QUALITY ENHANCEMENT BASED ON REINFORCEMENT LEARNING AND FEATURE WEIGHTING FOR A CRITIQUING-BASED RECOMMENDER

Maria Salamó, Sergio Escalera, and Petia Radeva

Computer Vision Center & Universitat de Barcelona
Outline

- Introduction
- Incremental Critiquing
- Proposals
- Compatibility using reinforcement learning
- Similarity using user preference weighting
- Results
- Conclusions
Introduction

Conversational recommenders play the role of an intelligent sales assistant guiding the user through a complex problem space by alternatively making suggestions and using user feedback to influence future suggestions.

The feedback in our recommender is based on critiquing elicitation
Incremental Critiquing

\[
C_t^{p'}(U) = \frac{\sum_{\forall i: (1 \leq i \leq t)} \delta(p', U_i)}{|U|}
\]

\[
Q(p', p, U) = \beta \cdot C_t^{p'}(U) + (1 - \beta) \cdot S(p', p)
\]
Proposals

Different reinforcement learning compatibility functions
- Monte-Carlo approaches
- TD approaches

Similarity using user preference weighting
- Local user preference weighting [Salamó et al., 2005]
- Global user preference weighting

The aim is to enhance quality, and thus, reducing session length

\[Q(p', p, U) = \beta \cdot C^p_t(U) + (1 - \beta) \cdot S(p', p) \]
Compatibility using reinforcement learning

RL families:

- **Dynamic Programming methods**
 - Require a complete and accurate model of the environment
 - It is not possible define future behaviour of the user in the recommender

- **Monte-Carlo methods**
 - Do not require a model

- **Temporal-Difference methods**
 - Do not require a model
Compatibility using reinforcement learning

Both Monte-Carlo and Temporal-Difference methods seem to be useful to use the user experience.

- Key Idea
 - Model the current compatibility of a candidate case p' at instant t based on its previous compatibility.
Compatibility using reinforcement learning: Monte-Carlo methods

- **Monte-Carlo (MC)**

 \[C_t^{p'} = C_{t-1}^{p'} + \alpha \cdot \left(R_t^{p'} - C_{t-1}^{p'} \right) \]

- **Exponential Monte-Carlo (MC)**

 \[C_t^{p'} = \begin{cases}
 C_{t-1}^{p'} + \alpha \cdot \left(R_t^{p'} + C_{t-1}^{p'} \right) & \text{if } R_t^{p'} = 1 \\
 C_{t-1}^{p'} - \alpha \cdot C_{t-1}^{p'} & \text{if } R_t^{p'} = 0
\end{cases} \]
Compatibility using reinforcement learning: Toy problem

We use a toy problem to show the differences among strategies:

- The toy problem contains:
 - Four cases
 - Ten cycles of the recommender
 - We suppose, for this example, that each cycle is an instant and each instant the recommender generates a critique (only one)
 - The critique satisfaction of each case at instant t
 - Satisfaction is 1 if the cases satisfies the critique, otherwise 0

<table>
<thead>
<tr>
<th>Case 1</th>
<th>$t=1$</th>
<th>$t=2$</th>
<th>$t=3$</th>
<th>$t=4$</th>
<th>$t=5$</th>
<th>$t=6$</th>
<th>$t=7$</th>
<th>$t=8$</th>
<th>$t=9$</th>
<th>$t=10$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Case 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Case 3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Case 4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Compatibility using reinforcement learning: MC and EMC comparison

Monte Carlo $\alpha=0.5$

Exponential Monte Carlo $\alpha=0.9$

<table>
<thead>
<tr>
<th></th>
<th>t=1</th>
<th>t=2</th>
<th>t=3</th>
<th>t=4</th>
<th>t=5</th>
<th>t=6</th>
<th>t=7</th>
<th>t=8</th>
<th>t=9</th>
<th>t=10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Case 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Case 3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Case 4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Compatibility using reinforcement learning:

Temporal-Difference methods

- **Backward Temporal-Difference (BTD)**
 \[e_t^s = \begin{cases}
 \gamma \cdot \lambda \cdot e_{t-1}^s & \text{if } s \notin s_t \\
 \gamma \cdot \lambda \cdot e_{t-1}^s + 1 & \text{if } s \in s_t
 \end{cases} \]
 \[C_t^{p'} = \gamma \cdot \lambda \cdot C_{t-1}^{p'} + R_t^{p'} \]

- **Exponential Hit-Loss (EHL)**
 \[C_t^{p'} = \begin{cases}
 h \leftarrow h + 1, C_t^{p'} = C_{t-1}^{p'} \cdot (1 + \alpha)^{(h^{p'} + t)_k} & \text{if } R_t^{p'} = 1 \\
 f \leftarrow f + 1, C_t^{p'} = C_{t-1}^{p'} \cdot (1 - \alpha)^{(f^{p'} + t)_k} & \text{if } R_t^{p'} = 0
 \end{cases} \]
Compatibility using reinforcement learning: BTD and EHL comparison

<table>
<thead>
<tr>
<th>t=1</th>
<th>t=2</th>
<th>t=3</th>
<th>t=4</th>
<th>t=5</th>
<th>t=6</th>
<th>t=7</th>
<th>t=8</th>
<th>t=9</th>
<th>t=10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Case 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Case 3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Case 4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Similarity using user preference weighting

- Similarity plays, as in traditional CBR, an important role in the recommender
 - As in CBR, similarity may improve by weighting features

- Key idea
 - To find the relative importance of each feature as a weighting value

\[S(p', p) = \sum_{f} W(p'_f) \cdot d(p'_f, p_f) \]
Similarity using user preference weighting:

Local user preference weighting (LW)

- **Key idea**
 - Discovers the relative importance of each feature in each case as a weighting value
 - Prioritise those features that have not yet been critiqued

\[
W(p'_f) = 1 - \frac{1}{2} \left(\frac{\sum_{\forall i \in U^f} \delta(p'_i, U^f_i)}{|U^f|} \right)
\]
Similarity using user preference weighting: Global user preference weighting (GW)

- **Key idea**
 - Discovers a global vector of feature weights that will be used for the whole set of candidate cases.
 - Prioritise those features that have not yet been critiqued.

\[
W(f) = 1 - \frac{1}{2} \left(\frac{\sum_{\forall i \in U^f} \delta(p', U^f_i)}{|P'|} \right)
\]
Results

Set-up

- Travel dataset which consists of 9 features and 1024 vacation cases
 - Contains numerical and nominal features
- We generate an artificial user that emulates the live users behaviour
- We analyse easy, moderate and hard queries
- 50 experiments repeated 10 times

Performance Criteria

- The average session length

Statistics

- Friedman test
- Nemenyi test
Results:

RL recommendation efficiency

Alpha analysis

- MC and BTD present a tendency to increase/decrease the Avg. session length
- EMC and EHL (the ones who consider an exponential behaviour) results in shorter session length
Results:

RL recommendation efficiency

Beta analysis

- Session lengths are maintained between 0.5 to 0.9
- Best results are for 0.6 and 0.75
- We set up this value for our next experiments
Results:

Quality Recommendation efficiency

Comparison of LW and GW with RL measures

- The combinations of LW with RL measures result in a reduction in session length that ranges from 0.5% up to 8%.

- GW combinations with RL measures present the highest benefit, ranging from 3.4% up to 11.1%.
Results:

Quality recommendation efficiency

- **Friedman test**
 - Five algorithms
 - Three different queries
 - \(F(4,8) = 3.83 \) at the 0.05 critical level
 - \(F_F = 40.06 \) (LW)
 - \(F_F = 9.22 \) (GW)
 - We can reject the null hypothesis in both analysis

- **Nemenyi test**
 - Critical difference is 3.17
Conclusions & future work

- We have proposed new strategies for compatibility computation and feature weighting that enhance quality.
- The new compatibility strategies offer better benefit in terms of session length.
- Global user preference weighting shows significant improvements in comparison to the state-of-the-art approaches.

- More data to test: Influence of dimensionality?
- Real user evaluation
- Current work: introducing recommendation to retrieve cases from audio and video data sets
Thank you for your attention

Maria Salamó, Sergio Escalera, and Petia Radeva

Computer Vision Center &
Universitat de Barcelona