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Abstract. An exportable and robust system using only camera images
is proposed for path execution in robot navigation. Motion information
is extracted in the form of optical flow from SURF robust descriptors of
consecutive frames, so the method is called SURF flow. This informa-
tion is used to correct robot displacement when a straight forward path
command is sent to the robot, but it is not really executed due to sev-
eral robot and environmental concerns. The proposed system has been
successfully tested on the legged robot Aibo.
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1 Introduction

Navigation for autonomous mobile robots, for any kind of platform and indepen-
dently to its task, implies to solve two related problems: path planning and path
execution. Path planning can be defined as a high level robot guidance from a
place to another place, while path execution refers to low level processes needed
to fulfill path planning decisions [16]. This work is about, given a certain path
plan, how to ensure path execution when the only available information for the
robot is data extracted from its on-board camera. Especially, no landmarks in
the environment will be considered.

Unexpected robot behaviours can be observed during path execution when
a system is asked for reaching a place or set point, though it acted properly in
simulated or ideal conditions. Failures in path execution, even for simple path
executions like a ‘go straight forward’ path command, are due to several reasons:
noise in the sensors, damages in the actuators, perturbations, model errors or
shocks. Consequently, a feedback control would be interesting to be implemented
to correct the robot from possible motion deviations.

A common approach for obtaining feedback is to consider some landmarks
in the environment that help the robot to be localized in [15, 16]. However, for a
general solution, no landmark should be considered, and no exact final place in
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the path where to arrive exist, which could act like a landmark. Another solutions
focus on constrain robot motion and camera localization on the robot in order
to obtain robot egomotion [2, 4, 5]. Since nor robot configuration, neither camera
localization will be constrained, but be placed in the front direction, egomotion
can not be considered. The general problem at hands is to ensure the execution
of a ‘go straight forward’ path command by a general mobile robot, when frames
from the on-board frontal camera is the only available information.

Our proposed approach, like those based on optical flow [2], will use consecu-
tive frames from the on-board robot camera to extract an approximation of the
displacement direction by observing 2-D displacements of brightness patterns
in the image. However, unlike standard solutions, the robot direction will be
computed online by extracting the so-called SURF flow, i.e. motion information
from SURF robust descriptors of consecutive frames of image sequences provided
by the robot camera. This knowledge will be the only one needed to close the
control loop, and to achieve the desired straight forward movement.

Otical flow is a measure closely related with motion field [1], i.e. the projec-
tion of 3-D relative velocity vectors of the scene points onto the 2-D image plane.
During a frontal displacement, motion field shows a radial configuration: vectors
radiate from a common origin, the Vanishing Point (VP) of the translation di-
rection. In particular, forward displacements generate vectors point away from
this point, named Focus Of Expansion (FOE), else it is named Focus Of Con-

traction (FOC). It is proposed in this work to achieve straight forward control
for mobile robots by maintaining the FOE in the center of the SURF flow.

The remaining work is organized as follows: the state of the art about robot
navigation using optical flow is introduced in Section 2. Section 3 describes the
solution proposed for the straight forward robot motion. In Section 4, experi-
ments are described and results are discussed. Finally, possible improvements
and further reserarch lines are listed in Section 5.

2 Related work

Biological principles of insect vision [7, 11] have inspired vision-based solutions
in robot navigation for obstacle avoidance. Insects extract qualitative 3-D infor-
mation using image motion to avoid obstacles. Vision-based control techniques
try to balance the optical flow divergences betwen eyes/sides of the image. In [8],
an approach from ecological psychology was presented to avoid obstacles based
on the visual field with the lowest time to contact. As indicated in [6], qualita-
tive measures of flow field divergence are a reliable indicator of the presence of
obstacles. In the same way, it has been proposed [10] and demonstrated [9] that
humans use optical flow to perceive translational direction of self-motion: radial
patterns generated by the optical flow during frontal movement guide human
locomotion.

Besides qualitative information, motion field can provide more accurate mea-
surements. It is possible to estimate the relative motion between camera and
scene, i.e. egomotion, by considering some hard assumptions. In [2], constraints
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are met and optical flow is used as an approximation of motion field to com-
pute translational and angular velocities of a car. Egomotion can also be used
to localize the robot in the environment. In [4, 5], the navigation task is divided
in three phases: localization, path finding, and path execution. Optical flow is
used to correct localization. In [4], odometry computed from wheel encoders is
improved with an inaccurate egomotion, computing vehicle speed from optical
flow. In [5], better results are presented from visual odometry, and localization
is made only using egomotion. However, for path execution, our goal, global
localization is a hard task to be avoided. Hence, a system is described in [3]
allowing a wheeled robot to drive through the center of a corridor by controlling
the steering angle. Robot navigates aligning the camera to the wall, at a certain
distance, only using a rigidly mounted camera.

Using steering angle as control signal, a novel method will be proposed to
detect translational direction without global localization (egomotion) or rela-
tive references (landmarks or a wall). Mimicking the human use of optical flow,
steering angle will be calculated from radial patterns around the vanishing point
(FOE in our case) that optical flow generates during translational movements.
Several works exist where FOE is located from optical flow, but none of them
use it as a feedback signal to correct robot navigation. For pure translation
displacements, FOE calculation is completely described in [1]. Else, when the
rotational component is non-zero, optical flow vectors will not intersect on FOE.
However, it is the most trivial method to compute FOE, as it was pointed out in
[14], where FOE is computed for locomotion control using an Artificial Neural
Network, but it was never implemented for this goal. A simple method to solve
rotations was introduced in [13] by discounting arbitrary rotations and applying
the method for pure translation. However, it is claimed in [12] that navigation
methods using optical flow are usually based on unrealistic assumptions about
the scene, and unrealistic expectations about the capabilities of motion estima-
tion techniques. Better results could be obtained by directly determining general
qualitative properties of the motion structure (FOE computation), instead of a
precise analysis of rotational parameters.

3 Robot Navigation Control

A method to control the path execution during the navigation of mobile robots
is introduced. A closed loop is implemented to control straight forward dis-
placements, with feedback signal extracted from robot camera images. Proposed
procedure is composed by three steps: firstly, motion information is extracted
from consecutive frames through SURF flow computation. Next, instantaneous
direction of translation is computed by finding the Focus Of Expansion (FOE)
from SURF flow vectors. Finally, control loop is closed, maintaining constant
the direction of translation. Hence, straight forward displacements are ensured
without the use of egomotion, odometry information is omitted, robot localiza-
tiont is avoided, and computational resources are dedicated to achieve reliable
orientation measurements for the control module.
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Procedure 1 Vision-based navigation control at instant k

Input: Current image Ik from the camera (Fig. 1(b)), number of frames taken during
a robot step h, horizontal camera resolution resx, horizontal opening angle oax and
set point in pixels spp

x = resx/2
Output: Steering angle: eo

xk

1: loop

2: Compute SURF descriptors and keypoint locations: Pk

3: Find correspondences between Pk and Pk−1: Mk

4: Compute intersections of motion vectors Mk: Ck

5: Estimate Vanishing Point from highest density region in Ck: (V Pxk
, V Pyk

)
6: Apply temporal filter using h last V P : AVPk = 1

h+1

Pk

i=k−h
VPi

7: Compute horizontal error in pixels: ep
xk

= AV Pxk
− spp

x

8: Transform error ep
xk

to angles: eo
xk

= ep
xk

(oax/resx)
9: end loop

(a) (b)

Fig. 1. (a) Error signal depends on distance from the center of the image to the VP (b)
Average Vanishing Point computation. Red-top point represents the current vanishing
point (VPk), and blue-centred point is the averaged one (AVPk).

3.1 Feedback Control

To achieving a straight forward displacement, the robot motion target will be
to hold the same orientation during all the path execution. From the camera
point of view, this target is similar to hold the vanishing point in the center of
the image (Fig. 1(a)). The error signal to close the loop will be calculated from
video signal feedback, by computing distance between VP and the actual center
of the image. Since the control variable will be the steering angle, only horizontal
component of distance will be used to define it.

3.2 Vanishing Point

During frontal displacements, motion field displays a radial vector configuration
around a common origin, the vanishing point of the translation direction. Motion
field is not a directly accessible measure, but it is closely related with optical
flow, under certain circumstances [2]: (1) robot moves on a flat ground, with
(2) on-board camera translating in parallel to the ground and (3) its angular
velocity is perpendicular to the ground plane. For general robots like that used
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in this work, nevertheless, constraints do not meet. The Sony Aibo robot is a
quadruped robot with a camera on its “nose”. Thus, image sequence are more
instable than those provided by a wheeled vehicle, with a camera mounted rigidly
on its structure. Image instability is due to neck joints, causing head vibrations
transmitted to the camera, and specially, for robot walking. Legged robot steps
produce very different movements than wheeled robot displacements, usually
smoother than Sony Aibo gait. Walk behaviour in our experiments generates
vertical and left-right pendular movements, i.e. camera suffers simultaneous roll
and pitch rotations. Only the first assumption could be fulfilled in this case.

The hardest assumption of our approach is made at this point. Since Aibo
robot gait is symmetric and periodic, restrictions two and three can be assumed
as satisfied ‘in average’ and they will be extrapoled, during robot displacements,
for instantaneous translation. Therefore, Sony Aibo gait deviations will be con-
sidered like shocks and vibrations which the controller will correct. As shown in
Section 4, our qualitative approach is enough to control the desired legged robot
navigation. A temporal filter is performed to compute VPs as averaged during
robot gait. The Averaged Vanishing Point (AVP), described in Algorithm 1, is
the point from which is computed the steering control.

As it was pointed out, calculated optical flow vectors do not converge to
an unique point (FOE), even when assumptions are met. Hence, VP has been
extracted by clustering intersections, since they form a cloud around VP.

3.3 SURF Flow

SURF flow is defined as 2-D displacements of SURF patterns in the image, where
SURF is referred to Speeded Up Robust Features [17]. It is the field resulting
from correspondences between SURF keypoints from consecutive frames in a
video sequence. Unlike optical flow or the more similar SIFT flow [19], SURF
flow is not a dense flow. It is only performed between high confidence keypoints in
the image, selected by using a multi-scale Hessian detector to find image corners.
SURF flow computation is faster than SIFT flow, since correspondences are only
searched for a few hundreds of keypoints in each image (depending on the image
texture), and corner detection and SURF description are computed using Haar
wavelets on the integral image representation. Result of this correspondence is
shown in Fig. 2(a) and Fig. 2(b).

Moreover, an image correspondence post-processing is applied in order to
achieve better VP computation. This refinement, shown in Fig. 2(c), takes place
once SURF flow is extracted and an estimation of VP is computed (see Section
3.2). It consists on search for better correspondences for each keypoint in current
image, looking for similar SURF descriptors in a restricted area of previous
image. This search area is defined by the triangle ABC, where vertex A is the
keypoint in current image, the middle point of edge BC is the estimated VP

and angle B̂AC defines the search range. Once correspondences are refined, VP
is computed again, using the same process described above.

Method effectiveness depends, as usual, on assuming that keypoints are found
in images, i.e. a textured environment exists. In fact, typical human-hand scenes
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(a) (b) (c)

Fig. 2. (a) Keypoint correspondences between consecutive images (b) Motion vectors

in the newest image (c) Refined motion vectors with the correspondent vanishing point.

have enough corners for achieve SURF flow performance. On the other hand,
SURF flow is robust to optical flow methods’ limitations [20]: brightness con-
stancy, temporal persistence or “small movements”, and spatial coherence.

4 Results and Discussion

Results presented in this work are obtained using a Sony Aibo ERS-7 robot
wirelessly communicated with a standard dual-core PC. Experiments are per-
formed using the robot for environment interaction and the computer for hard
computation processing. Path execution has been divided in reactive collision
avoidance and straight forward control. Obstacle avoidance procedure is per-
formed on-board, as a reactive behaviour using the robot infrared sensor, and
computation to go straight forward is executed in the external computer. Sony
Aibo camera captures the image and it is sent to the PC every 100ms, through
wireless connection. Application running on the computer, first of all, extracts
SURF flow from consecutive frames; then, the VP of the translation direction
and the steering angle are computed; and finally, walking direction is sent to
Sony Aibo. Gait behaviour for the robot is based on the Tekkotsu software1.

Experiments are performed in an artificial grass surface of about 4m2, con-
taining two crossing corridors. It is a natural scenario without artificial land-
marks and small variability of the light level. To allow a future development in
unstructured environments, corridor walls are wallpapered with pictures of real
halls and corridor walls; providing enough textures to the system to ensure the
correct performance of image processing algorithms. Used image resolution is
208× 159 pixels.

In order to achieve qualitative results of the system performance in different
relative positions between the robot and walls, 8 representative starting positions
and orientations are chosen around the scenario, equally distributed, and 5 trials

1 http://www.tekkotsu.org/
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Fig. 3. Navigation sequence in open loop control.

Fig. 4. Navigation sequence, with straight forward control.

are launched for each one. Results show the difference between non-controlled
straight forward behaviour and the controlled one. In open loop control, due
to their mechanical characteristics, robot walks drawing a curve (Fig. 3). When
feedback control is applied, Sony Aibo robot goes successfully straight forward
(Fig. 4), correcting faulty displacements and performing the desired behaviour.

Some problems with wireless connection are observed, and sometimes image
is not sent at time from robot to computer. When it occurs in consecutive images,
it produces large oscillations, which can be corrected or not, depending on the
number of frames lost. If problem persist, it can produce uncontrolled behaviours.
A precise study about the maximum number of lost images supported should
be completed depending on the last order sent by the computer, which will be
repeated during all the non-informed period.

5 Conclusions and Future Work

In this work it is proposed a biological inspired vision-based navigation con-
trol to walk straight forward in a reliable way. Moreover, implementation is ex-
portable to other robotic platforms with different configurations. Results shown
that objectives introduced in this work have been accomplished without the use
of artificial landmarks, taking into account some assumptions about the robot
movement. Since Aibo’s camera suffers simultaneous roll and pitch rotations
during the robot gait, future work will avoid the hardest assumption proposed.
The robot will correct its trajectory using motor information.

Moreover, shocks and vibrations suffered by the camera will be compensated
by tacking in account robot configuration. Future work will be an improving of
the system presented in this work, to be used in legged robots. In [2], motion
field is formulated supposing an error component due to shocks and vibrations.
Nevertheless, motion field error in x and y axis are roughly estimated. At this
point, we are in an advantageous position, because it is assumed that our shocks
and vibrations are movements resulting to the quadruped robot gait, and these
movements are possible to be modelled through direct kinematics. Other im-
provements include decreassing sampling rate and the duration of actions.
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