

Biologically Inspired Path Execution Using SURF Flow in Robot Navigation

Xavier Perez-Sala, Cecilio Angulo, Sergio Escalera

Overview

- General path execution control
- Straight forward
- Only using: Camera images
- Without: Artificial landmarks, egomotion

- Consecutive frames

 Motion information
- Successfully tested on Sony Aibo

Motivation

Motivation

Robot navigation

Path planning

Path execution

Unexpected behaviour

Path execution control is needed!

Biological inspiration

Biology

Insects: Qualitative 3-D information using image motion to avoid obstacles

 Humans: Perception of translational direction of self-motion from optical flow patterns

Mobile Robotics

 Balance the optical flow divergences between eyes/sides of the image

This work!

Navigation Control (I)

- Motion information from consecutive frames (SURF flow)
- 2. Instantaneous direction of translation (VP)
- 3. Maintain constant the direction (control goal)

Navigation Control (II)

- a) Feedback control
- b) Vanishing Point
- c) SURF flow

Feedback Control

- a) Feedback control
- b) Vanishing Point
- c) SURF flow

Feedback Control

- Straight forward displacement
- Goal: Maintain the same orientation
- Error: Image centre Robot direction

Vanishing Point

- a) Feedback control
- b) Vanishing Point
- c) SURF flow

Vanishing Point (I)

Motion field:

Projection of 3-D relative velocity vectors of the scene points onto the 2-D image plane

Frontal displacement:

Vectors radiate from a common origin: Vanishing Point (VP) – Focus Of Expansion (FOE)

Vanishing Point (II)

Optical flow:

2-D displacements of brightness patterns in the image

Optical flow = Motion field?

Vanishing Point (IV)

Restrictions:

- a) Robot moves on a flat ground
- b) Camera translation parallel to the ground
- c) Angular velocity perpendicular to the ground plane

Robot: Sony Aibo

Vanishing Point (V)

- Aibo gait: shocks and vibrations
- Assumption: Restrictions satisfied in average

Vanishing Point (VI)

SURF Flow

- a) Feedback control
- b) Vanishing Point
- c) SURF flow

SURF Flow(I)

Optical flow restrictions:

- Brightness constancy
- Temporal persistence
- Spatial coherence

SURF Flow(II)

- 1. Corner detection
- 2. SURF description & selection
- 3. Correspondences
- 4. Vector intersections
- 5. Vanishing Point

Experiments

- Robot: Sony Aibo ERS-7
- PC robot processing (wireless)
- Sampling time: 100ms

Path execution

Collision avoidance

Straight forward control

Results (I)

Results (II)

Conclusions

- Only camera images are used
- Biologically inspired navigation
- Without artificial landmarks or egomotion
- Exportable system
- Problems with wireless connection

Future work

- Wheeled robots
- Correct robot trajectory using motor information
- Take in account robot information
- Sampling rate decreasing

Technical Research Centre Thanks for your attention
Autonomous Living

Questions?