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ABSTRACT

Hand pose recognition is a hard problem due to the inherent structure complexity of the hand, that

can show a great variety of dynamic con�gurations and self occlusions. Some traditional approaches

tackle this problem using RGB image information, which translates into a extremely hard problem

given the ambiguities that arise from this representation. Depth sensor devices, namely the Kinect,

have opened a new perspective for this problem since it deals with the 3D information of the object of

interest, potentiating more robust and accurate approaches. In this work it is proposed a new light-

weight spherical 3D descriptor model that encodes the information provided by the depth data sensor.

The descriptor has been integrated in a selective hand data capture and classi�cation pipeline capable

of real-time hand pose recognition and successfully integrated with Oblong's pose recognition framework.

Keywords: hand pose recognition, gesture, real-time, depth camera, spherical shape descriptor,

support vector machines
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Chapter 1

Introduction

This master thesis was originated by the �nal graduation project of the Computer Vision Master

and Arti�cial Intelligence Master organized by the Computer Vision Centre (CVC) Research Group of

the Autonomous University of Barcelona. The project resulted from a collaboration of the CVC with

Oblong Industries 1, a renowned company widely known for their state-of-art hand gesture recognition

systems tailored for rich Human-Computer Interaction (HCI).

This chapter introduces some more aspects of the hand pose recognition problem. Moreover Sec-

tion 1.1 discusses the problem description followed by research goal on Section 1.2. Lastly, it is provided

the research method and outline of the overall thesis.

1.1 Problem Overview

In the recent years a great interest and progress in HCI, tailoring to create easier and more intuitive

interfaces based in our innate communication skills have been performed, improving the overall user

experience. When considering vision-based interfaces and interaction tools, among other body parts,

the hand is the most e�ective general-purpose tool to perform non-contact interactions, due to its dex-

terity, both for communication and manipulation, enabling cursor control, rich navigation interfaces and

dynamic set of gesture language. However, hand pose recognition represents a very hard task, associated

to the natural complexity of the human hand structure and the high number possible con�gurations

associated to its 26 degrees of freedom (DOF) [1] (Figure 1.1).

The main di�culties, according to [1], that surround a hand pose recognition system design include:

• High dimensionality problem: the hand is an highly articulated object with a high variability due

to its great number of DOF. However, a human hand cannot express its theoretical number of

1http://oblong.com/
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: Hand Skeletal Model.

DOF, due to the interdependency constraints, it is not possible to use less than 6 dimension to

model it.

• Self-occlusions: being the hand an articulated object, naturally some poses create occlusions that

make harder to extract high level characterizing features.

• Uncontrolled environments: one of the major di�culties associated to an HCI system is the

associated requirement of operating in non-controlled environments, such as, di�erent backgrounds

and broad range of lighting conditions.

• Hand motion velocity: human hand possesses a high motion and wrist rotation capabilities. This

aspect combined introduces di�culties in the hand tracking and pose identi�cation, even using

depth devices capable of 30Hz frame rates, mainly because of the processing overhead imposed by

algorithm. This implies that consecutive image depth frames become very uncorrelated when the

hand motion speed increases.

Pose recognition, since the initial steps of Computer Vision, has sparkled a great interest on re-

searchers, due to its potential applications on HCI, greatly enhancing user experience enabling the

creation of command and control interfaces [2]. Object manipulation interfaces have attracted the in-

terest of researchers, one of the seminal works in this area is the "Put-that-there" project from the MIT

media labs [3], that enabled a user, via gesture recognition and speech commands, to control virtual

elements over a canvas, allowing hand pointing functionality, selection and manipulation (Figure 1.2).

The pointing functionality was obtained by means of a magnetic �eld, accordingly to the article [2].

It used two electronical devices: one acting as a transmitter and a second device working as a sensor.

The transmitter radiates a magnetic �eld pointed at the sensor. When the pointing vector is correct,

the strength of the received �eld is constant. When it is not, there will be an error signal consisting of

the mutation frequency. This error is used to generate the output pointing angles, and to re-aim the
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Figure 1.2: Put-that-there interaction system (1980).

transmitter.

Besides this major break-through, this system had the major drawback of limiting the mobility of

the user, since the interaction was closely attached with the before mentioned magnetic sensors, plus

the pointing functionality was not very precise. From today's standards this system may seem obsolete,

but taking in account that was designed in 1980, when the computing power was no way near to what

we have today, and computer graphics were on its beginnings, it is clear that these initial results were

impressive.

Until recently, some of the best commercial hand pose recognition systems relied on glove based

solutions [4], where one of the original projects in this �eld was carried out in MIT Media Labs, with

the Led Glove and the Data Glove from VPL Research (Figure 1.3).

Currently Oblong Industries [5] has revolutionized this initial concept, taking it even further, creating

a 3D hand gesture operating system, that enables the creation of rich HCI applications capable of

millimetre precision pointing, virtual object manipulation, and navigation, handling massive amounts

of data in real-time, in a totally distributed environment, or like it's creators prefer to call it - a spatial

operating environment (Figure 1.4).

This system relies in a Motion Capture (MoCap) technology [6], usually used for full body tracking

and virtual characters animation. In this case is used in a specially customized environment for hand pose

recognition, using the marker gloves. The system relies on multiple Vicon [7] cameras (Figure 1.4(c)),

that track both hand's position, and according to it's con�guration pose, determined by infra-red tags

placed on the �ngertips, computes the hand pose.
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Figure 1.3: VPL Data Glove (1987).

More recently with appearance of depth sensors such as the KinectTM(Figure 1.5), at an a�ordable

price, a new spectrum of approaches were opened since it provided a new source of information that

dealt more closely with the 3D nature of the objects of interest. This way it is now feasible to extract 3D

information from the hand pose using a gloveless input source, and from then on, analyse and estimate

the observed pose.

Computer hand gesture interaction opens a wide range of possibilities for innovative applications,

since it provides a natural and intuitive language paradigm to interact with computer virtual objects,

inspired in how humans interact with real-world objects. However, hand pose recognition imposes a

extremely di�cult problem, due to the highly dynamic range of con�gurations the hand can show,

associated to the limitations of traditional approaches based solely on RGB data, since the 3D in-

formation of the scene is lost in its image representation. When depth sensors, namely the low-cost

Microsoft R© KinectTM device, appeared in the market, a new perspective for these problems was open

to be explored. One of the main features of this device consists in the capability of obtaining an aligned

representation of depth and colour images, usually labelled as RGBD (RGB+Depth) data, at a pace of

30 fps (frames per second).

Basically the KinectTM device it is based on the structured light technology, projecting an codi-

�ed/structured matrix of points (Figure 1.6) of 300.000 points to the environment. The device consists

on an infrared laser emiter, and infared camera and a RGB camera. The laser emitter projects a beam

that is split by a di�raction grating, creating a constant dot pattern, then projected into the scene.

The receiver then correlates the pattern observed with a reference pattern, that is stored in the device's

memory and was obtained from a captured plane at a known distance from the sensor. This way, when

a dot is project on an object positioned at a distance smaller or grater than the reference plane, the

position of the dot in the infrared image is then shifted to the direction of the baseline between the laser

projector and the perspective centre of the infrared camera. These shifts are correlated for all projected
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(a) Multiple user gesture interaction. (b) Marker gloves.

(c) Vicon camera. (d) Close proximity gesture interaction.

Figure 1.4: Oblong HCI System.

dots creating a disparity matrix, from which, the real distance to the object can the be computed.

Further details about Kinect underlying mathematical model can be found in [8].

Besides the KinectTM device, there are other devices that include similar features such as, the Asus

Xtion ProTM, which was released in 2010. This technology was developed and patented by Primesense

[9, 10]. Commonly, this devices o�er multi-modal capabilities combining RGBD + audio information,

opening an even extensive functionalities, consolidating this �eld of research. Both devices o�er similar

features and capabilities. However, since the KinectTM appeared �rst on the market, it is more widely

supported by the Open Source community, o�ering better set of drivers across a wide range of supported

operating systems.

In order to take the most of this technology several frameworks are available to developers, in a

steady stream of API's and tools, providing a wider scope of applications that can be designed with

depth sensor devices. In December 2010 OpenNI [11] released its own framework stack, comprising
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Figure 1.5: Kinect Depth Sensor.

Figure 1.6: Structured light pattern.

open source drivers and motion tracking middleware for PCs running Windows, Ubuntu and MacOSX.

In June 2011 Microsoft R© released a non-commercial KinectTM software development kit (SDK) for

windows, including WindowsTM compatible drivers. As a natural consequence of the data representation

provided by depth sensors in general, new libraries that process depth maps were developed, such as

the Point Cloud Library (PCL) [12, 13], that underlying its core includes renowned libraries such as

the Eigen[14] C++ template library for linear algebra and LibBoost [15] C++ general purpose portable

source library, and obviously the OpenNI library, making PCL a very suitable development canvas, to

create KinectTM based applications.

1.2 Project Goals

The project goals are condensed in the following general statement:

Create a robust gloveless hand pose recognition system, depth sensor based, capable of

real-time performance to enhance HCI.
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(a) Structured light pattern (b) Depth image (c) Point cloud

Figure 1.7: Depth Sensor Imaging.

To accomplish this general objective the following tasks must be accomplished:

• Create a hand detector based on depth sensor, to capture train and testing data.

• Collect a rich and broad hand pose dataset to train the overall system.

• De�ne a volumetric shape model descriptor, that takes the best use of the 3D data provided by

the depth sensor, and capable of real-time processing.

• Create an end-to-end pipeline, using the previously de�ned tools, capable of real-time hand pose

recognition.

• Integrate the developed system with Oblong's framework.

1.3 Research Method and Outline

In order to solve the previously de�ned goals and ultimately achieve create a viable solution to the

stated problem, the following steps are taken:

• Perform a literature study on relevant concepts: Firstly a study on exiting literature on general

Pose Recognition techniques must me performed, with special emphasis in those that can be trans-

posed to the hand pose recognition problem. This should also take into account the performance

of the algorithm in terms of recognition accuracy, training requirements and execution time. This

aspects are presented in Chapter 2.

• Expose the solution's general architecture and its several components namely:

� Hand tracking application: since this is the starting element of the solution's pipeline, it is

crucial to de�ne a set of methods capable of correctly segment both hands from the captured

depth image provided by the KinectTM device.
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� De�ne a broad hand pose dataset, with a rich set of poses, to perform the system training.

� De�ne a hand description algorithm, that takes full advantage from the 3D information

provided by the depth sensor. The design should also take into account the descriptor's

performance since the �nal application must be able to process data in a real-time fashion.

� Perform the system's training with the collected data.

� Establish a global end-to-end pipeline, that using the before mentioned components, is ca-

pable of real-time hand pose recognition, using a live-feed from the depth sensor.

All these aspects are fully explained in Chapter 3.

• Analyse the results obtained from the overall system design, assessing which is the best con�gu-

ration setup, both performance and accuracy wise. These topics are exposed in Chapter 4.

• Establish some conclusions about the selected approaches, assessing if the obtained results have

met requirements initially de�ned. Lastly plan some lines of future work to overcome the possible

drawbacks of the system's design. This analysis is de�ned in Chapter 5.



Chapter 2

Related Work

In Section 1.1 are referenced, in a thirty years evolution time-frame, some HCI applications that have

used successfully hand pose recognition techniques. However all the mentioned approaches in order to

perform the pose recognition, rely either on external devices that limit the users mobility, or on marker

glove solutions, which limits the �eld of application. This clearly implies that more requirements are

imposed on the application's working environment, and this represents to some extent, a considerable

drawback.

Other �elds of research tried to tackle the pose recognition problem by using solely standard RGB

cameras [16, 17, 18, 19] with a relative success. However, it is important to point out, that these

approaches overall performance depend heavily on how well the environment is controlled, in terms of

lighting conditions, position of the user in respect to the camera and background complexity. Plus,

these techniques are only capable of recognizing a very limited set of hand poses, due to the di�culties

imposed by the hand itself, like it was discussed in Chapter 1. Nonetheless, these techniques can be

useful for some applications, but for what HCI is concerned, these serious limitations make it infeasible

in practice.

Given the problem's complexity, in the past years, several works focused in circumventing some of

the di�culties by using another technological approach, by the means of Time-of-Flight range cameras

[20, 21, 22]. However other technologies are available to capture depth maps from the environment

(Figure 2.1) which includes the structured light system of Microsoft R©KinectTM.

The appearance of depth sensors like the KinectTMhave revolutionized the type of approaches that

can be considered for the pose recognition problem in general, since the RGBD data provides the

missing link for this problem - 3D geometric information of the interest object - removing the object's

pose ambiguities that arise on the conventional RGB approaches.

Some techniques have also greatly bene�ted from the RGBD representation such as the reconstruction

of dense surfaces and 3D object detection [23], augmented reality [24], improved descriptors for object

recognition [25, 26], SLAM [27], and obviously human behavior analysis and pose recognition.

9
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Figure 2.1: Structured light technologies.

An excellent overview about some of these technologies and techniques can be found in [28].

One of the most important contributions to pose recognition of the human body was provided by

Microsoft R© Research Team [29], proposing a method to quickly and accurately predict 3D positions of

body joints from a single depth image (Figure 2.2). Due to the complexity of the task, they have designed

intermediate body parts representation, converting the problem into a simple per-pixel classi�cation,

using Random Decision Forest (RDF) [30]. To train the system it was used a synthetic dataset composed

of 1 million images. The �nal testing results of the system achieve high accuracy with a high performance,

achieving 200 frames per second (fps). However it requires a huge number samples and the computing

time required to train the overall system (24 hours on a 1000 core cluster) has to be taken into account.

Figure 2.2: Body part recognition.

The idea previously mentioned was then extended to the hand pose recognition problem [31], using

a synthetic pixel labelled dataset with 20.000 samples to train the system. They have also compared

the accuracy results of RDF classi�er versus a Support Vector Machine (SVM), showing that the later

provided better results with approximately the same computational time (Figure 2.3).

Other lines of research also take advantage of the representation capabilities provided by depth
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(a) Synthetic hand model (b) Hand joints classi�cation

Figure 2.3: Hand pose.

image, however taking a slightly di�erent approach. In [32], developed by Oblong Industries, three set

of features are used in order to identify and characterize segment hand patches. The �rst feature set

performs a global image statistics like the percentage of pixels that is covered by the blob contour,

number of �ngertips detected, the mean angle from the blob's centroid to those �ngertips. A second

descriptor is built from the number of pixels covered by every possible rectangle contained in the blob's

bounding box and then normalized by its total size (Figure 2.4). A third feature set uses a similar grid

as the second set however, instead of analysing the coverage within di�erent rectangles, it is composed

from the di�erence between the mean depth for each pair of individual cells (Figure 2.4). Finally a forth

feature set is built by simply combining all of the features from the initial three sets.

Figure 2.4: Statistical feature descriptor.

A total di�erent approach is taken by [33] where it was considered a cylindrical shape model descrip-

tor (Figure 2.5), that takes into account the geometric properties of the hand. This approach has the

advantage that it can be trained considering the global hand shape samples without requiring further

labelling. Nonetheless it still provides some fairly good accuracy results in recognizing the hand pose.
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Figure 2.5: Cylinder shape model descriptor.

Like other approaches has some drawbacks, specially due to the way the descriptor was built, consid-

ering cylindrical sub-layers, which implies that for some similar poses, is not discriminative enough, as

the results con�rm. However it provides some ideas that can be explored in order to solve this problem,

as it will be explained in Chapter 3.

Given the classical pipeline of hand pose recognition: detection, description and classi�cation, it

is clear that the main bottleneck to achieve a successful pose recognition heavily depends on the es-

tablishment of a highly discriminative descriptor with a low computational overhead. Although some

new 3D descriptor have been developed, that complement the before mentioned (plus the Point Feature

Histogram (PFH) among other available on the PCL, most of them based on the 3D gradient orientation

distribution) the design of a new descriptor is necessary. Due to this fact, one of the main contributions

of this work is the proposal of a new generic shape descriptor, fast to compute and highly discriminative,

that can be used in conjunction with any state-of-art classi�er like Adaboost, SVM or RDF.



Chapter 3

System Design

The developed system in order to accomplish the goals proposed in Section 1.2 is here explained in

depth, and all of its components. A fully modular structure was followed, in order to make the system

more customizable, manageable and adaptable to di�erent set-ups and con�gurations.

3.1 System Overview

This section provides a major overview of the system's composition. It is built by three major

modules namely, hand tracking and segmentation, hand point cloud description using the novel Spherical

Blurred Shape Model Descriptor (SBSMD), and classi�cation using Support Vector Machine library

(libSVM). The system was trained with hand pose dataset specially crafted for this work, comprising

over 12000 samples of hand poses, with high intra-class variability in terms of hand orientation.

Figure 3.1: System architecture.

13
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3.2 Hand Tracker

In order to achieve some a good overall pipeline recognition performance it is crucial to perform a

reliable point cloud hand segmentation. The KinectTMhas the capability to capture depth data from

50cm to 3.5m. However, in the case of the hand, since it is a very small object, it is unreliable to identify

its pose at a great distance since in this case the number of captured hand cloud points would be very

small. Some approaches de�ne a threshold zone distance where the object of interest is searched. In this

approach, the criteria followed is the minimum number of point that surround the closest point towards

the depth camera.

In a nutshell, the algorithm can be explained by the following way: �rst we try to �nd the closest

point to sensor. Then from that point, perform a radius search of 10cm over the nearby points, if we

have less than 100 points, probably we are observing noise. Otherwise we compute the centroid of these

points, and with this we have found the �rst hand. Now we repeat the previous mentioned procedure

to try to �nd the second hand under the following restrictions: the distance to camera must be within

30 cm of the �rst hand's closest distance and must more than 20 cm from the centroid of the �rst hand.

An example of the hand tracker is provided in Figure 3.2.

Figure 3.2: Hand Tracker.

3.3 Dataset De�nition

The development of this work requires of a broad hand pose dataset, with perfectly segmented hand

samples, and ultimately, based on the PCL library. Since currently this kind of dataset is not currently
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available for the research community, it was required to build one that ful�ls the requirements previously

mentioned.

This task was greatly simpli�ed by the tool referred on Section 3.2, that simultaneously detects,

both hand point cloud blobs. So this tool was modi�ed in order to disk store these samples.

The dataset comprises 6 hand pose classes, each one containing the pose of both hands, and high

hand orientation variability, so the system can be trained in a highly robust fashion. A class containing

non-pose elements, was also added to the dataset, it is formed by non-hand captured elements that are

observed by the hand tracker. In Figure 3.3 some real point cloud samples of the dataset are presented.

3.4 Descriptor De�nition

In this section it is proposed a novel shape model descriptor that can fully express the 3D character-

istics of the described objects. It can be considered an extension of the Blurred Shape Model Descriptor

described in [34], it de�nes a correlogram structure from the center of the object region, spatial ar-

rangement of object parts is shared among regions de�ned by circles and sections the method codi�es

the spatial arrangement of object characteristics based on a prior blurring degree, which determines the

shape deformation allowed to the object. Regions in a correlogram are used to vote object characteristics

from neighbour regions. Contiguous regions share information about their containing object points, and

thus, the descriptor is tolerant to irregular deformations.

Given the contours of an element represented in an image, the descriptor for each dot of the image

contour, computes assigns a weight to a section of the correlogram where the dot is contained, propagating

this weight to the closest neighbour sections, using a proportionally inverse relation in respect of the

distance, of the considered dot to the centroids of the referred section (Figure 3.4).

This algorithm initially designed for images was extended, in order to enable the description of

3D point clouds. Instead of considering a circular correlogram surrounding the object of interest, it

is considered a spherical correlogram, whose center is established in the point clouds centroid. In

a nutshell this novel designed descriptor, de�nes a partition of the object of interest, in 3D spatial

arrangement that divides it according to a series of concentric spheres and by sections, which are obtained

by performing radial cuts across spheres (Figure 3.5). Each of these sections has an associated weight,

that is incremented by one unit, for each cloud point P that is contained in that section SP . This same

point, propagates a weight to the surrounding 26 neighbour sections NP
i : 1 ≤ i ≤ 26, that is inversely

proportional to the distance, between the SP and NP
i . By performing this, we enable the sharing of

information between neighbour section, and making the descriptor more tolerant to hand deformations.

A rigorous presentation of the SBSM descriptor method is provided in Algorithm 1.
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Algorithm 1: Spherical Blurred Shape Model Descriptor

input : a point cloud P = {pi | pi ∈ R3}, point cloud centroid Pcentroid, number radial layers
NL, number of θ angular divisions Nθ, number of φ angular divisions Nφ, sphere radius:
SRadius

output: Feature vector W of dimension NL ×Nθ ×Nφ

De�ne: SR = SRadius/NL as the distance between consecutive layers, Sθ = 2π/Nθ, and
Sφ = 2π/Nφ the degrees in θ and φ polar coordinates components respectively, between
consecutive sectors.

De�ne: Point cloud centroid, Pcentroid =
∑#P

i=0
Pi

#P

De�ne: P ∗ = P − Pcentroid, which now de�nes the center of coordinates as the cloud centroid.

De�ne: The set of bins B, for the spherical description of P ∗

B = {b{0,0,0}, b{1,0,0}, b{2,0,0}, . . . , b{SR,1,0}, b{SR,2,0}, . . . , b{SR,Sθ,1}, b{SR,Sθ,2}, . . . , b{SR,Sθ,Sφ}} as
the ordered set of bins for the spherical description of P , where b{pR,pθ,pφ} is the bin of B,
between distance [pRSR, (pR + 1)SR[, [pθSθ, (pθ + 1)Sθ[, and [pφSφ, (pφ + 1)Sφ[. This way B
de�nes a partition in R3 of the object of interest.

De�ne: b∗{i,j,k} = (iSR + 1
2SR, jSθ +

1
2Sθ, jSφ + 1

2Sφ) the centroid of the section b{i,j,k}

De�ne: N(b{i,j,k}) as the neighbours of the section b{i,j,k} (Figure 3.5(b)).

Initialize: Wn = 0, n ∈ {1, . . . , NLNφNφ} as the weights associated to each one of the elements
of B.

foreach pn ∈ P ∗ do
bx : bx ∈ B and pn ⊂ bx

W (bx) = 1
foreach bi,j,k ∈ N(bx) do

di,j,k = d(bi,j,k, pn) = ||pn − b∗x||
W (bi,j,k) = W (bi,j,k) +

1
di,j,k

end

end

Normalize the vector W as follows:

Wi

#P , i ∈ {1, . . . , NLNφNφ}
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3.5 Classi�cation

The classi�cation phase is a crucial step of the overall system's performance, so it is mandatory �ne

tune its underlying parameters correctly, both the descriptor and classi�er.At a �rst level, it is extremely

important to assess the SBSM descriptor parameters, namely the number of required spheres (layers),

and the number of angular divisions, since this has considerable implications on both the descriptor's

discriminative capacity, and also in the runtime performance, since the �nal designed system must be

able of real-time performance. In a second level, the classi�ers performance depends heavily on the

correct adjustment of its de�ning parameters.

At a �rst step, using the SBSM descriptor, we collected feature vectors for the following parameter

combinations, namely NL = {2, 4, 8} and Nθ = Nφ = {2, 4, 8, 16}, using 70% of each dataset class for

training. selecting the samples randomly at each execution. In this phase the SVM classi�er was used,

more precisely libSVM [35] implementation. The assessment of the most adequate SVM con�guration,

was performed by using libSVM tools which are specially tailored for parameter selection of the C-SVM

classi�cation using the RBF (radial basis function) kernel. We use a 5-fold cross validation technique to

estimate the accuracy of each parameter combination, namely cost and gamma.

The results achieved for each of the descriptors con�gurations are discussed in Chapter 4.
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(a) Open hand
pose (left).

(b) Open hand
pose (right).

(c) Pointer pose
(left)

(d) Pointer pose
(right).

(e) Close hand pose
(left).

(f) Close hand pose
(right).

(g) Stop hand pose
(left).

(h) Stop hand pose
(right).

(i) Zoom pose
(left).

(j) Zoom pose
(right).

(k) Victory pose
(left).

(l) Victory pose
(right).

Figure 3.3: Dataset de�nition.
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(a) (b) (c) (d)

Figure 3.4: Circular blurred shape model descriptor.

(a) Descriptor example using 4
spheres

(b) Example of 6 of the 26 (33 − 1)
section neighbours of the central ref-
erence section.

Figure 3.5: Descriptor components illustration.



Chapter 4

Results

In this chapter we analyse some of the achieved results, trying to evaluate one of the focal points

of the whole system pipeline, the SBSM descriptor. This is extremely important since this is a novel

descriptor, and it is crucial to understand the role of its underlying features in the �nal performance,

both in terms of overall accuracy and execution time.

Finally, it is provided a general overview of the real-time pose recognition system prototype.

4.1 SBSM Descriptor Performance Evaluation

The descriptor testing is performed using the following parameter combination: NL = {2, 4, 8} and

Nθ = Nφ = {2, 4, 8, 16}. Each combination pair was executed 10 times in a cross-validation test, training
with 70% of dataset class samples, randomly selected at each execution. In each test run, we also perform

a cross-validation of the training data to �nd the best parameters - cost and gamma, of the SVM.

This modality is performed for two cases:

• Enforcing the descriptor weight propagation among the neighbour sections.

• Using Zoning, meaning that no weight propagation is used.

The results for the designed dataset are presented in Table 4.1 and Table 4.2 respectively.

The same results are aggregated graphically in Figure 4.2. However, it is more or less evident

that weight propagation, has a very slight advantage over Zoning, and only when using a very large

number of descriptor features. When considering a very small number of sections, the neighbour weight

propagation introduces non-relevant data on the descriptor, and the Zoning modality achieves better

20
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Figure 4.1: Train data cross validation using libSVM tools.

Descriptor Parameters SVM Parameters Results
#Spheres #Angles #Descriptor

Features
Cost Gamma Cross Valida-

tion Accuracy
Average
Accuracy (µ)

Standard Devi-
ation (σ)

2 2 9 8 0.25 77.8 78.42499 0.56188498
2 4 33 8 0.25 93.8 94.02738 0.502782219
2 8 129 1 0.25 97.6 98.04632 0.108874595
2 16 513 1 0.25 98.5 98.67991 0.130109855
4 2 17 32 1 98.4 98.59942 0.151137559
4 4 65 8 0.25 98.5 98.63698 0.128845366
4 8 257 8 1 99.8 99.84706 0.055197347
4 16 1025 1 1 99.8 99.81756 0.041554254
8 2 33 32 2 99.6 99.65656 0.102602601
8 4 129 8 8 99.7 99.77193 0.063560663
8 8 513 8 1 99.8 99.83903 0.065709834
8 16 2049 1 1 99.8 99.78536 0.043811850

Table 4.1: SBSM descriptor testing using weight propagation between neighbour sections.

global results in those cases. When the number of descriptor sections increases, we can observe that

both descriptor modalities achieve more or less the same accuracy values, with a slight advantage for the

weight propagation version. However, given that the discriminative power of the system is high, these

small di�erences encourage the use of the propagation version of the descriptor algorithm.

In the 2D version of the descriptor [34], the weight propagation version achieved a better performance

than the Zoning. However, in this case, the descriptor was applied over images, which implies, that every

section had non-zero weights, and by this, the blurring e�ect provided by the weight propagation, helped

to achieve better results and more discriminative power.

On the other hand, in this work the SBSM descriptor is applied over segmented 3D point clouds,

which implies, that in some sections of the descriptor sphere won't contain any cloud point, neither

receive weight propagations, implying that there will be a high number of sections with zero weight,

which greatly simpli�es the SVM classi�cation task. These facts explain why the two modalities tested

reveal approximate results, without a clear advantage of the weight propagation descriptor version, like



CHAPTER 4. RESULTS 22

Descriptor Parameters SVM Parameters Results
#Spheres #Angles #Descriptor

Features
Cost Gamma Maximum Cross

Validation Accu-
racy

Average
Accuracy (µ)

Standard Devi-
ation (σ)

2 2 9 8 8 88.5 89.27825 0.24172
2 4 33 1 1 89.5 90.79689 0.50751
2 8 129 1 1 98.6 98.70871 0.30883
2 16 513 1 1 99.4 99.49826 0.08203
4 2 17 8 8 96.9 96.94123 0.19056
4 4 65 8 8 99.5 99.53852 0.09533
4 8 257 1 1 99.5 99.47948 0.14266
4 16 1025 8 8 99.8 99.79611 0.06092
8 2 33 32 32 99.5 99.62711 0.06124
8 4 129 8 8 99.7 99.71291 0.05938
8 8 513 1 1 99.5 99.52676 0.08214
8 16 2049 1 1 99.5 99.59753 0.08854

Table 4.2: SBSM descriptor testing using Zoning (without weight propagation between neigh-

bour sections).

it was expected from the 2D version of the descriptor. The other main reason is the complexity of the

dataset. A future study on more di�cult to learn datasets may show more clearly the bene�ts of the

weight propagation procedure in the descriptor algorithm.

At this point, it is crucial to assess the computational performance of both descriptor modalities.

For this we compute the average computational time of the descriptor when applied over the dataset.

The results are expressed both in Table 4.3 and Figure 4.3. From these results it is easily observable

the descriptor computation overweight caused by the weight propagation. In the case of the Zoning

modality the computational cost increases slightly, due the initializing the descriptor structure, and a

increasing number of sections. However, the computational cost for processing each the point cloud

sample is approximately constant for all the descriptor con�gurations.

Descriptor Parameters Processing Time (ms)
Layers Angles Features Weight Propagation Zoning

2 2 9 3.828 1.787
2 4 33 4.026 2.517
2 8 129 7.741 2.645
2 16 513 22.914 2.764
4 2 17 4.709 2.215
4 4 65 5.904 2.329
4 8 257 10.327 2.646
4 16 1025 32.262 2.782
8 2 33 6.352 2.539
8 4 129 7.173 2.671
8 8 513 12.115 2.875
8 16 2049 38.136 2.985

Table 4.3: Descriptor average computation time per-sample.
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Figure 4.2: SBSM descriptor accuracy.

4.2 Real-time Pose Recognition System Prototype Overview

The pose recognition system prototype, uses the weighted SBSM descriptor, with a con�guration of

8 spheres and 8 angular divisions. To perform the system training it was the full hand pose dataset,

performing a cross-validation, using the libSVM tools, to �ne tune the SVM cost and gamma parameters.

The system's throughput achieves a performance of 14 fps when capturing a single hand, reducing to

11 fps when capturing both hands. The various hand pose dataset classes, derived by their their great

orientation variability and SBSM discriminative power, are correctly recognized by the system like the

experiments have shown. Here some screenshots of the real-time system are presented: open hand

(Figure 4.4), pointer (Figure 4.5), zoom (Figure 4.6), close hand (Figure 4.7), victory (Figure 4.8) and

stop (Figure 4.9) poses.

Also the system is capable of simultaneous hand pose recognition for both hands. Some screenshots

are provided in Figure 4.10 and Figure 4.11

In Figure 4.12 provides a somewhat more visual understanding on what 3D data is extracted by the

KinectTMdepth sensor. The point cloud was slightly rotated to expose the captured body surfaces, while

performing the real-time pose recognition.
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Figure 4.3: Computational performance of the SBSM descriptor .
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Figure 4.4: Open hand pose.
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Figure 4.5: Pointer hand pose.
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Figure 4.6: Zoom hand pose.
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Figure 4.7: Close hand pose.
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Figure 4.8: Victory hand pose.
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Figure 4.9: Stop hand pose.
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Figure 4.10: Simultaneous hand pose recognition.
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Figure 4.11: Simultaneous hand pose recognition.
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Figure 4.12: Rotated point cloud.



Chapter 5

Conclusions and Future Work

One of the focal points that contributed to the overall success of the followed approach is clearly

the use of the KinectTMdepth sensor, and the 3D scene information it extracts. This technology by

itself, simpli�es amazingly the pose recognition problem by removing ambiguities that cause tremendous

problems and limitations in traditional RGB-based approaches, and thus, opening the door to new

techniques that are more focused on the pose recognition issue, making the scene representation part of

the solution, and not part of the problem.

This work presented an end-to-end, real-time pose recognition system pipeline. This contribution

required the creation of a novel spherical shape model descriptor, with low computational overhead

making it applicable in real-time architecture, and most importantly, capable of extracting relevant

information from 3D point cloud data of an object of interest. On the other hand it was also presented

a hand tracker solution, capable of capturing hand pose data, performing a robust hand segmentation,

removing irrelevant information from the scene.

However, taking into account all the systems characteristics, some limitations have been identi�ed:

similar hand poses formed by di�erent �nger dispositions can generate wrong classi�cations, and this

can be an issue if the wrong pose is not included in the no-pose class of the dataset.

This way, to ensure the system's robustness, the integration of a new module prior to the descriptor

phase, should be considered. In this new component, a per-point classi�cation would be performed over

the previously segmented hand point cloud, using RDF classi�er (loosely inspired in [31]). This module

would provide, a labelled hand point cloud, where each �nger would be clearly identi�ed. Then in the

descriptor phase some modi�cations would be required. Instead of having a global weight associated to

each section, we would have weight histogram, where each bin would account the weights generated by

a given �nger, and the weight propagation among neighbour sections would occur solely among bins

associated to the same �nger label.

We believe that this improvement would amplify the descriptor's discriminative power, enabling the

system to become more reliable. The labelled train data, in order to generate the RDF model, could

34
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(a) Hand model base (b) Articulated hand
model mesh

(c) Hand model
(back)

(d) Hand model
(front)

Figure 5.1: Synthetic hand model.

be achieved by using synthetically generated labelled point clouds, from a hand model (Figure 5.1) that

ultimately enables the creation of a dataset with a rich set of hand poses. This proposal is left as future

work.

In terms of system performance throughput, the system achieves a high performance. However one

of the system's bottlenecks is the descriptor computation, which is more demanding, when using a large

number of sphere layers and angular divisions. The next evolution step will consist in the implementation

of the descriptor's algorithm using the GPU (Graphics processing unit), that we consider, could lead to

a major decrease of the computational time, boosting the performance of the overall system pipeline.

Nevertheless, the current system achieves a high result accuracy of hand pose recognition, and good

runtime processing speed, which enabled the ful�lment of all the objectives initially established, and

ultimately, making the system suitable for an integration on a more ambitious HCI system.
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