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Coronary Damage Classification of Patients with the
Chagas Disease with Error-Correcting Output Codes

Sergio Escalera, Oriol Pujol, Eric Laciar, Jordi Vitrià, Esther Pueyo, and Petia Radeva

Abstract— The Chagas’ disease is endemic in all Latin Amer-
ica, affecting millions of people in the continent. In order to
diagnose and treat the chagas’ disease, it is important to detect
and measure the coronary damage of the patient. In this paper,
we analyze and categorize patients into different groups based
on the coronary damage produced by the disease. Based on the
features of the heart cycle extracted using high resolution ECG,
a multi-class scheme of Error-Correcting Output Codes (ECOC)
is formulated and successfully applied. The results show that the
proposed scheme obtains significant performance improvements
compared to previous works and state-of-the-art ECOC designs.

Index Terms— Chagas disease, Error-Correcting Output
Codes, high resolution ECG, decoding

I. INTRODUCTION

Chagas’ disease is an infectious illness caused by the parasite
Tripanosoma Cruzi, which is transmitted to humans through the
feces of a bug called Triatoma infestans. The World Health
Organization (WHO) estimates that 16 to 18 million people in
Latin American countries are already infected by the disease and
other 100 million people are at risk of being infected [19].

In general terms, two different stages of Chagas’ disease can be
distinguished. The first stage, called acute phase, appears shortly
after the parasitical infection and it is occasionally manifested
by high temperature, inflammations, and heart rate acceleration.
Following this phase, which lasts for one or two months, there
is an undetermined latent period. After that, some patients go
into a chronic phase, which is characterized by alterations in
the cardiovascular system, normally associated to the so-called
Chagas’ cardiomyopathy. This type of cardiomyopathy produces
malfunctioning in the propagation of the electrical impulse as
well as destruction of cardiac fibers. In areas where the illness
is endemic, Chagas’ cardiomyopathy represents the first cause of
cardiovascular death [16].

In order to optimize treatment for chronic chagasic patients,
it is essential to make use of an effective diagnosis tool able
to determine the existence of cardiac injury and, if positive, its
magnitude. Clinical diagnosis is usually based on tests such as
chest x-rays, echocardiogram, or electrocardiogram (ECG), which
can be either Holter ECG or conventional rest ECG. The use of
high-resolution electrocardiography (HRECG) has been reported
in the literature as a useful tool for clinical assessment of Chagas’
disease [3][6][18]. Specifically, the presence of ventricular late
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potentials (VLP) has been detected in chronic chagasic patients
using high-resolution ECGs. VLP, which are usually measured on
temporally averaged beats, are very low-amplitude high-frequency
signals found within the terminal part of the QRS complex and
the beginning of the ST segment. A different approach has been
proposed in other studies [14][15], in which the beat-to-beat
variability of the QRS duration on HRECG has been measured,
and it has been shown that such a variability is more accentuated
in chagasic patients, particularly when the degree of myocardial
damage is severe.

Since Chagas’ cardiomyopathy frequently leads to alterations
in the heart’s electrical conduction, recently it has been proposed
the slopes of QRS complex in order to determine the myocardial
damage associated with the disease [22]. Based on the temporal
indices and slopes of QRS complex as extracted features, an
automatic system that categorized patients into different groups
is presented. To perform a multi-classification system able to
learn the level of damage produced by the disease, we focus on
Error-Correcting Output Codes. ECOC were born as a general
framework to combine binary problems to address the multi-class
problem [5]. Based on the error correcting principles and because
of its ability to correct the bias and variance errors of the base
classifiers [13], ECOC has been successfully applied to a wide
range of Computer Vision applications, such as face recognition
[27], face verification [12], text recognition [10] or manuscript
digit classification [29].

The ECOC technique can be broken down into two distinct
stages: encoding and decoding. Given a set of classes, the coding
stage designs a codeword1 for each class based on different binary
problems. The decoding stage makes a classification decision for
a given test sample based on the value of the output code.

Many coding designs have been proposed to codify an ECOC
coding matrix, obtaining successful results [7][24]. However, the
use of a proper decoding strategy is still an open issue. In this
paper, we propose the Loss-Weighted decoding strategy, witch
exploits the information provided at the coding stage to perform
a successful classification. As a result, our system automatically
diagnoses the level of coronary damage of patients with the
Chagas’ disease. The results show that the present ECOC scheme
outperforms the state-of-the-art on decoding designs, at same time
that obtains significant performance improvements characterizing
the level of damage of patients with the Chagas’ disease.

The paper is organized as follows: Section 2 explains the fea-
ture extraction from QRS complex of chronic chagasic patients.
Section 3 presents the Loss-Weighted decoding strategy to decode
any ECOC design. Section 4 shows the experimental results of
the multi-class categorization system, and finally. Finally, section
5 concludes the paper.

1The codeword is a sequence of bits of a code representing each class,
where each bit identifies the membership of the class for a given binary
classifier.
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II. QRS FEATURES

To obtain the features to evaluate the degree of myocardial
damage associated with the disease, the QRS slopes are analyzed
for all the HRECG recordings of 107 individuals from the Chagas
database recorded at Simón Bolı́var University (Venezuela). For
each recording, let’s denote xi(n), n = 0, ..., N , the i-th beat of
lead X, where i runs from 0 to I (being I the total number of beats
in the recording). Analogously, let’s denote yi(n) and xi(n) the i-
th beats of leads Y and Z, respectively. QRS slopes are measured
on temporally averaged signals x(n), y(n), and z(n), n = 0, .., N ,
which are calculated as the average of all normal beats i = 0, .., I

of the recording. Ectopic and grossly noisy beats were excluded
of the averaging process. The averaging is performed following
the standard recommendations described in [2].

A three-step process is applied to compute the upward QRS
slope, αUS , and the downward QRS slope, αDS , of each aver-
aged beat x(n), y(n), and z(n). In the first step, delineation is
performed using a wavelet-based technique [17] that determines
the temporal locations Q, R, and S wave peaks, which are denoted
by nQ, nR, and nS , respectively [23]. The second step identifies
the time instant nU associated with maximum slope of the ECG
signal (i.e., global maximum of its derivative) between nQ and
nR. Analogously, the time instant nD corresponding to minimum
slope of the ECG signal between nR and nS is identified. As a
final step, a line is fitted in the least squares sense to the ECG
signal in a window of 15ms around nU , and the slope of that line
is defined as αUS . In the same manner, αDS is defined as the
slope of a line fitted in a 15ms window around nD.

Other temporal indices defined to detect the presence of VLP
in HRECG recordings are also evaluated in this work. Previous
studies in the literature have shown the ability of those indices
to determine the severity of Chagas’ cardiomyopathy [14][15].
Consequently, we use such indices in conjunction with the QRS
slopes. Computation of QRS-based indices considers filtered leads
X, Y, and Z using a bi-directional 4th-order Butterworth filter with
passband between 40 and 250 Hz. The filtered signals are denoted
by xi,f (n), yi,f (n), and zi,f (n).

The QRS-based indices QRSD, RMS40, and LAS40, which
are described next, require temporal signal averaging (xf (n),
yf (n), and zf (n)) as well as the calculation of the vector
magnitude, defined as follows:

v(n) =
q

xf
2(n) + yf

2(n) + zf
2(n) (1)

On the signal v(n) the three temporal QRS indices defined to
detect VLP are computed based on identification of time instants
nb and ne corresponding to the beginning and the end of the QRS
complex [2]:

QRSD = ne − nb (2)

RMS40 =

vuut 1

n2 − n1

n2X
n=n1

v2(n), n1 = ne − 40ms, n2 = ne

(3)
LAS40 = ne − argmax{n|v(n) ≥ 40µV } (4)

On the other hand, the index ∆QRSD is considered, which is
defined next. This index is measured on the vector magnitude of
the ultraveraged filtered leads (xi,f (n), yi,f (n), zi,f (n)):

vi(n) =
q

x2
i,f (n) + y2

i,f (n) + z2
i,f (n) (5)

On each signal vi(n), i = 0, .., I , the duration of its complex
QRS is estimated and denoted by QRSDi. The index ∆QRSD

is defined as the standard deviation of the beat-to-beat QRSDi

series [15]:

∆QRSD =

rPI
i=1(QRSDi−QRSD

2
)

I−1

QRSD =
PI

i=1 QRSDi

I

(6)

Based on the previous features, we present a design of Error-
Correcting Output Codes that automatically diagnoses the level
of damage of patients with the Chaga’s disease.

III. ERROR-CORRECTING OUTPUT CODES

Given a set of Nc classes to be learned, at the coding step of
the ECOC framework, n different bi-partitions (groups of classes)
are formed, and n binary problems (dichotomies) are trained.
As a result, a codeword of length n is obtained for each class,
where each bin of the code corresponds to a response of a given
dichotomy. Arranging the codewords as rows of a matrix, we
define a ”coding matrix” M , where M ∈ {−1, 0, 1}Nc×n in
the ternary case. Joining classes in sets, each dichotomy, that
defined a partition of classes, codes by {+1,−1} according to
their class set membership, or 0 if the class is not considered by
the dichotomy. In fig.1 we show an example of a ternary matrix
M . The matrix is coded using 7 dichotomies {h1, ..., h7} for a
four class problem (c1, c2, c3, and c4). The white regions are
coded by 1 (considered as positive for its respective dichotomy,
hi), the dark regions by -1 (considered as negative), and the grey
regions correspond to the zero symbol (not considered classes
by the current dichotomy). For example, the first classifier (h1)
is trained to discriminate c3 versus c1 and c2 ignoring c1, the
second one classifies c2 versus c1, c3 and c4, and so on.

During the decoding process, applying the n trained binary
classifiers, a code x is obtained for each data point in the test
set. This code is compared to the base codewords of each class
{y1, ..., y4} defined in the matrix M , and the data point is assigned
to the class with the ”closest” codeword [1][28].

Fig. 1. Example of ternary matrix M for a 4-class problem. A new test
codeword is classified by class c1 when using the traditional Hamming and
Euclidean decoding strategies.

A. Decoding designs

The decoding step decides the final category of an input test
by comparing the codewords. In this way, a robust decoding
strategy is required to obtain accurate results. Several techniques
for the binary decoding step have been proposed in the literature
[28][11][21][4], the most common ones are the Hamming (HD)
and the Euclidean (ED) approaches [28]. In fig.1, a new test
input x is evaluated by all the classifiers and the method assigns
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label c1 with the closest decoding distances. Note that in the
particular example of fig. 1 both distances agree. In the work of
[24], authors showed that the Euclidean distance was usually more
suitable than the traditional Hamming distance in both the binary
and the ternary cases. Nevertheless, little attention has been paid
to the ternary decoding approaches.

In [1], the authors propose a Loss-based technique when a
confidence on the classifier output is available. For each row of
M and each data sample ℘, the authors compute the similarity
between fj(℘) and M(i, j), where fj is the jth dichotomy of the
set of hypothesis F , considering a loss estimation on their scalar
product, as follows:

D(℘, yi) =

nX

j=1

L(M(i, j) · fj(℘)) (7)

where L is a loss function that depends on the nature of
the binary classifier. The most common loss functions are the
linear and the exponential one. The final decision is achieved by
assigning a label to example ℘ according to the class ci with the
minimal distance.

Recently, the authors of [21] proposed a probabilistic decoding
strategy based on the margin of the output of the classifier to deal
with the ternary decoding. The decoding measure is given by:

D(yi, F ) = −log

0
@ Y

j∈[1,n]:M(i,j)6=0

P (xj = M(i, j)|fj) + α

1
A

(8)
where α is a constant factor that collects the probability mass

dispersed on the invalid codes, and the probability P (xj =

M(i, j)|fj) is estimated by means of:

P (xj = yj
i |fj) =

1

1 + exp(yj
i (Ajfj + Bj))

(9)

Vectors A and B are obtained by solving an optimization
problem [21].

IV. LOSS-WEIGHTED DECODING (LW)

In this section, we present the multi-class scheme of Error-
Correcting Output Codes proposed to learn the QRS complex
features described in section 2.

The ternary symbol-base ECOC allows to increase the number
of bi-partitions of classes (thus, the number of possible binary
classifiers) to be considered, resulting in a higher number of
binary problems to be learned. However, the effect of the ternary
symbol is still an open issue. Since a zero symbol means that
the corresponding classifier is not trained on a certain class, to
consider the ”decision” of this classifier on those zero coded
position does not make sense. Moreover, the response of the
classifier on a test sample will always be different to 0, so it will
register an error. Let return to fig. 1, where an example about the
effect of the 0 symbol is shown. The classification result using the
Hamming distance as well as the Euclidean distance is class c1.
On the other hand, class c2 has only coded first both positions,
thus it is the only information provided about class c2. The first
two coded locations of the test codeword x correspond exactly to
these positions. Note that each position of the codeword coded by
0 means that both -1 and +1 values are possible. Hence the correct
classification should be class c2 instead of c1. The use of standard
decoding techniques that do not consider the effect of the third

symbol (zero) frequently fails. In the figure, the HD and ED

strategies accumulate an error value proportional to the number
of zero symbols by row, and finally miss-classify the sample x.

Given a coding matrix M ,

1) Calculate the matrix of hypothesis H:

H(i, j) =
1

mi

miX

k=1

γ(hj(℘
i
k), i, j) (10)

based on γ(xj , i, j) =

�
1, if xj = M(i, j)
0, otherwise. (11)

2) Normalize H so that
Pn

j=1 MW (i, j) = 1,∀i = 1, ..., Nc:

MW (i, j) =
H(i, j)Pn

j=1 H(i, j)
,

∀i ∈ [1, ..., Nc], ∀j ∈ [1, ..., n]

Given a test input ℘, decode based on:

d(℘, i) =
nX

j=1

MW (i, j)L(M(i, j) · f(℘, j)) (12)

TABLE I
LOSS-WEIGHTED ALGORITHM.

To solve the commented problems, we propose a Loss-
Weighted decoding. The main objective is to find a weighting
matrix MW that weights a loss function to adjust the decisions
of the classifiers, either in the binary and in the ternary ECOC
frameworks. To obtain the weighting matrix MW , we assign to
each position (i, j) of the matrix of hypothesis H a continuous
value that corresponds to the accuracy of the dichotomy hj

classifying the samples of class i (10). We make H to have
zero probability at those positions corresponding to unconsidered
classes (11), since these positions do not have representative
information. The next step is to normalize each row of the matrix
H so that MW can be considered as a discrete probability density
function (12). This step is very important since we assume that the
probability of considering each class for the final classification is
the same (independently of number of zero symbols) in the case
of not having a priori information (P (c1) = ... = P (cNc

)). In
fig. 2 a weighting matrix MW for a 3-class problem with four
hypothesis is estimated. Figure 2(a) shows the coding matrix M .
The matrix H of fig. 2(b) represents the accuracy of the hypothesis
classifying the instances of the training set. The normalization of
H results in the weighting matrix MW of fig. 2(c)2.

The Loss-weighted algorithm is shown in table I. As com-
mented before, the loss functions applied in equation (12) can be
the linear or the exponential ones. The linear function is defined
by L(θ) = θ, and the exponential loss function by L(θ) = e−θ,
where in our case θ corresponds to M(i, j) · fj(℘). Function

2Note that the presented Weighting Matrix MW can also be applied over
any decoding strategy.
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(a) (b)

(c)

Fig. 2. (a) Coding matrix M of four hypotheses for a 3-class problem. (b)
Matrix H of hypothesis accuracy. (c) Weighting matrix MW .

fj(℘) may return either the binary label or the confidence value
of applying the jth ECOC classifier to the sample ℘.

V. RESULTS

Before the experimental results are presented, we comment the
data, methods, and evaluation measurements.
• Data: In this work, we analyzed a population composed

of 107 individuals from the Chagas database recorded at Simón
Bolı́var University (Venezuela). For each individual, a continuous
10-minute HRECG was recorded using orthogonal XYZ lead
configuration. All the recordings were digitalized with a sampling
frequency of 1 kHz and amplitude resolution of 16 bits.

Out of the total 107 individuals of the study population, 96
are chagasic patients with positive serology for Trypanosoma
Crucy, clinically classified into three different groups according
on their degree of cardiac damage (Groups I, II, and III). This
grouping is based on the clinical history, Machado-Guerreiro
test, conventional ECG of twelve derivations, Holter ECG of 24
hours, and myocardiograph study for each patient. The other 11
individuals are healthy subjects with negative serology taken as
a control group (Group 0). All individuals of the database are
described with a features vector of 16 features based on the
previous analysis of section 2. The four analyzed groups are
described in detail next:
• Group 0: 11 healthy subjects in the age 33.6±10.9 years, 9

men and 2 women.
• Group I: 41 total patients with the Chagas’ disease in the age

of 41.4±8.1 years, 21 men and 20 women, but without evidences
of cardiac damage in cardiographic study.
• Group II: 39 total patients with the Chagas’ disease in the

age of 45.8±8.8 years, 19 men and 20 women, with normal
cardiographic study and some evidences of weak or moderate
cardiac damage registered in the conventional ECG or in the
Holter ECG of 24 hours.
• Group III: 16 total patients with the Chagas’ disease in the age

of 53.6±9.3 years, 9 men and 7 women, with significant evidences
of cardiac damage detected in the conventional ECG, premature
ventricular contractions and/or cases of ventricular tachycardiac
registered in the Holter ECG and reduced fraction of ejection
estimated in the cardiographic study.
• Methods: We compare our results with the performances

reported in [22] for the same data. Moreover, we compare dif-
ferent ECOC designs: the one-versus-one ECOC coding strategy
[25] applied with the Hamming [5], Euclidean [7], Probabilistic
[21], and the presented Loss-Weighted decoding strategies. We
selected the one-versus-one ECOC coding strategy because the
individual classifiers are usually smaller in size than they would

be in the rest of ECOC approaches, and the problems to be
learned are usually easier, since the classes have less overlap.
Each ECOC configuration is evaluated for three different base
classifiers: Fisher Linear Discriminant Analysis (FLDA) with a
previous 99.9% of Principal Components [8], Discrete Adaboost
with 50 runs of Decision Stumps [9], and Linear Support Vector
Machines with the regularization parameter C set to 1 [26][20].
• Evaluation measurements: To evaluate the methodology we

apply leave-one-patient-out classification on the Chagas data set.

A. Chagas data set categorization

We divide the Chagas categorization problem into two exper-
iments. First, we classify the features obtained from the 107
patients considering the four groups in a leave-one-patient-out
experiment for the different ECOC configurations and base classi-
fiers. Since each patient is described with a vector of 16 features,
107 tests are performed. And second, the same experiment is
evaluated over the 96 patients with the Chagas’ disease from
groups I, II, and III. This second experiment is more useful in
practice since the splitting of healthy people from the patients
with the Chagas’ disease is solved with an accuracy upon 99.8%
using the Machado-Guerreiro test.

1) 4-class characterization: The results of categorization for
the four groups of patients reported by [22] are shown in fig. 3.
Considering the number of patients from each group, the mean
classification accuracy of [22] is of 57%. The results using the
different ECOC configurations for the same four groups are shown
in fig. 4. In fig. 4(a), the mean accuracy for each base classifier and
decoding strategy is shown. The individual performances of each
group of patients for each base classifier are shown in fig. 4(b),
fig. 4(c), and fig. 4(d), respectively. Observing the mean results of
fig. 4(a), one can see that any ECOC configuration outperforms
the results reported by [22]. Moreover, even if we use FLDA,
Discrete Adaboost, or Linear SVM in the one-versus-one ECOC
design, the best performance is always obtained with the proposed
Loss-Weighted decoding strategy. In particular, the one-versus-
one ECOC coding with Discrete Adaboost as the base classifier
and Loss-Weighted decoding attains the best performance, with a
classification accuracy upon 60% considering the four groups of
patients.

Fig. 3. Classification performance reported by [22] for the four groups of
patients.

2) 3-class characterization: Now, we evaluate the same strate-
gies on the three groups of patients with the Chagas’ disease,
without considering the healthy people. The new results are shown
in fig. 5. In fig. 5(a), the mean accuracy for each base classifier and
decoding strategy is shown. The individual performances of each
group of patients for each base classifier are shown in fig. 5(b),
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(a) Mean classification performance for each base classifier (b) Classification performance for each group using FLDA

(c) Classification performance for each group using Discrete Adaboost (d) Classification performance for each group using Linear SVM

Fig. 4. Leave-one-patient-out classification using one-versus-one ECOC design (HD: Hamming decoding, ED: Euclidean decoding, LW: Loss-Weighted
decoding, PD: Probabilistic decoding) for the four groups with and without Chagas’ disease.

fig. 5(c), and fig. 5(d), respectively. In the mean results of fig. 5(a),
one can see that independently of the base classifier applied, the
Loss-Weighted decoding strategy attains the best performances.
In this example, the one-versus-one ECOC coding with Discrete
Adaboost as the base classifier and Loss-Weighted decoding also
attains the best results, with a classification accuracy about 72%
distinguishing among three levels of patients with the Chagas’
disease.

VI. CONCLUSIONS

In this paper, we characterized patients with the Chagas’
disease based on the coronary damage produced by the disease.
We used the features extracted using the ECG of high resolution
from the heart cycle of 107 patients, and presented a decoding
strategy of Error-Correcting Output Codes lo learn a multi-class
system. The results show that the proposed scheme outperforms
previous works characterizing patients with different coronary
damage produced by the Chagas’ disease (upon 10% performance
improvements), at the same time that it achieves better results
compared with the state-of-the-art ECOC designs for different
base classifiers.
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(a) Mean classification performance for each base classifier (b) Classification performance for each group using FLDA

(c) Classification performance for each group using Discrete Adaboost (d) Classification performance for each group using Linear SVM

Fig. 5. Leave-one-patient-out classification using one-versus-one ECOC design (HD: Hamming decoding, ED: Euclidean decoding, LW: Loss-Weighted
decoding, PD: Probabilistic decoding) for the three groups with Chagas’ disease.
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