
Parallel error-correcting output codes

classification in volume visualization:
parallelism for AI and AI for parallelism

Oscar Amorós Huguet

Advisors: Sergio Escalera, Anna Puig

UPC-UB-URV

Introduction

● Main Goal: explore AI and parallelism

interaction.

● Contributions:
o New parallel programming tools (AIMparallel and

SimpleOpenCL)

o Semi automatic classification:

 Framework for 3D scan medical images

 Parallel implementation of the framework

(Parallelism for AI)

o A new parallel system proposal based on SOMAS

(AI for parallelism)

AIMparallel

Methodology and

nomenclature.

Overheads:

● TCO: cycles lost due to

data movement

● WPO: cycles lost due to

load unbalancing

● TMO: cycles lost due to

thread management

AIMparallel

 Example
● Easy to use

● Avoiding the worst

implementation

● More useful with complex

algorithms

● For fine tuning need to

profile

Classification problem

A semi automatic classification system

C.P.: proposal ECOC

Combines binary classifiers (h) to create a

multiclass (y) classifier

C.P.: proposal Adaboost

C.P.: proposal ECOC submatrix

C.P.: adaptive decoding

C.P.: Adaboost Look up table (LUT)

representation

Parallelization Implementation

P.I.: Parallelization proposals

● Tasks: T1 T2 and T3

● T1 is a 7 point stencil operation

P.I.: Parallelization proposals

Task 2 option 1 and Task 3 option 1

P.I.: Parallelization proposals

Task 2 option 2

P.I.: GPU implementation

P.I.: Simulations and results

P.I.: Simulations and results

P.I.: Simulations and results

P.I.: Simulations and results

● With Radeon HD 7970

● Thorax N=9 Sel classes=9 and Z=36

● Execution time = 2,2 seconds

● No code change

Geforce GTX 470 Radeon HD 7970 Comparison

Processing Elements 448 2048 4,5x

Execution time 7,763 2,2 3,5x

AI parallel system proposal

OmpSs (BSC)

AI.P.S.P.: Environment

AI.P.S.P.: Agents

AI.P.S.P.: Agents

AI.P.S.P.: Desired behaviors

● Hierarchical scheduling

● Data affinity

● Data flow

● Program flow

 ● Resource usefulness evaluation “V”

● Each agent has it’s own view of “V” for each resource

● V = PV + Rr

● PV = amount of matches a resource adds

● Rr = Resource ratio is the amount of computational

resources available to the Agent

● We can add network costs

AI.P.S.P.: Experiments and results

● First environment simulator

● We control
o Number of Blocks

o Number of Data elements

o Number of Agents on the Grid

o Number of Instructions for each Block

o Number of data requests the Agent will raise to the grid on a single

time step

o Number of instructions the Agent will fetch and execute on each time

step

● Next step:
o Adding the Agent program to generate the exchange Behavior

o Use agent programming language (2APL for instance)

o Use Adapteva’s Parallella board as a Node.

Conclusions

● Parallelism for AI:
o New parallel programming tools (AIMparallel and

SimpleOpenCL)

o Semi automatic classification:

 Framework for 3D scan medical images

 Parallel implementation

● AI for parallelism:

o A parallel computing system

o Based on an agent strategy for automatic scheduling

Future work

● Parallelism for AI:

o Apply AIMparallel to other AI methods and

architectures

o Increase accuracy with more features and context

o Increase performance (new GPU features and

reducing aWPO)

● AI for parallelism:

o Implement a simple working system (Either

simulator or on Parallela board)

Future work: Hardware proposal

● Adapteva’s Parallella board as Node

