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Abstract. Dynamic Time Warping (DTW) is commonly used in gesture recog-
nition tasks in order to tackle the temporal length variability of gestures. In the
DTW framework, a set of gesture patterns are compared one by one to a maybe
infinite test sequence, and a query gesture category is recognized if a warping cost
below a certain threshold is found within the test sequence. Nevertheless, either
taking one single sample per gesture category or a set of isolated samples may not
encode the variability of such gesture category. In this paper, a probability-based
DTW for gesture recognition is proposed. Different samples of the same ges-
ture pattern obtained from RGB-Depth data are used to build a Gaussian-based
probabilistic model of the gesture. Finally, the cost of DTW has been adapted
accordingly to the new model. The proposed approach is tested in a challenging
scenario, showing better performance of the probability-based DTW in compari-
son to state-of-the-art approaches for gesture recognition on RGB-D data.

Keywords: Depth maps, Gesture Recognition, Dynamic Time Warping, Statis-
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1 Introduction

Nowadays, human gesture recognition is one of the most challenging tasks in computer
vision. Current methodologies have shown preliminary results on very simple scenarios,
but they are still far from human performance. Due to the large number of potential
applications involving human gesture recognition in fields like surveillance [8], sign
language recognition [10], or in clinical assistance [9] among others, there is a large
and active research community devoted to deal with this problem.

The release of the Microsoft KinectTM sensor in late 2010 has allowed an easy
and inexpensive access to synchronized range imaging with standard video data. This
data combines both sources into what is commonly named RGB-D images (RGB plus
Depth). This very welcomed addition by the computer vision community has reduced
the burden of the first steps in many pipelines devoted to image or object segmenta-
tion and opened new questions such as how these data can be effectively fused and



described. This depth information has been particularly exploited for human body seg-
mentation and tracking. Shotton et. al [11] presented one of the greatest advances in
the extraction of the human body pose using RGB-D, which is provided as part of
the KinectTM human recognition framework. The extraction of body pose information
opens the door to one of the most challenging problems nowadays, i.e. human gesture
recognition. This fact has enabled researchers to apply new techniques to obtain more
discriminative features. As a consequence, new methodologies on gesture recognition
can improve their performance by using RGB-D data.

From a learning point of view, the problem of human gesture recognition is an
example of sequential learning. The main problem in this scenario comes from the
fact that data sequences may have different temporal duration and even be composed
of intrinsically a different set of component elements. There are two main approaches
for this problem: On the one hand, methods such as Hidden Markov Models (HMM)
or Conditional Random Fields (CRF) are commonly used to tackle the problem from
a probabilistic point of view [10], especially for classification purposes. Furthermore,
methods based on key poses for gesture recognition have been proposed [6]. On the
other hand, dynamic programming inspired algorithms can be used for both alignment
and clustering of temporal series [5]. One of the most common dynamic programming
methods used for gesture recognition is Dynamic Time Warping (DTW) [3,4].

However, the application of such methods to gesture recognition in complex sce-
narios becomes a hard task due to the high variability of environmental conditions.
Common problems are: the wide range of human pose configurations, influence of
background, continuity of human movements, spontaneity of humans actions, speed,
appearance of unexpected objects, illumination changes, partial occlusions, or differ-
ent points of view, just to mention a few. These effects can cause dramatic changes
in the description of a certain gesture, generating a great intra-class variability. In this
sense, since usual DTW is applied to compare a sequence and a single pattern, it fails
when such variability is taken into account. We propose a probability-based extension
of DTW method, able to perform an alignment between a sequence and a set of N
pattern samples from the same gesture category. The variance caused by environmental
factors is modelled using a Gaussian Mixture Model (GMM) [7]. Consequently, the dis-
tance metric used in the DTW framework is redefined in order to provide a probability-
based measure. Results on a public and challenging computer vision dataset show a
better performance of the proposed probability-based DTW in comparison to standard
approaches.

The remaining of this paper is organized as follows: Section 2 presents the probability-
based DTW method for gesture recognition, Section 4 presents the results and, finally,
Section 5 concludes the paper.

2 Standard DTW for begin-end Gesture Recognition

In this section we first describe the original DTW and its common extension to detect
a certain pattern sequence given a continuous and maybe infinite data stream. Then, we
extend the DTW in order to align several patterns, taking into account the variance of
the training sequence by means of a Gaussian mixture model.



2.1 Dynamic Time Warping

The original DTW algorithm was defined to match temporal distortions between two
models, finding an alignment/warping path between the two time seriesQ = {q1, .., qn}
and C = {c1, .., cm}. In order to align these two sequences, a Mm×n matrix is de-
signed, where the position (i, j) of the matrix contains the alignment cost between ci
and qj . Then, a warping path of length τ is defined as a set of contiguous matrix el-
ements, defining a mapping between C and Q: W = {w1, .., wτ}, where wi indexes
a position in the cost matrix. This warping path is typically subjected to several con-
straints:

Boundary conditions: w1 = (1, 1) and wτ = (m,n).
Continuity and monotonicity: Given wτ ′−1 = (a′, b′), then wτ ′ = (a, b), a−a′ ≤ 1

and b − b′ ≤ 1, this condition forces the points in W to be monotonically spaced in
time.

We are generally interested in the final warping path that, satisfying these condi-
tions, minimizes the warping cost:

DTW (M) = min
w
{M(wτ )} , (1)

where τ compensates the different lengths of the warping paths. This path can
be found very efficiently using dynamic programming. The cost at a certain position
M(i, j) can be found as the composition of the Euclidean distance d(i, j) between the
feature vectors of the sequences ci and qj and the minimum cost of the adjacent ele-
ments of the cost matrix up to that point, i.e.:

M(i, j) = d(i, j) + min{M(i− 1, j − 1),M(i− 1, j),M(i, j − 1)}. (2)

Given the streaming nature of our problem, the input vectorQ has no definite length
and may contain several occurrences of the gesture pattern C. At that point the system
considers that there is correspondence between the current block k in Q and a gesture
if satisfying the following condition, M(m, k) < µ, k ∈ [1, ..,∞] for a given cost
threshold µ.

This threshold value is estimated in advance using leave-one-out cross-validation
strategy. This involves using a single observation from the original sample as the vali-
dation data, and the remaining observations as the training data. This is repeated such
that each observation in the sample is used once as the validation data. At each iteration,
we evaluate the similarity value between the candidate and the rest of the training set.
Finally we choose the threshold value which is associated with the largest number of
hits.

Once detected a possible end of pattern of gesture, the working path W can be
found through backtracking of the minimum path from M(m, k) to M(0, z), being z
the instant of time in Q where the gesture begins. Note that d(i, j) is the cost function
which measures the difference among our descriptors Vi and Vj .

An example of a begin-end gesture recognition together with the warping path esti-
mation is shown in Figure 2.



3 Handling variance with Probability-based DTW

Consider a training set of N sequences {S1, S2, . . . , SN}, where each Sg represents
a sample of the same gesture class. Then, each sequence Sg composed by a set of
feature vectors at each time t, Sg = {sg1, . . . , sgLg

} for a certain gesture category, where
Lg is the length in frames of sequence Sg . Let us assume that sequences are ordered
according to their length, so that Lg−1 ≤ Lg ≤ Lg+1,∀g ∈ [2, .., N − 1], the median
length sequence is S̄ = SdN2 e

. This sequence S̄ is used as a reference, and the rest of
sequences are aligned with it using the classical Dynamic Time Warping with Euclidean
distance [3], in order to avoid the temporal deformations of different samples from the
same gesture category. Therefore, after the alignment process, all sequences have length
LdN2 e

. We define the set of warped sequences as S̃ = {S̃1, S̃2, . . . , S̃N}. Once all
samples are aligned, the features vectors corresponding to each sequence element at a
certain time t s̃t are modelled by means of an G−component Gaussian Mixture Model
(GMM) λt = {αk, µk, Σk}, k = 1, . . . , G, α is the mixing value and µ and Σ are
the parameters of each of the G Gaussian models in the mixture. The underlying reason
of choosing a GMM instead of a single Gaussian follows from the definition of the
problem, where an arbitrarily large number of samples {S1, S2, . . . , SN} is available.
In this sense, in order to accurately model the feature vectors a GMM seems a more
powerful way to model the variability than a single Gaussian. As a result, each one of
the GMMs that model each component of a gesture pattern s̃t is defined as follows:

p(s̃t) =

G∑
k=1

αk · e−
1
2 (x−µk)

T ·Σ−1
k ·(x−µk). (3)

The resulting model is composed by the set of GMMs that model each one of the
component elements among all warped sequences of a certain gesture class. An example
of the process is shown in Figure 1.

3.1 Distance measures

In the classical DTW, a pattern and a sequence are aligned using a distance metric, such
as the Euclidean distance. Since our gesture pattern is modelled by means of probabilis-
tic models, if we want to use the principles of DTW, the distance needs to be redefined.
In this paper we consider a soft-distance based on the probability of a point belonging
to each one of the G components in the GMM, i.e., the posterior probability of x is

obtained according to (3). In addition, since
k∑
1
αk = 1, we can compute the probability

of an element q ∈ Q belonging to the whole GMM λ as the following:

P (q, λ) =

M∑
k=1

αk · P (q)k, (4)

P (q)k = e−
1
2 (q−µk)

T ·Σ−1
k ·(q−µk), (5)
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Fig. 1. (a) Different sample sequences of a certain gesture category and the mean length sample.
(b) Alignment of all samples with the mean length sample by means of Euclidean DTW. (c)
Warped sequences set S̃ from which each set of t-th elements among all sequences are modelled.
(d) Gaussian Mixture Model learning with 3 components.



which is the sum of the weighted probability of each component. An additional step
is required since the standard DTW algorithm is conceived for distances instead of sim-
ilarity measures. In this sense, we use a soft-distance based measure of the probability,
which is defined as:

D(q, λ) = e−P (q,λ). (6)

In conclusion, possible temporal deformations of the gesture category are taken into
account by aligning the set of N gesture sample sequences. In addition, modelling with
a GMM each of the elements which compose the resulting warped sequences, we obtain
a methodology for gesture detection that is able to deal with multiple deformations in
data. The algorithm that summarizes the use of the probability-based DTW to detect
start-end of gesture categories is shown in Table 1. Figure 4 illustrates the application
of the algorithm in a toy problem.
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Fig. 2. Begin-end of gesture recognition of a gesture pattern in an infinite sequence Q using the
probability-based DTW. Note that different samples of the same gesture category are modelled
with a GMM and this model is used to provide a probability-based distance. In this sense, each
cell of M will contain the accumulative D distance.



Input: A gesture model C = {c1, .., cm} with corresponding GMM models λ =
{λ1, .., λm}, its similarity threshold value µ, and the testing sequence Q =
{q1, .., qv}. Cost matrix Mm×v is defined, where N (x), x = (i, t) is the set of
three upper-left neighbor locations of x in M .

Output: Working path W of the detected gesture, if any.
// Initialization
for i = 1 : m do

for j = 1 :∞ do
M(i, j) = v

endend
for j = 1 : v do

M(0, j) = 0
end
for t = 0 : v do

for i = 1 : m do
x = (i, t)
M(x) = D(qt, λi) + minx′∈N (x)M(x′)

end
if M(m, t) < ε then

W = {argminx′∈N (x)M(x′)}
return

end
end

Table 1. Probability-based DTW algorithm.

4 Experiments

In order to present the experiments, we discuss the data, methods and evaluation mea-
surements.

4.1 Data

The data source used is the ChaLearn [2]1 data set provided from the CVPR2012 Work-
shop challenge on Gesture Recognition. The data set consists of 50,000 gestures each
one portraying a single user in front of a fixed camera. The images are captured by the
KinectTM device providing both RGB and depth images. The data used (a subset of
the whole) are 20 development batches with a manually tagged gesture segmentation.
Each batch includes 100 recorded gestures, grouped in sequences of 1 to 5 gestures
performed by the same user. For each sequence the actor performs a resting gesture
between each gesture of the gestures to classify. For this data set, we performed back-
ground subtraction based on depth maps, and we defined a 10×10 grid approach to
extract HOG+HOF feature descriptors per cell, which are finally concatenated in a full
image (posture) descriptor. In this data set we will test the recognition of the resting

1 http://gesture.chalearn.org/data/data-examples

http://gesture.chalearn.org/data/data-examples


gesture pattern, using 100 samples of the pattern in a ten-fold validation procedure. An
example of the ChaLearn dataset is shown in Figure 3.

(a) (b)

Fig. 3. Sample a) depth and b) RGB image for the ChaLearn database.

4.2 Methods and Evaluation

We compare the usual DTW and Hidden Markov Model (HMM) algorithms with our
probability-based DTW approach using the proposed distance D shown in (6). The
evaluation measurements are the accuracy of the recognition and the overlapping for
the resting gesture (in percentage). We consider that a gesture is correctly detected if
the overlapping in the resting gesture sub-sequence is grater than 60% (a standard over-
lapping value). The cost-threshold for all experiments was obtained by cross-validation
on training data, using a 5-fold cross-validation, and the confidence interval was com-
puted with a two-tailed t-test. Each GMM in the probability-based DTW was fit with
k = 4 components, this value was obtained using a 2-fold cross-validation procedure on
training data. For HMM, it was trained using the Baum-Welch algorithm, and 3 states
were experimentally set for the resting gesture, using a vocabulary of 60 symbols com-
puted using K-means over the training data features. Final recognition is performed
with temporal sliding windows of different wide sizes, based on the training samples
length variability.

Table 2 shows the results of HMM and the classical DTW algorithm, in comparison
to our proposal on the ChaLearn dataset. We can see how the proposed probability-
based DTW outperforms the usual DTW and HMM algorithms in both experiments.
Moreover, confidence intervals of DTW and HMM do not intersect with the probability-
based DTW in any case. From this results we can observe how performing dynamic
programming increases the generalization capability of the HMM approach, as well as
a model defined by a set of GMMs outperforms the classical DTW [3] on RGB-Depth
data without increasing the computational complexity of the method.



Fig. 4. Examples of resting gesture detection on the Chalearn dataset using the probability-based
DTW approach. The line below each pair of depth and RGB images represents the detection of a
resting gesture.

Overlap. Acc.
Probability-based DTW 39.08± 2.11 67.81±2.39

Euclidean DTW 30.03±3.02 60.43± 3.21
HMM 28.51±4.32 53.28±5.19

Table 2. Overlapping and Accuracy results of different gesture recognition approaches.



5 Conclusions and Future Work

In this paper, we proposed a probability-based DTW for gesture recognition on RGB-
D data, where the pattern model is learned from several samples of the same gesture
category. Different sequences were used to build a Gaussian-based probabilistic model
of the gesture whose possible deformations are implicitly encoded. In addition, a soft-
distance based on the posterior probability of the GMM was defined. The novel ap-
proach has been successfully applied on a public RGB-D gestures dataset, being able to
deal with multiple deformations in data, and showing performance improvements com-
pared to the classical DTW and HMM approaches. In particular, the proposed method
benefits from both the generalization capability from the probabilistic framework, when
several observations of the training data are available, and the temporal warping capa-
bility from dynamic programming.

Future work lines include, between others, the inclusion of samples with different
points of view of the same gesture class, the analysis of state-of-the-art one-class clas-
sifiers in order to obtain a performance improvement, and the definition of powerful
descriptors to obtain gesture-discriminative features.
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