a) and Fig.7(b), respectively. ART
and Zernique descriptors obtain the minor results, while the Zoning descriptor
in the classification scheme technique offers good results. The BSM strategy is
the most robust, obtaining an accuracy upon 98%.

(a) (b) (c)

Fig. 7. (a) and (b) Clefs classification results. (c) Descriptors classification accuracy
increasing the number of architectural symbol classes.

The architectural symbol database has been used to test the performance
under an increasing number of classes. We started the classification using the
first 3 classes. Iteratively, one class was added at each step and the classification
is repeated. The higher number of classes, the higher confusion degree among
them because of the elastic deformations inherent to hand drawn strokes, and
the higher number of objects to distinguish. The results of accuracy recogni-
tion in terms of an increasing number of classes are shown in Fig. 7(c). The
performance of the ART and Zernike descriptors decreases dramatically when
increasing the confusion in terms of the number of classes, while Zoning obtains
higher performance. Finally, the accuracy of the BSM outperforms the other
descriptors results, and its confidence interval only intersects with Zoning in few
cases. This behavior is quite important since the accuracy of the latter descrip-
tors remains stable, and BSM can distinguish the 14 classes with an accuracy
upon 90%. Referring the computational complexity, for a region of n× n pixels,
the k ≤ n × n skeleton points are considered to obtain the BSM with a cost of
O(k) simple operations, which is faster than the moment estimation of the ART
and Zernike descriptors. Besides, the Adaboost and ECOC strategies are very
suitable for real-time multi-class classification problems [1].

5 Conclusions

We have presented the boosting of blurred shape models with error correction. A
blurred shape model pdf is designed for each binary object, where the shape is pa-
rameterized with a set of probabilities that define the spatial invariance to elastic
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deformations of handwritten symbols. Adaboost learns the discriminative vector
features, and the binary classifiers are embedded in the Error Correcting Out-
put Codes framework. The evaluation of the technique in two real hand-written
problems shows the outperforming of the novel methodology in comparison with
the state-of-the-art descriptors and high robustness against elastic deformations.
The skeleton information can also be changed to other structure criteria in the
framework, allowing the context-based blurring of different object properties.

As future work, we are currently applying the symbol-based trained classifiers
for symbol spotting in hand-written documents. Applying windowing techniques
to image documents, regions can be described and evaluated by the classifiers
in order to detect symbols. Besides, the detection can be done in real-time and
speeded up by estimating only the features learned by Adaboost at each region.

Acknowledgements

This work has been partially supported by the projects TIN2006-15694-C02-02
and TIN2006-15308-C02-01.

References

1. J. Friedman, T. Hastie, and R. Tibshirani, ”Additive logistic regression: a statistical
view of boosting”, The Annals of Statistics, vol. 8, issue 2, pp. 337-374, 1998.

2. T. Dietterich and G. Bakiri, ”Solving multiclass learning problems via error-
correcting output codes”, Artificial Intelligence Research, vol. 2, pp. 263-286, 1995.

3. J. Lladós, E. Valveny, G. Sánchez and E. Mart́ı, ”Symbol Recognition: Current Ad-
vances and Perspectives”, in ”Graphics Recognition: Algorithms and Applications”,
ed. D. Blostein and Y.B. Kwon, vol. 2390 of LNCS, Springer, Berlin, pp. 104-127,
2002.

4. A. Torralba, K. Murphy, and W. Freeman, ”Sharing visual features for multiclass
and multiview object detection”, Technical Report, Massachusetts Institute of Tech-
nology Computer Science and Artificial Intelligence (MIT AIM), 2004.

5. S. Escalera, O. Pujol, and P. Radeva, ”ECOC-ONE: A Novel Coding and Decoding
Strategy”, in International Conference on Pattern Recognition (ICPR), Hong Kong,
vol. 3, pp. 578-581, 2006.

6. A. Fornés, J. Lladós, and G. Sánchez, ”Primitive segmentation in old handwritten
music scores”, in Graphics Recognition: Ten Years Review and Future Perspectives,
ed. W. Liu and J. Llados, vol. 3926 of LNCS, Springer-Verlag, pp. 279-290, 2006.

7. D. Zhang and G. Lu, ”Review of shape representation and description techniques”,
Pattern Recognition, vol. 37, pp. 1-19, 2004.
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