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Abstract—Shape representation is a difficult task because of
several symbol distortions, such as occlusions, elastic deforma-
tions, gaps or noise. In this paper, we propose a new descriptor
and distance computation for coping with the problem of
symbol recognition in the domain of Graphical Document
Image Analysis. The proposed D-Shape descriptor encodes the
arrangement information of object parts in a circular structure,
allowing different levels of distortion. The classification is per-
formed using a cyclic Dynamic Time Warping based method,
allowing distortions and rotation. The methodology has been
validated on different data sets, showing very high recognition
rates.

Keywords-Graphics Recognition, Symbol Recognition, Sym-
bol Description

I. INTRODUCTION

Symbol recognition is a particular case of object recog-
nition and one of the main topics of Graphics Recognition.
Symbols are synthetic visual entities made by humans to
be understood by humans. They can appear in scanned
document images or in natural scenes captured by a camera.

From the point of view of symbols in documents, the
descriptor should ideally guarantee intra-class compactness
and inter-class separability. It should be tolerant to noise,
degradation, occlusions and distortion (including shear). And
due to isolated symbols which are present in graphical
documents, we must also take into account the variations
in rotation, scaling and translation. On the contrary, in the
camera-based symbol recognition domain, the system should
cope with a totally different problematic: uncontrolled envi-
ronments, illumination changes, and changes in the point of
view (perspective).

According to Zhang and Lu [1], numerous shape descrip-
tors, tolerant to such distortions, have been proposed. They
can be classified in continuous and structural approaches.
Continuous approaches use a feature vector derived from
the image photometry to describe the shape. Structural
approaches tend to represent the shape using structures like
string, tree, graph or grammar, where the similarity measure
is done by string, tree, graph matching or parsing, respec-
tively. These approaches capture the spatial arrangement of
symbol parts, which usually suffer from complex distortions.

In this paper, we introduce a novel symbol descriptor, the
Dynamic Aligned Shape Descriptor (D-Shape). It encodes
the spatial probability of appearance of the shape pixels and
their context information. As a result, a robust technique to
deal with noise and elastic deformations is obtained. The
circular descriptor is stretched and aligned using a variation
of the cyclic Dynamic Time Warping (DTW) algorithm,
which makes the description rotation invariant. Moreover,
the alignment cost is used as a measure of similarity, and
thus, the description is useful for symbol retrieval and
classification without the need of a learning stage.

The paper is organized as follows: Section 2 presents
the D-Shape descriptor. Section 3 describes the DTW-based
classification. Section 4 presents the experimental results,
and finally, Section 5 concludes the paper.

II. DYNAMIC ALIGNED SHAPE DESCRIPTOR

In this Section we present the definition of the descriptor.
Firstly, we define the location of some concentric circles,
and for each one, we compute the location of the voting
points. Secondly, these voting points will receive votes from
the pixels of the shape, depending on their distance to each
voting point.

A. Computation of the concentric circles

By defining a circular structure from the center of the
object region, spatial arrangement of object parts is shared
among voting points located in concentric circles. These
points will be used for describing the neighbouring region
of the shape. The goal is to locate isotropic equidistant
points, so that the inner and external part of the symbol
could be described using the same number of voting points.
Thus, the descriptor defines in the same way all the regions
of the symbol. For this purpose, the points are distributed
in concentric circles, with the following constraints: each
concentric circle is located at the same distance from its
neighbouring ones, and all the points located in a circle are
equidistant each other (see Fig.1(a)).

Given the number of concentric circles T and the radius
of the most external circle R, we define Ci as the concentric
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Figure 1. D-Shape description.(a) Location of the voting points. (b) Descriptor vector update after the analysis of x. (c) and (d) voting points for different
number of circles.

circle i, Ri as the radius of Ci, and Ni as the number of
points in Ci. We define R0 = 0 as the center of the circles,
R1 = r as the radius of the most internal circle, and RT = R
as the radius of the most external one.

For satisfying the first constraint, each circle Ci must be
located at the same distance r from Ci+1 and Ci−1. For this
purpose, Ri = i · R1 = Ri−1 + R1, where R1 = R

T = r,
ensuring:

Ri −Ri−1 = R1 = r, ∀i ∈ [2, .., T ] (1)

For satisfying the second constraint, we must determine
the number of voting points that can be located in each
circle, so that the distance between them is also r. For the
first circle C1 with R1 = r, only 6 voting points can be
located with a distance r between them, and a distance r to
the center of the circle (see Fig.1(a)). Then, we can compute
d as the distance in the perimeter of the circle between them
as:

d =
2πR1

6
=
π

3
R1 (2)

Consequently, the perimeter Perimi of each circle Ci is
divided in Ni parts of length d:

Perimi

Ni
= d, then

2πRi
Ni

=
πR1

3
, then Ni = 2 · 3i (3)

Finally, the Ni voting points P will be located in the circle
at an angular distance of 2π

Ni
. This procedure is detailed in

Algorithm 1.

B. Computation of the histogram

The D-Shape codifies the spatial arrangement of object
characteristics based on a defined blurring degree, which
determines the shape deformation allowed to the object. First
of all, the input binary or grey-level segmented image I is
preprocessed for obtaining the important shape features. In
our case, we base the relevant shape features as those points
in the image with high gradient magnitude. In particular, for
each foreground pixel x, we save its corresponding gradient
magnitude in I ′(x) if its gradient magnitude is higher to the

20% of the highest gradient magnitude in the symbol region.
Secondly, the voting points P are determined so that the
center of the shape (the centroid) coincides with the center
of the circles, without any image resizing. Once we have the
voting points P , the descriptor vector ν is computed. For this
purpose, each point x from I ′ is taken into account in the
description process. Firstly, the distances from the relevant
point x to its neighbouring voting points are computed (see
Fig.1(a)). Notice that the neighbouring voting points will be
determined depending on the voting influence area A, which
determines the blurring degree. Then, the inverse of these
distances is computed and normalized by the sum of total
distances. These values are weighted by the magnitude of
its gradient I ′(x), and added to the corresponding positions
of the descriptor vector ν (see Fig.1(b)). Finally, the vector
is normalized (

∑
ν = 1).

Notice that the length of ν is defined by parameter T ,
which defines the degree of spatial information taken into
account in the description process (see Fig.1(c),(d)). In the
way that we increase the number of circles T or decrease
the influence voting area A, the description becomes more
local. Contrary, if T decreases or A increases, the blurring
degree is higher, making the description more tolerant to
irregular deformations. Thus, an optimal parameters of T
and A should be obtained for each particular problem. This
procedure is detailed in Algorithm 1.

III. DISTANCE COMPUTATION

Once we have computed the D-Shape descriptor vector of
two shapes, a matching algorithm is required for determining
the distance between them. Since the matching method must
be tolerant to distortions, elastic deformations, occlusions,
gaps, and rotation, we propose a cyclic version of the Dy-
namic Time Warping algorithm for bi-dimensional shapes.

The Dynamic Time Warping algorithm [2] is used for
comparing signals by matching two one-dimensional vec-
tors. It is a much more robust distance measure for time
series than Euclidean distance, allowing similar samples
to match even if they are out of phase in the time axis.



Algorithm 1 D-Shape Description Algorithm.

Require: An image of high gradient magnitudes I ′ with dimen-
sions W × Z, the number of circles T , T > 1, and the voting
influence area A, A > 1

Ensure: Descriptor vector ν
Computation of the location of the voting points P
Define the radius of the most external circle RT = max{W

2
, Z

2
},

and the radius of the most internal circle R1 = RT
T

= R
T

.
Define P = {p{0,1}, p{1,1}, ..., p{1,6}, ..., p{T,1}..., p{T,2·3T}}
as the set of voting points. Thus, p{i,j} corresponds to the voting
point j of the circle i.
Define the centre of the circle p{0,1} = (W

2
, Z

2
) as the center

of I ′.
for each concentric circle Ci, i = 1, .., T do
N{i} = 2 · 3 · i = 6 · i, as the number of points in the circle i
R{i} = Ri · i, as the radius of the circle i
α = 2π

Ni
, as the angle increment for each point

p{i,j},j=1,..,Ni
= (Ri sin(jα), Ri cos(jα)), as the voting

points in the circle i
end for
Computation of the descriptor vector ν.
Initialize νi = 0, i ∈ [1, .., |P |], where |P | corresponds to the
number of points in P (the cardinal of P ). The order of indexes
in ν are:
ν = {p{0,1}, p{1,1}, ..., p{1,6}, ..., p{T,1}..., p{T,2·3·T}}
for each point x ∈ I ′, I ′( x ) > 0 do

Initialize Dx = 0
for each p{i,j} satisfying ||x− p{i,j}||2 < A ·R1 do
d{i,j} = d(x, p{i,j}) = ||x− p{i,j}||2
Dx = Dx + 1

d{i,j}
end for
Update the probabilities vector ν positions as follows:
ν(p{i,j}) = ν(p{i,j}) + I ′(x) · 1/d{i,j}

Dx
end for
Normalize the vector ν as follows:
d′ =

∑|P |
i=1

νi, νi = νi
d′ , ∀i ∈ [1, .., |P |]

In case of bidimensional data, instead of applying a 2-
DTW algorithm (with very high time complexity), the 2D
representation is typically reduced by encoding them in 1D
signals. Consequently, the time complexity is significantly
reduced. In this cases, the distance between two points is
substituted by the distance between two vectors.

The distance computation method proposed in this paper
is a variation on the DTW algorithm, that no only adapts
the algorithm to bidimensional data, but also is tolerant to
rotation by the definition of a cyclic version of the DTW.
The first step consists in resampling the descriptor vector
ν for obtaining a matrix F of features. For this purpose,
each row i in the matrix will consist in the resampling of
the voting points of the circle Ci, so that each row i will
contain the same number of columns as the most external
circle (2 · 3 · NT = 6 · NT ). Due to this resampling, the
matching must take into account that some voting points
in the descriptor ν are repeated several times, which is
particularly true in the small concentric circles. For this
reason, the weight of this points Q in the computation of the

Algorithm 2 D-Shape Matching Algorithm.
Require: Two D-Shape descriptors ν1 and ν2 with T concentric

circles
Ensure: Matching Distance Cost

Define the feature matrix F1 from ν1 as the resampling of the
voting points of each circle to the length of 2 · 3 · T = 6T .
f1(k + 1, 1..6T ) = resample(ν1(p{k,1}), .., ν1(p{k,6i})),
where k = 0..T

F1 =
(

f1(1, 1) ... f1(1, 6T )
... ... ...

f1(T + 1, 1) ... f1(T + 1, 6T )

)
Define the feature matrix F2 from ν2, as the resampling of the
voting points of each circle to the length of 2 · 3T = 6T , and
duplicate the matrix.
f2(k + 1, 1..6T ) = resample(ν2(p{k,1}), .., ν2(p{k,6i})),
where k = 0..T

F2 =
(

f1(1, 1) .. f1(1, 6T ), f1(1, 1) .. f1(1, 6T )
.. .. ... .. .. ..

f1(T + 1, 1) .. f1(T + 1, 6T ), f1(T + 1, 1) .. f1(T + 1, 6T )

)
Define Q as the weight of each concentric circle:
Q(0) = 1

6T
, Q(k) = 1

6T/6k
= 6k

6T
= k

T
, ∀k ∈ [1, .., T ]

Initialize the distance matrix MD as follows:
MD(0, 0) = 0
MD(0, j) = 0;∀j ∈ [1, .., 6T ]
MD(0, j) =∞;∀j ∈ [6T + 1, .., 12T ]
MD(i, 0) = MD(i−1, 0)+dist(f1(i), f2(1));∀i ∈ [1..T +1]
where dist(f1(i), f2(j)) =

∑T

k=1
Q(k) · (f1(k, i)− f2(k, j))2

for each i, i = 1, .., T + 1 do
for each j, j = 1, .., 12T do

MD(i, j) = min

{
MD(i, j − 1)
MD(i − 1, j)
MD(i − 1, j − 1)

}
+ dist(f1(i), f2(j))

dist(f1(i), f2(j)) =
∑T

k=1
Q(k) · (f1(k, i)− f2(k, j))2

end for
end for
Compute the length of the warping path Z and normalize the
matching cost:

Cost =
min{MD(M,N + 1), ..,MD(M, 2N)}

Z

distance between two columns must be decreased depending
on the degree of resampling performed. The most external
circle has no resampling, and for this reason, Q(CT ) = 1.
The most internal circle has been repeated NT = 6T times
due to the resampling, and consequently, Q(C0) = 1

6·T .
The weight for the circle i is the following:

Q(Ci) =
1

NT /Ni
=

6i
6T

=
i

T
(4)

Thus, when computing the distance between two vectors,
the weight Q will determine the influence of each rest in
the vector. This algorithm is fully detailed in Algorithm 2.

IV. EXPERIMENTAL RESULTS

The proposed methodology has been compared with SIFT
[3], Zoning, BSM [4] and Zernike Moments [5]. Seven mo-
ments are used in Zernike moments. The optimum number



of circles for the D-Shape descriptor (11 circles) and the
optimum grid size for the BSM and Zoning (16× 16 regions)
have been computed via cross-validation using a 10% of the
samples for validation. These descriptors are trained using
50 runs of Gentle Adaboost with decision stumps, and the
one-versus-one ECOC design with the Euclidean distance
decoding [6]. We also compare with a 3-Nearest Neighbour
classifier. Contrary, for the D-Shape, only the DTW-based
algorithm has been used, avoiding a training step. The
classification score is computed by means of stratified 10-
fold cross-validation, testing for the 95% of the confidence
interval with a two-tailed t-test.

The public 70-class MPEG7 repository data set contains
20 instances of each class, obtaining a total of 1400 in-
stances. It has been chosen because it contains samples
with high intra-class variability in terms of scale, rotation,
rigid and elastic deformations, as well as a low inter-class
variability. A pair of samples for some categories of the data
set are shown in Fig 2(a).

(a)

(b)
Figure 2. Data sets. (a) MPEG-7, (b) Grey Traffic signs

For the BSM and Zoning descriptors, the Hotelling align-
ment is applied for rotating the image. Then, each feature
set is classified using the one-versus-one scheme with Gentle
Adaboost and a 3-Nearest Neighbor classifier. The perfor-
mance and confidence interval obtained by each descriptor
and classifier are shown in Table I. We can observe that the
recognition rate of the D-Shape (83.7%) clearly outperforms
the others (less than 78%).

The second data set is composed by 17 classes of grey-
level traffic sign symbols, with a total of 550 samples
acquired with a digital camera from real environments. It
contains the common distortions from real environments,
such as illumination changes, partial occlusions, or changes
in the point of view (see Fig 2(b)). In grey-level data
sets, the Zernike moments and Zoning are not suitable
descriptors, so the comparison is performed with SIFT and
BSM descriptors. In Table II the results show that the D-
Shape (87%) significantly outperforms the others.

Table I
MPEG-7 CLASSIFICATION

Descriptor 3NN ECOC G.Adaboost
BSM 65.79 (8.03) 77.93 (7.25)

Zernike 43.64 (7.66) 51.29 (5.48)
Zoning 58.64 (10.97) 65.50 (6.64)
SIFT 29.14 (5.68) 32.57 (4.04)

D-Shape 83.7 (1.69) -

Table II
TRAFFIC SIGNS CLASSIFICATION

SIFT BSM D-Shape
(E.G.Adaboost) (E.G.Adaboost) (3NN)

62.12 (9.08) 75.23 (7.18) 87.04 (2.91)

V. CONCLUSION

In this paper we have presented the D-Shape descriptor,
which encodes the spatial arrangement of the shape using
voting points located in concentric circles. It copes with
distortions, occlusions, scale and noise, and allows different
degradation levels. Thanks to the use of a cyclic DTW-
based method, it becomes robust to elastic deformations and
rotation. The results show that it outperforms the state of the
art methods.
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