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Dept. Matemàtica Aplicada i Anàlisi, Universitat de Barcelona
Gran Via de les Corts Catalanes 585, 08007, Barcelona, Spain

Computer Vision Center
Campus UAB, Edifici O, 08193, Bellaterra, Barcelona, Spain

mreyese@gmail.com

Gabriel Domı́nguez
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Abstract

We present a gesture recognition approach for depth
video data based on a novel Feature Weighting approach
within the Dynamic Time Warping framework. Depth fea-
tures from human joints are compared through video se-
quences using Dynamic Time Warping, and weights are as-
signed to features based on inter-intra class gesture vari-
ability. Feature Weighting in Dynamic Time Warping is then
applied for recognizing begin-end of gestures in data se-
quences. The obtained results recognizing several gestures
in depth data show high performance compared with clas-
sical Dynamic Time Warping approach.

1. Introduction

Visual analysis of human motion is currently one of
the most active research topics in Computer Vision. Sev-
eral segmentation techniques for body pose recovery have
been recently presented, allowing for better generalization
of gesture recognition systems. The evaluation of human
behavior patterns in different environments has been a prob-
lem studied in social and cognitive sciences, but now it is

raised as a challenging approach to computer science due to
the complexity of data extraction and its analysis.

In this work, we present a system for gesture recognition
using depth data. From the point of view of data acquisi-
tion, many methodologies treat images captured by visible-
light cameras. Computer Vision are then used to detect,
describe, and learn visual features [4, 6]. The main diffi-
culties of visual descriptors on RGB data is the discrim-
ination of shapes, textures, background objects, changing
in lighting conditions and viewpoint. On the other hand,
depth information is invariant to color, texture and light-
ing objects, making it easier to differentiate between the
background and the foreground object. The first systems
for depth estimation were expensive and difficult to manage
in practice. Earlier research used stereo cameras to estimate
human poses or perform human tracking [10]. In the past
few years, some research has focused on the use of time-
of-flight range cameras (TOF) [5, 9, 13]. Nowadays, it has
been published several works related to this topic because
of the emergence of inexpensive structured light technol-
ogy, reliable and robust to capture the depth information
along with their corresponding synchronized RGB image.
This technology has been developed by the PrimeSense [8]
company and marketed by Microsoft XBox under the name
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of Kinect. Using this sensor, Shotton et al. [11] present one
of the greatest advances in the extraction of the human body
pose from depth images, representing the body as a skeletal
form comprised by a set of joints.

Once features are extracted from video data, the sec-
ond step is the classification of gestures with the aim of
describing human behavior. This step is extremely chal-
lenging because of the huge number of possible configu-
rations of the human body that defines human motion. In
our case, we base on the fifteen joints extracted by the ap-
proach of [11] as the set of features that will define the dif-
ferent gestures to recognize. A common approach for ges-
ture recognition to model sequential data is Hidden Markov
Model (HMM) [3], which is based on learning the transi-
tion probabilities among different human state configura-
tions. Recently, there has been an emergent interest in Con-
ditional Random Field (CRF) [12] for the learning of se-
quences. However, all these methods assume that we know
the number of states for every motion. Other approaches
make use of templates or global trajectories of motion [2],
being highly dependent of the environment where the sys-
tem is built. In order to avoid all these situations, our pro-
posal is focused within the Dynamic Time Warping frame-
work (DTW) [14]. Dynamic Time Warping allows to align
two temporal sequences taking into account that sequences
may vary in time based on the subject that performs the ges-
ture. The alignment cost can be then used as a gesture ap-
pearance indicator.

The main contribution of this paper is the introduc-
tion of a new method based on DTW for gesture recog-
nition using depth data. We propose a Feature Weight-
ing approach within the DTW framework to improve ges-
ture/action recognition. First, we estimate a temporal fea-
ture vector of subjects based on the 3D spatial coordinates
of fifteen skeletal human joints. From a set of different
ground truth behaviors of different length, DTW is used
to compute the inter-class and intra-class gesture joint vari-
ability. These weights are used in the DTW cost function
in order to improve gesture recognition performance. We
test our approach on several human behavior sequences cap-
tured by the Kinect sensor. We show the robustness of the
novel approach recognizing multiple gestures, identifying
beginning and end of gestures in long term sequences, and
showing performance improvements compared with classi-
cal DTW framework.

The rest of the paper is organized as follows: Sec-
tion 2 reviews the human segmentation process through
depth maps and the feature space representation. Section
3 presents the novel Feature Weighting approach within the
DTW framework. Section 5 shows the experimental results,
and finally, Section 6 concludes the paper.

2. Data Acquisition
This section describes the processing of depth data in

order to perform the segmentation of the human body, ob-
taining its skeletal model, and computing its feature vector.

For the acquisition of depth maps we use the public API
OpenNI software[1]. This middleware is able to provide
sequences of images at a rate of 30 frames per second.
The depth images obtained are 340×280 pixels resolution.
These features are able to detect and track people to a max-
imum distance of six meters from multi-sensor device, as
shown in Figure 1.

Figure 1. Human detection and tracking in uncontrolled environ-
ments.

We use the method of [11] to detect the human body and
its skeletal model. The approach of [11] uses a huge set of
human samples to infer pixel labels through Random For-
est estimation, and skeletal model is defined as the centroid
of mass of the different dense regions using mean shift al-
gorithm. Experimental results demonstrated that it is effi-
cient and effective for reconstructing 3D human body poses,
even against partial occlusions, different points of view or
no light conditions. The main problem of the skeletal repre-
sentation is that it requires from a reference pose for initial-
ization. In this sense, we perform an automatic calibration
to fit human model and automatically obtain skeletal repre-
sentation.

2.1. Automatic calibration

In order to define an automatic fitting of the human body
without the need of detecting a specific pose for calibration,
we defined a set of silhouettes associated to plausible nor-
malized models of the skeletal form C. These models make
possible initialization of the skeletal model for a set of sil-
houettes. In order to find the model that best fits the subject
of the scene we use a similarity function of structure θ be-
tween consecutive frames. This similarity function is based
on the alignment of the consecutive skeletal joints to ob-



tain their respective Euclidean distance in two-dimensional
space, using ζ as a similarity threshold value. Thus, the
initialization of silhouette is given by,

argminiθ(C,Ci), θ(C,Ci) < ζ (1)

being C the skeletal model at the current frame and Ci

the i-th trained model.

2.2. Feature Vector Extraction

The articulated human model is defined by the set of 15
reference points shown in Figure 2. This model has the ad-
vantage of being highly deformable, and thus, able to fit to
complex human poses.

Figure 2. The 3D articulated human model consisting of 15 dis-
tinctive points.

In order to subsequently make comparisons and analyze
the different extracted skeletal models, we need to normal-
ize them. In this sense, we use the neck joint of the skeletal
model as the origin or coordinates (OC). Then, the neck is
not used in the frame descriptor, and the remaining 14 joints
are using in the frame descriptor computing their 3D coor-
dinates with respect to the OC. This transformation allows
us to relate pose models that are at different depths, being
invariant to translation, scale, and tolerant to corporal differ-
ences of subjects. Thus, the final feature vector Vj at frame
j that defines the human pose is described by 42 elements
(14 joints × three spatial coordinates),

Vj = {{v1j,x, v1j,y, v1j,z}, ..., {v14j,x, v14j,y, v14j,z}}

3. Feature Weighting in DTW
The original DTW algorithm [7] was defined to match

temporal distortions between two models, finding an align-
ment warping path between the two time series Q =
{q1, .., qn} and C = {c1, .., cm}. In order to align these

two sequences, a Mm×n matrix is designed, where the po-
sition (i, j) of the matrix contains the distance between ci
and qj . The Euclidean distance is the most frequently ap-
plied. Then, a warping path,

W = {w1, .., wT },max(m,n) ≤ T < m+ n+ 1

is defined as a set of ”contiguous” matrix elements that de-
fines a mapping between C and Q. This warping path is
typically subjected to several constraints:

Boundary conditions: w1 = (1, 1) and wT = (m,n).
Continuity: Given wt−1 = (a′, b′), then wt = (a, b),

a− a′ ≤ 1 and b− b′ ≤ 1.
Monotonicity: Given wt−1 = (a′, b′), wt = (a, b), a −

a′ ≤ 1 and b − b′ ≤ 1, this forces the points in W to be
monotically spaced in time.

We are generally interested in the final warping path that
satisfying these conditions minimizes the warping cost,

DTW (Q,C) = min

 1

T

√√√√ T∑
t=1

wt

 (2)

where T compensates the different lengths of the warp-
ing paths. This path can be found very efficiently using
dynamic programming to evaluate the following recurrence
which defines the cumulative distance γ(i, j) as the distance
d(i, j) found in the current cell and the minimum of the cu-
mulative distance of the adjacent elements,

γ(i, j) = d(i, j)+min{γ(i−1, j−1), γ(i−1, j), γ(i, j−1)}
(3)

Given the nature of our system to work in uncontrolled
environments, we continuously review the stage for possi-
ble actions or gestures. In this case, our input feature vector
Q is of ”infinite” length, and may contain segments related
to gesture C at any part.

Next, we describe our algorithm for begin-end of gesture
recognition and the Feature Weighting proposal within the
DTW framework.

3.1. Begin-end of gesture detection

In order to detect a begin-end of gestureC = {c1, .., cm}
in a maybe infinite sequence Q = {q1, .., q∞}, a Mm×∞
matrix is designed, where the position (i, j) of the ma-
trix contains the distance between ci and qj , quantifying
its value by the Euclidean distance, as commented before.
Finally, our warping path is defined by W = {w1, .., w∞}
as in the standard DTW approach. Our aim is focused on
finding segments of Q sufficiently similar to the sequence
C. The system considers that there is correspondence be-
tween the current block k in Q and a gesture if satisfying
the following condition,

M(m, k) < µ, k ∈ [1, ..,∞]



for a given cost threshold µ. This threshold value is esti-
mated in advance for each of the categories of actions or
gestures using leave-one-out cross-validation strategy. This
involves using a single observation from the original sample
as the validation data, and the remaining observations as the
training data. This is repeated such that each observation in
the sample is used once as the validation data. At each itera-
tion, we evaluate the similarity value between the candidate
and the rest of the training set. Finally we choose the thresh-
old value which is associated with the largest number of hits
within a category.

Once detected a possible end of pattern of gesture or ac-
tion, the working path W can be found through backtrack-
ing of the minimum path from M(m, k) to M(0, z), being
z the instant of time in Q where the gesture begins. The
algorithm for begin-end of gesture detection for a particular
gesture C in a large sequence Q using DTW is summarized
in Table 1. Note that d(i, j) is the cost function which mea-
sures the difference among our descriptors Vi and Vj . An
example of a begin-end gesture recognition for a model and
infinite sequence together with the working path estimation
is shown in Figure 3.

Input: A gesture model C = {c1, .., cm}, its simi-
larity threshold value µ, and the testing sequence
Q = {q1, .., q∞}. Cost matrix Mm×∞ is defined,
where N(w), w = (i, t) is the set of three upper-left
neighbor locations of w in M .

Output: Working path W of the detected gesture, if any
// Initialization
for i = 1 : m do

for j = 1 :∞ do
M(i, j) =∞

end
end
for j = 1 :∞ do

M(0, j) = 0
end
for t = 0 :∞ do

for i = 1 : m do
x = (i, t)
M(w) = d(w) + minw′∈N(w)M(w′)

end
if M(m, t) < µ then

W = {argminw′∈N(w)M(w′)}
return

end
end

Table 1. DTW begin-end of gesture recognition algorithm.

3.2. Feature Weighting in DTW

In this section, we propose a Feature Weighting approach
to improve the cost distance computation d(w) of previous
begin-end DTW algorithm.

In standard DTW algorithm, cost distances among fea-
ture vectors ci and qj (3D coordinates of the skeletal mod-
els in our case) are computed equally for each feature of the

Figure 3. Begin-end of gesture recognition of a model C in an
infinite sequence Q.

descriptors. However, it is intuitive that not all skeletal el-
ements of the model participate equally for discriminating
the performed gesture. For instance, the movement of the
legs when performing hand shaking should not have influ-
ence, and thus, computing their deviation to a correspon-
dence model of the gesture adds noise to the cost similarity
function. In this sense, our proposal is based on associating
a discriminatory weight to each joint of the skeletal model
depending on its participation in a particular gesture. In or-
der to automatically compute this weight per each joint, we
propose an inter-intra gesture similarity algorithm.

First, we perform a weight training algorithm based on
a ground truth data of gestures. Given the data composed
by {n1, .., nN} gesture categories described using skeletal
descriptors, the objective is to obtain the inter-intra coef-
ficient of the joints for the data set. This estimation is
performed per each joint using a symmetric cost matrix
DN×N . Each matrix element Dp(i, j) for the matrix of
joint p contains the mean DTW cost between all pairs of
samples Ci, Cj ,∀Ci ∈ ni,∀Cj ∈ nj only considering the
features of the descriptor related to the p-th joint, where ni
and nj represent the set of samples for gesture categories i
and j of the data set.

The mean DTW value at each position of the matrix Dp

represents the variability of joint p between a pair of ges-
tures. Note that the diagonal of D represents the intra-
gesture variability per joint for all the gesture categories,
meanwhile the rest of the elements compare the variabil-
ity of joint p for two different gesture categories, codi-
fying the inter-gesture variability. Since gestures, as any
other object recognition system, will be more discriminative
when increasing inter-distance and reducing intra-distance,
a discriminative weight is defined as shown in Algorithm 2,
which assigns high cost to joints high high intra-inter dif-
ference values and low cost otherwise. Moreover, the as-
signed weight is normalized in the same range to be com-
parable for all joints. Note that at the end of this proce-
dure we have a final global weight vector ν = {ν1, .., νz},
with a weight value νp for the p-th joint, which is included



in the re-definition of the begin-end DTW algorithm cost
function d(w) to improve gesture recognition performance
as follows,

d(ci, cj) =

√√√√ |ci|∑
p=1

((cpi − c
p
j ) · νp)2, (4)

where |ci| is the length of the feature vector ci. The Fea-
ture Weighting algorithm for computing the weight vector
ν = {ν1, .., νz} is summarized in 2.

Input: Ground-truth data formed by N sets of gestures
{n1, .., nN}.

Output: Weight vector ν = {ν1, .., νz} associated with
skeletal joints so that

∑z
i=1 ν

i = 1.
ν = ∅
for p = 1 : z do // Number of joints

for i = 1 : N do
for j = i : N do

Dp(i, j) = mean(DTW (Civ, C
j
w)), ∀v, w

gesture samples of categories i and j.
end

end
νintra =

∑N−1
i=1

∑N
j=i+1D

p(i,j)

N×(N−1)
2

// Computer intra-class

variability
νinter =

Trace(Dp)
m

// Computer inter-class variability
νp = max(0, νintra−νinter

νintra
)// Compute global weight for

joint p
ν = ν ∪ νp

end
Normalize ν so that

∑z
i=1 ν

i = 1

Table 2. Feature Weighting in DTW cost measure.

4. Results
Before the presentation of the results, first, we discuss

the data, methods and parameters, and validation protocol
of the experiments.

Data: We designed a new data set of gestures using the
Kinect device consisting of five different categories:
jumping, bendding, clapping, greeting, and noting
with the hand1. It has been considered 10 different ac-
tors, 10 different backgrounds, and 100 sequences per
subject for recording the data set. Thus, the data set
contains the high variability from uncontrolled envi-
ronments. The resolution of the video depth sequences
is 340×280 at 30 FPS. The data set contains a total
of 1000 gesture samples considering all the categories.
The ground-truth of each sequence is performed man-
ually by examining and noting the position in the video
when some actor begin-ends a gesture. Some sam-
ples of the captured gestures for different categories
are shown in Figure 4.

1The data set is public upon to request to the authors of the paper.

Methods and parameters: For the implementation of
the system we used C/C++, efficiently using dynamic
programming to evaluate the recurrence which defines
the cumulative distance between vectors of features on
each frame. The people detection system used is pro-
vided by the public library OpenNI. This library has
a high accuracy in people detection, allowing multiple
detection even in cases of partial occlusions. The de-
tection is accurate as people remain at a minimum of
60cm from the camera and up to 4m, but can reach up
to 6m but with less robust and reliable detection. For
automatically initialization of the system we have used
20 calibration poses. These calibration models are also
obtained through the library OpenNI. This calibration
set has been built with high variability in order to auto-
matically obtain the feature vector in different human
pose configurations. During the calibration process we
used a structural coherence function θ from the fifth
consecutive frame. This assures stabilization to obtain
a reliable ζ for a better fit of the skeletal model. In
Figure 5 we show different initialization models.

Figure 5. Different calibration poses.

Validation protocol: For the validation our approach
and classical DTW algorithm, we compute the Fea-
ture Weighting vector ν and gesture cost threshold µ
over a leave-one-out validation. The validation se-
quences may have different length size since they
can be aligned using DTW algorithm and trained for
the different estimated values of µ. We validate the
begin-end of gesture DTW approach and compare with
the Feature Weighting methodology within the same
framework. As a validation measurement we compute
the confusion matrix for each test sample of the leave-
out-out strategy. This methodology allows us to per-
form an exhaustive analysis of the methods and data
set. Adding all test confusion matrices in a perfor-
mance matrix Cm, final accuracy A is computed using
the following formula,

A = 100 · Trace(Cm)

NC +
∑m

i=1

∑m
j=1 Cm(i, j)

(5)

WhereNC contains the number of samples of the data
set that has not been classified by any gesture since the



Figure 4. Samples of gestures for different categories of the data set.

Classification Results Feature Weighting DTW
Gesture Begin-end DTW Feature Weighting
Jump 68 68
Bend 63.4 68
Clap 42 55
Greet 64.2 73
Note 68 76

Table 3. Classification performance A over the gesture data set
for the five gesture categories using DTW begin-end approach and
including the Feature Weighting methodology.

classification threshold µ has not been satisfied. This
evaluation is pessimistic and realistic since both a sam-
ple which is not classified or is classified more than
once penalizes the final evaluation measurement.

The obtained results applying DTW begin-end gesture
recognition and including the Feature Weighting approach
on the new data set are shown in Table 3. The results show
the final performance per gesture over the whole data set us-
ing both classification strategies. The best performance per
category is marked in bold. Note that for all gesture cate-
gories, the begin-end DTW technique with Feature Weight-
ing improves the accuracy of standard DTW. Only in the
case of the jump category the performance is maintained.
An example of gesture recognition in a sequence of the data
set is shown in Figure 6.

5. Conclusion
In this paper, we proposed a fully-automatic general

framework for real time action/gesture recognition in un-
controlled environments using depth data. The system an-

alyzes data sequences based on the assignment of weights
to gesture descriptors so that DTW cost measure improves
discrimination. The feature vectors are extracted automati-
cally through a calibration set, obtaining 3D coordinates of
skeletal models with respect an origin of coordinates, mak-
ing description invariant to translation, scale, and tolerant
to corporal differences among subjects. The final gesture
is recognized by means of a novel Feature Weighting ap-
proach, which enhance recognition performance based on
the analysis on inter-intra class variability of vector features
among gesture descriptors. The evaluation of the method
has been performed on a novel depth data set of gestures,
automatically detecting begin-end of gesture and obtaining
performance improvements compared to classical DTW al-
gorithm.
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