
 Master'in'Artificial'Intelligence'(UPC4URV4UB)'

'
'
'
'
'

'

Master'of'Science'Thesis'

PARALLEL'ERROR4CORRECTING'
OUTPUT'CODES'CLASSIFICATION'IN'VOLUME'
VISUALIZATION:'parallelism'for'IA'and'IA'for'

parallelism'

!
!
!

Oscar!Amoros!Huguet!
!
!
!

Advisor/s:!Sergio!Escalera,!Anna!Puig!
Dr./Drs.!on!behalf!of!the!Advisor/s:!Sergio!Escalera,!Anna!Puig!

!
!
!
!
!

UNIVERSITAT DE BARCELONA, UNIVERSITAT POLITECNICA DE

CATALUNYA, UNIVERSITAT ROVIRA I VIRGILI

Abstract

Facultat de Matemtiques UB

Departament de Matemtica Aplicada i Anlisi

Master in Artificial Intelligence

by Oscar Amoros Huguet

In volume visualization, the definition of the regions of interest is inherently an iterative

trial-and-error process finding out the best parameters to classify and render the final

image. Generally, the user requires a lot of expertise to analyze and edit these parameters

through multi-dimensional transfer functions. In this thesis, we present a framework of

methods to label on-demand multiple regions of interest. The methods selected are a

combination of 1vs1 Adaboost binary classifiers and an ECOC framework to combine

binary results to generate a multi-class result. On a first step, Adaboost is used to train

a set of 1vs1 binary classifiers, with a labeled subset of points on the target volume.

On a second step, an ECOC framework is used to combine the Adaboost classifiers and

classify the rest of the volume, assigning a label to each point among multiple possible

labels. The labels have to be introduced by an expert on the target volume, and this

labels have to be a small subset of all the points on the volume we want to classify.

That way, we require a small e↵ort to the expert. But this requires an interactive

process where the classification results are obtained in real or near real-time. That

why on this master thesis we implemented the classification step in OpenCL, to exploit

the parallelism in modern GPU. We provide experimental results for both accuracy

on classification and execution time speedup, comparing GPU to single and multi-core

CPU. Along with this work we will present some work derived from the use of OpenCL

for the experiments, that we shared in OpenSource through Google code, and some

abstraction on the parallelization process for any algorithm. Also, we will comment on

future work and present some conclusions as the final sections of this document.

Chapter 1

Introduction

In this chapter we present a summary of the goals and contributions of the thesis.

1.1 Goals

The main and primary goal of this thesis has been to explore the interaction of AI and

parallelism. How can AI algorithms be parallelized, and how much do they benefit from

that, as well as have a look on what can some AI technologies add to the design of

parallel computing systems.

Our main goal in this thesis is to have a working proof of concept of a classification

framework for medical volume dataset, that has to be interactive and semi automatic. To

accomplish this, we want to implement a multi classification functionality, use standard

visualization tools, and achieve accuracy and interactivity constraints. For matching the

interactivity constraint we use parallelism.

Other goals have been appearing during the development of the thesis, like the creation

of AIMparallel, a methodology for easing and guiding the parallelization process of an

algorithm and SimpleOpenCL, a framework we created, devoted to reduce the amount

of code needed in order to create a parallel OpenCL program.

As a second main goal, to explore AI techniques that could help on solve some problems

on parallel computing designs, we found Multi Agent Systems is a source of a lot of

features desirable for parallel computing systems of the future. So we propose a system

based on specifically Self Organizing Multi Agent Systems.

This project requires knowledge from a wide variety of fields. Computer Vision, Machine

learning, Computer Science (Parallelism), Visualization and Multi Agent Systems.

2

Chapter 1. Introduction 3

1.2 Contributions summary

In this thesis we show two proposals. The first and main one is a classification problem,

and it’s implementation using parallelism. The second one is based on the experience

and learning process of the first proposal. On this second proposal we show a draft

of a parallel computing system based on Self Organizing Multi Agent Systems, with

some basic experimentation. On the first proposal we used parallelism to implement IA

techniques, and on the second one we use IA technologies to define a parallel computing

system.

For the classification problem we propose a general framework of supervised statisti-

cal classification methods to label on-demand multiple regions of interest (see Fig. 3.1).

This provides an interactive classification/segmentation generic framework that could be

used in several real applications, and it can be used with any existing classification/seg-

mentation state-of-the-art method. The framework is composed by a pre-learning stage

and an on-demand testing stage included in the renderer. The learning step gets a

subset of pre-classified samples to train a set of Adaboost classifiers, which are codified

as TFs, and combined in an ECOC design. Each classifier encodes a set of relevant

properties in a 1D texture. We deal with several properties, such as density, gradient,

space location, etc. of the original data without increasing the dimensionality of the

classifier. Next, the testing stage multi-classifies and labels a subset of volume classes

based on user interaction. The label mapping defines clusters of the selected classes,

and then it assigns optical propeties and importance values to the final output classes

to be visualizated. The labels computed in the testing step in the GPU memory can be

used in several volume visualization approaches: to skip non-selected regions, to help

computing importance values to di↵erent context structures, or to select the focus of

interest for automatic view selections, just to mention a few. The label mapping reduces

the edition of the TFs by only assigning the optical properties of a label. In addition,

the labels, as a TF, can be applied directly to the voxels values, or alternatively to the

sampling points derived from the interpolation of the nearby voxels. Up to now, the

complexity of the learning process and the testing step of a large amount of data do

not allow their integration into an interactive classification stage of the user-interface

volume pipeline. In this sense, our proposal improves the TF specification process by

combining a pre-processing learning step and a rendering integrated GPU-based testing

method.

In summary, on the classification problem we bring four contributions: First, the def-

inition of a general framework for multi-classification of volumes based on the ECOC

approach; Second, the use and parallelization of Adaboost as a case study of this general

framework; Third, the computation of an on-demand adaptive classification to a subset

of features of interest; Finally, the proposal of a GPGPU OpenCL implementation of

the testing stage of the multi-classifier integrated into the final rendering. This work

Chapter 1. Introduction 4

serves as a proof of concept for future embedding of the training step in the visualization

pipeline. In this sense, online learning will be performed on-demand in the rendering.

Results on diferent volume data sets of the current prototype show that this novel

framework exploits GPU capabilities at the same time that achieves high classification

accuracy.

The parallel computing system mainly proposes a design change on parallel computing

systems, based on the evolution of the technology, that allows to have extra hardware

executing Agent programs for the benefit of the whole system. This benefit comes from

the optimization of the network use and from the decentralization of the scheduling.

Many of this benefits are already pursued on other projects for parallel computing lan-

guages and frameworks, but they continue to use traditional programming paradigms

for the implementation of the system.

The rest of the thesis is organized as follows: Next chapter overviews the parallelism

state of the art and presents our AIMparallel methodology. Chapter 3 presents the

classification problem, it’s definition, parallel implementation, experiments and results.

Chapter 4 explains the SOMAS based parallel computing system proposal with a basic

first definition, a basic simulator and some small experiments with it. Finally chapter 5

gives some conclusions on all the work done.

Chapter 2

Parallelization

2.1 Introduction

On this chapter we are going to introduce the problem of parallelization and more

specifically parallelism on the GPU. This chapter introduces concepts necessary for

the main contribution, the classification problem, and que parallel system proposal.

We begin with an state of the art and ends with a parallelization methodology and

nomenclature that we propose as part of this thesis.

2.2 State of the art

2.2.1 Introduction

Parallelization technologies have been widely used for applications where the amount of

data and/or calculations is very high. For having results in an acceptable time on this

problems, several computers are required to be computing di↵erent parts of the same

problem at the same time. Many languages and very specific networking and computer

technologies have been used to tackle scientific or statistical problems for both public

and private science and industry along last decades. Vector units first (instruction level

parallelism) and Shared Memory Multiprocessors later introduced parallelism in certain

degree into workstations, allowing for a wider audience to create parallel programs, or

for increasing the processor densities of clusters.

This audience broadening turned into a tendency, and many languages have been adopted

as standards like OpenMP (for shared memory multiprocessor systems) and MPI (for

clusters). Nevertheless, many technical problems arise almost at the same time:

• An increased cost and di�culty of shrinking processors.

5

Chapter 2. Parallelization 6

• An increased cost and di�culty of keeping power consumption levels with the

increase of transistor number, added to an increased demand of power e�ciency

for mobile devices.

• An increased cost and di�culty of keeping the data interfaces (from networks to

memory interfaces and o↵-chip wiring) to keep the data transfer performance on

pair to the processors processing capabilities.

For reducing this problems at a hardware design level, the easiest solution is to increase

parallelism in several architecture levels, plus increasing power modularity on the pro-

cessors, leading to many parts of the processors being turned on and o↵ depending on

usage for saving power, and matching thermal requirements.

This increase on parallelism, at the processor and ALU level has many problems:

• Parallelism is not a need by it self in many applications, but an added complexity

in order to fully use new systems. Programmers tend to skip it or even don’t know

how to use it.

• Vector units usually need proprietary compilers to be used, and is complex.

• At multi-CPU level, cache memories intended to mitigate the memory interface

performance problem became a problem. The more CPU’s the more complex and

big becomes the caches and memory coherency ends up consuming most of the

power and chip surface.

• Parallel programming models like OpenMP or MPI are known by a small commu-

nity of programmers, and businesses try to avoid their need as much as possible.

A proof of this is the success of specific frameworks or languages like those based

on Map-reduce [JD04], Scala [dSOG10], etc... They are specific for certain tasks

or needs, but they are easier to use since they are very high level.

GPU (graphics processing units) have been very specific processors that had much more

freedom to evolve than general-purpose processors like CPU, which have to manage an

operating system with all the complex functionalities it implies. Additionally, GPU’s

are added to systems with a piece of software (a driver) that makes the systems to know

how to communicate with them. Also, some GPU programming standards appeared, like

OpenGL, that abstracted architectures and o↵ered a single graphics programming model

for all GPU’s. All this modularity and specific functionality allowed GPU designers

to create almost any architecture, that better matched the graphics computing needs.

These needs are mainly programmable data parallelism for allowing the programmer

to create their own visual e↵ects, a big memory bandwidth and some very common

functionalities that can be tackled with super fast fixed function units. As a result,

Chapter 2. Parallelization 7

GPU ended being a relatively cheap and very parallel and fast architecture, that once

adapted with the help of some new languages (CUDA and OpenCL), evolved into a

more general purpose parallel processors (GPGPU). Nevertheless, GPU’s are still not

true general purpose, they are very good for some tasks, good for some others, and

bad for all serial codes or task parallelism (like operating systems). CPU’s are the

opposite, they can provide a very limited amount of parallelism compared to GPU’s

with a very less e�cient power consumption per core, but they are much more e�cient

on computing serial tasks and operating systems. This makes CPU’s and GPU’s a pair

of very complementary architectures, not to mention that they are present together in

almost all computer systems, including mobile devices.

But CPU’s and GPU’s are not the only architectures around. In general, architectures

can be classified by it’s level of specificity or generality on the task they can perform.

ASIC (application-specific integrated circuit) circuits designed to a single task are the

most e�cient solutions, but they are not adaptable, since they are not programmable,

they will always perform the same task. FPGA’s (Field Programmable Gate Array) are a

bit more flexible, since they are intended to be programmable circuits, but programming

a circuit is much more complex than programing on a compiled high level language, for a

general purpose processor. GPU’s include ASIC functionalities and semi general purpose

highly parallel units. Some CPU’s are starting to include some ASIC units for video

processing too, like Intel Quick Sync. Nevertheless, mostly on mobile devices, there

are more specific purpose units like video processors, and a lot of DSP that are mainly

ASIC’s.

Programming GPU’s for general purpose can be done mainly with CUDA or OpenCL

languages. They are mainly the same, and their performance too, but CUDA only works

for NVIDIA GPU and OpenCL works in any GPU, CPU and is designed to work on any

existent and future accelerator (floating point operations accelerator) technology like

FPGA’s and ASIC’s. The advantages of CUDA are the availability of some NVIDIA

GPU features that might not be supported in OpenCL (since NVIDIA is not creating

OpenCL extensions for supporting them) and the more programmer friendly options that

CUDA has on the CPU side of the code. As CUDA has been the first computing oriented

GPU language to appear, it gained broad adoption on the scientific community and there

are many papers on the literature implementing varied algorithms from many domains

in CUDA [GLD⇤08, HGLS07, NL07]. Nevertheless, this algorithm implementations are

almost identical when programmed in OpenCL, and additionally, having OpenCL code

allows to test a wider range of hardware, with less coding e↵ort than using proprietary

languages for each hardware. In fact it is possible to use exactly the same code for

di↵erent vendors.

Given the data parallelism of the algorithms and data we are using, the natural choice is

GPU’s. Additionally, the data being processed is already on the GPU for visualization

Chapter 2. Parallelization 8

so we are not creating any unnecessary data transfer. For code portability and being

able to work with di↵erent architectures we chose OpenCL instead of CUDA.

On the next sections we will review some important aspects of the GPU architecture

and the GPU programming model.

2.2.2 GPU architecture review

GPU’s are mainly a set of big vector processors, sharing a common memory space and

each one with a big control unit. This vector processors or compute units (OpenCL

nomenclature) have a very varying amount of ALU’s for integer and floating point oper-

ations, depending on the model and the vendor (from 2 ALU’s in a super scalar pipelined

fashion on Intel GPU’s to 192 ALU’s on NVIDIA GPU’s).

On this section we will divide the explanation of GPU architecture in to memory hier-

archy, execution internals, and programming model.

2.2.2.1 Memory hierarchy

The main memory of this GPU’s usually is a set of GDDR5 banks, in case of discrete

PCIe GPU’s. More recently, some GPU’s share the same CPU DDR3 memory, where

the operating system splits it into two di↵erent memory spaces, saving costs, but reduc-

ing performance. The newest technologies already available, allow the system to either

simulate a single memory space for GPU and CPU, regardless of the real memory being

used (NVIDIA CUDA 6), or to actually allow the GPU to coherently use the same mem-

ory space as the CPU through driver and hardware support (some AMD APU’s). This

memory is called global or device memory, according to OpenCL and CUDA nomen-

clatures respectively. From now on we will only use OpenCL nomenclature for clarity.

Refer to Appendix A on this document for doubts about OpenCL nomenclature.

Additionally to this global memory, compute units usually have access to a coherent

cache that allows to reduce the memory latencies generated when accessing global mem-

ory, that until today is always o↵-chip memory. Accessing o↵-chip memory implies signal

amplification and sometimes translation. All this process is time and power consuming.

Compute units might have to wait up to 600 computing cycles in order to have a single

global memory transfer. For that reason, additionally to this cache memory, there is

another memory space private to each compute unit, that is small but very fast, who’s

latency is usually 2 computing cycles. This memory is called local memory, and the

programmer can explicitly create pointers to this memory space.

Local memory is more complicated than that though. When a programmer declares

a variable that resides into local memory, there will exist as a di↵erent copy of the

Chapter 2. Parallelization 9

same variable on each compute unit. The programming model, allows the programmer

to identify each one of the copies using thread id’s instead of variable indexing as in

standard C. We will see more about this on the Programing model section.

Finally, each compute unit has a big register bank where instructions and data reside.

On modern GPU’s, we can declare a variable to be private, so it will more provably

reside on registers, that is the fastest memory on the GPU. Nevertheless, the scope of

private memory is reduced to a single thread, so there will be a copy of this variable for

each thread on each compute unit. Again, the programmer can use thread id’s to know

which of the copies is he using, but each thread is responsible by default of one copy

and can not access directly the other thread’s copies. The data has to be moved to local

or global memory in order to be accessible by other threads.

2.2.2.2 Execution internals

Compute units execute vector instructions named warps or wavefronts that can be usu-

ally split into smaller vector instructions if it is convenient on execution time. For

instance, if only the first half of the warp has the data available to execute. Compute

units have a memory management unit, so they can fetch data and execute instructions

at the same time. This allows for memory latency hiding.

The programming model allows to treat each one of the data elements on a vector

instruction as private memory for a di↵erent thread. If on a single warp, two or more

threads have to execute a di↵erent instruction on the same data, this can only lead to

have two or more separated warps, each executing di↵erent actions on di↵erent data

elements. This clearly reduces parallelism. So divergence inside vector instructions

is allowed at the programming level, but is translated into more instructions at the

hardware level.

One of the most important concepts though, is coalescense. If all the data required by

a warp, exists on consecutive positions in memory, and on the same memory bank, then

all this elements can be read on a single memory access. In the worst case, if every

data element required by the warp resides on di↵erent memory banks, then there will

be a data transfer for each element instead of one for all. Cache memories mitigate

the problem of non coalescing accesses but still, it is a problem when accesses are very

sparse, and the proportion of calculations per memory access is low.

2.2.2.3 Programming model

First of all, it is important to remark that a program that uses GPU for computation

has two separated codes. The Host code and the Device code (see Appendix A). When

Chapter 2. Parallelization 10

we talk about the GPU programming model we are talking about the Device code, that

is the code compiled for the GPU and executed on the GPU.

The GPU programming model stands on a basic principle. The code that the program-

mer writes, is executed by default by all existing threads. The number of existing threads

is set up by the programmer on the Host code, so before the Device or GPU code is

executed. Additionally, this threads or Work Items (as in OpenCL nomenclature) exist

on a 1, 2 or 3 dimensional space. This space is called NDRange in OpenCL, where N can

be 1,2 or 3, indicating the dimensionality. Then, each Work Item has id’s with as many

components as dimensions the space it exists in. Specifically, a Work Item is related to

the following id’s:

• Global id: This id is a unique id that identifies the Work Item on the NDRange

space. It has 1, 2 or 3 numerical components. A Work Item in a 2DRange space

has a global id of the shape (x, y).

• Local id: Work Items are grouped into Work Groups. The first dimension of

the Work Group ideally should be multiple of the size of a warp. So, ideally,

Work Groups are packs of several consecutive warps. They can be consecutive

on any of the dimensions. See more about work groups on Appendix A. So a

local id, identifies a Work Item inside the Work Group it belongs. That means

that di↵erent Work Items can have the same local id, if they are in di↵erent work

groups, but not if they are on the same work group. Local id’s have the same

shape as global id’s. In the case of global id’s, they are all unique.

• Group id: Work Groups also have an id for the programmer to be able to identify

them. They have the same dimensionality as the NDRange.

By default, all Work Items are independent of each other, but they are executing the

same code. In order to make them operate on di↵erent global or local data, we can use

their id’s to index pointers. That way, all Work Items will perform the same operation,

but on di↵erent data. This is exactly data parallelism. But also, we can use the Work

Item id’s on conditional statements. That way, each Work Item can perform a di↵erent

task. As we have seen previously, this leads to a reduction of overall performance.

The reason why it is possible to do Work Item divergence, despite it is bad for GPU

performance, is because the alternative, moving data back to CPU (because the CPU

does serial execution faster), is usually much slower than doing it directly into the GPU.

This is because the time spent on moving the data can be greater than the time the

GPU will spend executing serialized parts of the code. Nevertheless, this can change

with the newest hardware, where GPU’s have the capability to work with x86 virtual

memory. In that case, there are not data transfers, only cache misses, if the GPU and

CPU are not sharing the same cache.

Chapter 2. Parallelization 11

Figure 2.1: Vector addition in parrallel of variable arrays A and B storing the result
in variable array C. On an 1DRange kernel, Work Item 0 reads A[0] and B[0], adds the

two read values and stores the result in C[0].

2.2.3 GPU programming review

GPU programming is increasingly becoming the art of finding data structures and algo-

rithms that allow some programs that are di�cult to parallelize or coalesce, to run fast

on the GPU.

Some of the most basic examples are dense matrix multiplication, stencil operation

on volumes, vector addition, etc... As we can see on figure 2.1, some algorithms are

perfectly suited for GPU’s, because each Work Item is reading a memory position that

is contiguous to the memory position that the next Work Item is reading, therefore, all

warps will use all ALU available (except maybe for the last warp if N in figure 2.1 is not

divisible by the warp size).

More di�cult codes though present several programming di�culties to overcome, or

di↵erent behaviors than in CPU. For instance, like particle simulations where scatter

operations used to be more e�cient on the CPU, but on GPU gather operations turn to

be more e�cient. We can see an illustration of this on figure 2.2. This turned to be very

important to our implementation since we finally implemented the ”owner computes all”

rule mentioned on figure 2.2 (b). This means that conceptually we assign an output to

a Work Item, and this Work Item is going to do all the work in order to obtain the

output. It is not so obviously the best solution though, as we will see later.

Other algorithms are di�cult to parallelize like sparse matrix. The CPU optimized

sparse matrix algorithms that use data structures like CSR (Compressed Sparse Row

format) [Rob] don’t run very well on GPU’s and there are some changes that can be

Chapter 2. Parallelization 12

(a) (b)

Figure 2.2: Scatter and gather operations. Both operations are equivalent in terms
of results. (a) Scatter operation where each thread or Work Item reads a single input
and writes partial results to multiple outputs. (b) Gather operation where all threads

read all the input and each thread generates a single output.

done to improve performance. Other sparse matrix formats have been proven to be more

e�cient like a combination of ELL and COO [BG08] formats to make the algorithm to

use the GPU resources as much as possible.

2.2.4 Conclusions

As GPU’s are relatively cheap, and our algorithm is very data-parallel, we select them

as the architecture with which to achieve the interactivity constraint. With the goal

of having a portable code that can be deployed in any future architecture, plus being

able to compare di↵erent present GPU implementations, we decided to use OpenCL in

our experiments. Additionally we explored several possible OpenCL implementations to

find the fastest and to better understand the GPU behavior.

2.3 AIMparallel Methodology

2.3.1 Introduction

In order for the reader to follow the implementation discussion, we first need to de-

scribe the nomenclature we will use. This nomenclature follows the definitions that the

AIMparallel methodology (a methodology we created) presents. For that reason we will

present AIMparallel in this section.

With AIMparallel we describe in general the problem of parallelization. Working with

the algorithm implementation we have found the need for a generalization when describ-

ing the analysis of an algorithm and the relation of this analysis with the analysis of the

features of the target parallel architecture. For that reason, we created a parallelization

Chapter 2. Parallelization 13

analysis methodology, not only for easing the analysis of algorithms with many possi-

ble parallel implementations, but also to more easily document and communicate this

analysis.

2.3.2 Definition

In this section we describe the AIMparallel methodology. This methodology is provably

already mentally used by many experienced parallel programming users, but we wanted

to give it a name and specify it in a generic way to ease the learning curve of all the new

incomers on parallel programming, as well for experienced programmers that for the

first time have to deal with the fact of having to tune parallel code on di↵erent parallel

systems.

AIMparallel describes two levels of analysis, as seen in Fig.2.4. A high level that must

be the first used, and a low level that needs the information extracted from the high

level to be useful. On the high level AIMparallel performs an algorithm analysis on

a theoretical system whit non defined resources. In this analysis we start generating

parallelizaiton options for that algorithm with the goal of not to restrict too much the

options but to see how the algorithm behaves when changing granularity, and memory

layouts. This behavior is specified and labelled by three main overheads that we defined

(TCO,WPO,TMO), that can be treated as a value that quantifies how much of each one

of those overheads each parallelization option generates. On the low level, AIMparallel

maps this overheads to the specific characteristics of the programming model and ar-

chitecture. This mapping gives the information of how much a certain kind of overhead

does a↵ect to the overall performance in this parallel system. It is important to note

that we use the term overhead as computing cycles lost doing things related to system

management or doing nothing because of lack of work balancing or paralelization.

Some of the three proposed overheads are composed of two parts. The amount of over-

head produced by the algorithm behavior, and the amount of overhead produced by the

system behavior and design. The system overheads could be something that vendors

previously benchmark and label with standardized numbers as a reference value. That

way, the programmer could skip the tedious part of understanding the inner workings

of the architecture needed to infer this overheads. Nevertheless, we propose that the

programmer does not exhaustively quantify this overheads (unless it is extremely nec-

essary). In many cases we can find on vendor documentation many information about

which are the weaknesses and strengths of each architecture so we can use approximated

values or inequalities (greater than, smaller than), that give valuable information to the

programmer.

Next we describe the three generic overheads we defined, TCO, WPO and TMO.

Chapter 2. Parallelization 14

Figure 2.3: (a) Single memory space, (b) GPU memory hierarchy, (c) Adapteva’s
Epiphany network on chip memory hierarchy.

• The first overhead is called Thread Communication Overhead (TCO). It expresses

the computing cycles lost when performing read/write operations from a thread

to any of the memories of the memory hierarchy. From the algorithm side TCO it

is a↵ected by the number of memory accesses (algorithm-TCO or aTCO), and the

temporal and spacial memory locality on that accesses. This is always a↵ecting

the performance on any system, so a measure of greater or lower locality on data

accesses will help. On the system side it is a↵ected by many system specificities

(system-TCO or sTCO). Parallel and non parallel systems use to have a hierarchi-

cal memory system that tries to make the processors work with the low latencies of

the small and fast memories, while having access to all the capacity of the higher

latency, lower bandwidth big memories. As we can see on Figure 2.3 there are

several memory distributions in di↵erent architectures or systems. We are also

considering distributed systems, where each node has it’s own memory space, and

nodes communicate with messages through a network. In this case, messages have

a big TCO because of both latency and bandwidth. In all the systems, process-

ing elements are reading data from di↵erent memories, being they part o a single

memory space or not. The programmer, can always manipulate the code to im-

plicitly or explicitly modify the behavior of the accesses in order to reduce their

number, so reduce TCO. sTCO then measures how bad is for a given system, that

the algorithm has poor data locality, like a factor that increases more or less the

aTCO depending on the system features. So, if we quantify this overheads, we

could obtain a total value of TCO for a given algorithm parallelization option, and

a given parallel system with a simple TCO = aTCO ⇥ sTCO.

• The second overhead, named Wasted Parallelism Overhead (WPO), relates to

the computing cycles lost when the number of working threads is smaller than

the number of processors, due to the code or due to synchronization or other

questions. If the number of processors of our theoretical system is unlimited, we

can always say that, for a parallelization option A with less threads than another

option B, option A has aWPO over B. So aWPO is a measure of the granularity

Chapter 2. Parallelization 15

of the algorithm partition. From the system side, sWPO is a measure of how much

parallelism can the system a↵ord, either proportionally to the number of cores, or

through resources that allow the system to exploit having more active threads than

cores. This time, the relationship between aWPO and sWPO is not that clear.

Up to a certain point it is beneficial to increase the number of threads, but given a

limit (that can depend on the amount of resources used by each thread), increasing

thread count can penalize performance. This behavior could be drawn on a 2D

graph where y is the performance, and x is the number of threads. This is a

function, and that function depends mainly on the system resources. Finding this

function and taking into account the resources used per thread is a tedious work

for the programmer. A more intuitive way of handling this, that is broadly used,

is to read some recommendation about the number of threads that use to be good

for each system. Still, we can give some useful clues to the programmer by defining

sWPO as a number that reduces aWPO according to the system resources. This

time then sWPO = 1
SR where SR is a value that represents the system amount of

computing resources (number of cores or vendor recommended number of threads)

and aWPO = NT where NT represents the number of threads used. Then WPO

follows

WPO =

(
1

aWPO⇥sWPO if NT < SR

aWPO ⇥ sWPO if NT >= SR

This formulation can be used to decide which hardware to use or which algorithm

partition or parallelization techniques to use. Then extra-tuning can be done

finding the right value of SR for the algorithm by testing the code and di↵erent

NT values.

• Finally, the Thread Management Overhead (TMO) is related to the cycles lost

when creating, destroying and scheduling threads. Again, we have algorithm and

system TMO (aTMO and sTMO). Using a big number of threads, and creating a

destroying a lot of them both create aTMO. Depending on the system implemen-

tation of the thread, sTMO will be higher or lower. This time, the relationship of

both aTMO and sTMO is direct TMO = aTMO ⇥ sTMO. Nevertheless sTMO

can vary on some languages since scheduling policies can be di↵erent and selected

by the programmer.

With this overheads and the methodology to use them, we can select where to put

our e↵ort to improve performance when parallelizing a code for an specific system, but

also, we can recycle the high level analysis for considering implementations in other

architectures with some work already done. Once the programmer has chosen what to

improve, then he has to focus on the specific architecture, and all those characteristics

that a↵ect to the most relevant overheads found.

Chapter 2. Parallelization 16

Also, this three overheads could be used by vendors to provide very useful information

about the specifics of the performance of their systems, helping customers to find the

perfect fit for their needs, a not very trivial question.

Figure 2.4: Two step methodology for analyzing parallelization options for a given
algorithm and a given parallel architecture, using the three pre-defined parallelization

overheads.

2.3.3 Low level overheads mapping

In this section we will describe the influence of each of the three overheads on specific

architectures. This step is mandatory and implies the study of the architectures being

used. This could be simplified if vendors could provide some standardized numerical

values for each of the three overheads, that allow to more easily compare parallelism

characteristics of di↵erent systems.

2.3.3.1 GPU overheads mapping

On this section we will comment on the three system overheads one by one, and add

some discussion at the end.

• sTCO: The use of the GPU memory hierarchy is the most sensitive aspect for ob-

taining a good GPU performance [KH10]. The communication between work items

(threads) is done through this memory hierarchy. Therefor, on GPU’s, sTCO is

caused by big memory access latencies, and it is the programmers duty to avoid it

as much as possible by properly and explicitly using the memory hierarchy. Nev-

ertheless, latencies and bandwidth are much higher than for instance distributed

systems. Despite that, once the parallelization option is selected, if a programmer

wants to optimice a code for GPU he can approximate the number of cycles lost,

Chapter 2. Parallelization 17

Ncl, when introducing a memory access to a specific memory of the memory hier-

archy. This value will be a worst case, since it doesn’t take into account caches or

latency hiding as in Equation 2.1.

Ncl = Mao ⇥Na ⇥ Cf (2.1)

Mao is an average of the cycles lost per memory access; Na is the number of work

items that perform the memory access; and Cf is the coalescing factor defined

as 1
nWI , where nWI is the maximum number of work items that can perform a

memory access operation at the same time (coalesced), for that memory access.

• sWPO: on GPU’s sWPO is very big since they have a lot of cores to be used,

and the total amount of computing power depends on having a lot of threads

working. In fact, SR > numberofcores, since for exploiting all the cores for the

maximum number of cycles on a program execution, it is necessary to have much

more threads than GPU cores. It is important to note that GPU threads are very

di↵erent to CPU threads, since there is no OS running on the GPU, no processes

or threads as data structures that identify streams of code. The threads exposed

on the programming model are translated into SIMD data positions.

• sTMO: on GPU’s threads don’t exists as data estructures, so there is no real

thread management. The conseqences of uncoalesced reads and thread divergence

could be considered sTMO, but they are conceptually related to both WPO and

TCO. The real sTMO is the situation where the code for each thread is very big,

and some of the instructions need to be on Global Memory (See Section 6.2.3).

Of course, reading instructions from global memory instead of register banks is

slower. Another consequence of big GPU threads is the reduction on the number

of work items active on each GPU multiprocessor. This reduces memory latency

hiding. Also, new technologies like NVIDIA dynamic parallelism allow to create

and destroy more threads, action that has a penalty on performance. Another way

to change the number of threads on a GPU program is to write di↵erente kernels

with di↵erent NDRange sizes. The only way to communicate from one kernel to

the other is to store the data on global memory, something slower than keeping

the data on faster memories. So we know now when sTMO increases on GPU’s.

We have now mapped the GPU architecture main characteristics to three concepts that

we can apply to any other parallel architecture, so the generic analysis becomes use-

ful. We will show that it is useful to categorize the performance problems, and have

abstract and common terms to refer to them across di↵erent architectures to ease the

parallelization analysis and discussion.

Chapter 2. Parallelization 18

2.3.3.2 Overheads mapping for CPU’s with OpenMP

As standard CPUs have a limited amount of cores (from 2 to 16 per chip), one of the

main overheads is the WPO. For this reason, we have to reduce the number of threads

to close to the number of cores, sometimes more and sometimes a bit less, depending

on the runtime management and DMA’s. Also, even there are fewer cores there can be

WPO because of work unbalance. So we have to analyze the code behavior to determine

which OpenMP for loop parallelization scheduling is better in order to avoid WPO and

don’t generate too much TMO. In the case of TCO, we have to think of data locality.

There are no local memories on the CPU, but we can increase the cache performance

by increasing the spacial and temporal data locality of the operations in the code, so we

will use more times cache blocks before replacing them with di↵erent data. Instead of

explicit TCO optimization like in GPU’s we have an implicit optimization.

2.3.3.3 Overheads mapping for CPU’s with GCD

GCD [App09] is an API developed by Apple based on C Blocks, that allows the pro-

grammer to forget about the computer resources, and focus only on the sequentiality or

asynchronicity of each part of the code, regarding the main thread of the program.

GCD at the programmer level substitutes the threads with queues, in where we can

enqueue Blocks of code that can run asynchronously with the main thread. This queues

are data structures much lighter than threads, that are accessed by few system controlled

threads. The threads are responsible of searching for Blocks on these queues. This

minimizes TMO and WPO by parallelizing the work scheduling for balancing. As

the active threads are controlled by the system, the TMO is minimized automatically

without the intervention of the programmer. The programmer does not need to analyze

which is the perfect number of threads for a system, because the system is managing

it. In fact, GCD can be aware of the active threads belonging to other applications, in

order to reduce the number of active threads for the application using blocks, in order

to reduce the number of context switches, and improving overall system performance.

Nevertheless, this last feature is not a↵ecting our tests, since we tested the execution

times in systems running the minimum set of idle system processes and daemons and

our code.

GCD can further reduce the WPO by using two types of queues, a global concurrent

queue and an undefined number of FIFO queues. FIFO queues can be used in order to

ensure the execution order of Blocks, when there are dependencies between them. That

way, a thread can take for execution the first Block in the concurrent queue that still

has been taken, and the first block introduced in any of the FIFO queues as long there

is no thread executing the previous Block before it. This increases the probability for a

thread to find work to do, and the source of work can be any part of the code. Again,

Chapter 2. Parallelization 19

we are not taking advantage of this feature in our code, but we can if we integrate it

with a visualization interface in an Apple machine.

Finally, GCD allows to reduce TMO (consider block enqueueing as TMO), by allowing

blocks to enqueue other blocks. That way it is possible to parallelize block enqueueing,

so to balance this task across threads, instead of giving the task only to the main thread.

The more cores used, the more interesting this option becomes.

As a summary we can see, following the GCD specification and our discussion, that the

codes (with unbalanced work) that use it do better scale with CPU core increments than

free OpenMP implementations.

2.3.4 Conclussions

With all this information we can intuitively see which algorithm overheads we should

try to minimize, for a specific hardware. An experienced parallel programmer may al-

ready mentally do that procedure, but we didn’t find any literature explaining a generic

methodology for avoiding redundant and useless work, when programming parallel sys-

tems.

Chapter 3

Classification problem

3.1 Introduction

In volume visualization, the definition of the regions of interest is inherently an itera-

tive trial-and-error process finding out the best parameters to classify and render the

final image. Generally, the user requires a lot of expertise to analyze and edit these

parameters through multi-dimensional transfer functions. There are paid manual clas-

sification services that give good results, but are not available to any one due to the

cost of the service. Additionally, the time required for having the volumes classified

usually is several weeks. Additionally, classification techniques applied to large volumes

are usually computational intensive tasks, that require overnight computation and make

the whole user-system interaction slow. So there is not a tool where the users of CT or

MRI machines can easily and accurately visualize the results in real time.

We want to create a framework that defines the steps to be performed, and on each step

or functionality, the methods implemented can be varied and changed. But there are

fixed constraints, as the interactivity feature and a minimum of classification accuracy

that must be satisfied.

Figure 3.1: Overview of the ECOC-based visualization framework.

20

Chapter 3. Classification problem 21

In this work we want to implement supervised multi-classification techniques, that can

generate classifiers using a small labeled subset of the volume to be classified. The idea

is to create a software that allows to create a tool for the CT/MRI user (a doctor) to be

able to interact with the volume generated, by labeling few points that the doctor will

be sure about, and the rest will be classified automatically in real time.

For the interactivity constraint, we consider parallelism as the conceptual computing

tool in which to rely for execution time performance. Given the data-parallelism nature

of the data to be processed, we will explore several parallel computing systems (hard-

ware+language) and select classification techniques that can o↵er di↵erent work division

granularities to better exploit any possible parallel architecture available to us.

3.2 Visualization

Knowledge expressiveness of scientific data is one of the most important visualization

goals. The abstraction process the final user should carry out in order to convey relevant

information in the underlying data is normally a di�cult task. User has to mentally

process a large amount of data contained in several hundreds of slices to find features,

boundaries between di↵erent structures, regions surrounding pathological areas, seman-

tic structures, and so on. During the last few decades new means of outlining significant

features are being developed to gather visual information contained in the data, such as

ghost views, Focus+Context approaches [APT08], importance-driven visualizations and

automatic viewpoint selections. Some of these methods [VKG05] [KSW06] are useful for

the exploration of pre-classified data sets as well as non-classified ones. However, most

of them [BHW⇤07, KBKG08] require to previously define the structures of interest.

In volume rendering literature, many papers addressed classification by directly asso-

ciating optical and importance properties to the di↵erent data values considering their

belonging to a particular structure [PLB⇤01]. Most of them are based on the edition of

transfer functions (TF) [BPS97, KD98]. One-dimensional TFs only take into account

scalar voxel values, but in some cases they could fail at accurately detecting complex

combinations of material boundaries. Multi-dimensional TFs consider vectorial values

or combinations of local measures of scalar values (e.g. position, statistical signatures,

or derivatives [KD98]). However, the design complexity and the memory requirements

increase with the TFs dimensionality. In general, the user coherently assigns similar

optical properties to data values corresponding to the same region. Selection of regions

or structures is indirectly defined by assigning to zero the opacity since totally trans-

parent samples do not contribute to the final image. Then, the manual TF’s definition

even by skilled users becomes complicated. In this sense, many works have focused

on developing user friendly interfaces that make this definition more intuitive. Special

emphasis has been done in the design of interfaces that deal with the definition of a

Chapter 3. Classification problem 22

TF or partially automatize it [TM04, KKH01, MAB⇤97]. Nevertheless, to recognize se-

mantic structures that apply to identify additional semantic information requires more

sophisticated techniques.

3.3 Classification techniques

Automatic and user-guided segmentation strategies based on image processing are used

to obtain classified data sets. Recently, some preliminary works using learning methods

have been published based on data driven and on image-driven classification. These

classification methods provide users with a high level of information about data dis-

tribution and about the final visualization. Supervised methods such as bayesian net-

works, neural networks [TLM03], decision trees [FPT06] and non-supervised methods

[TM04] have been applied in di↵erent user interfaces of volume applications. For in-

stance, in [GMK⇤92], clustering-based supervised and non-supervised learning methods

are compared for classifying magnetic resonance data. An integration of interactive vi-

sual analysis and machine learning is used in an intelligent interface to explore huge data

sets in [FWG09]. Still, the data driven classification problem as a pattern recognition

process is an open issue that has been treated from di↵erent points of view: template

matching, statistical, syntactic or structural, and neural [JDM00]. For instance, super-

vised statistical learning deals with the classification task by modeling the conditional

probability distribution of the di↵erent pre-labelled data sample features.

Di↵erent Machine Learning (ML) approaches have been recently implemented using

GPGPU for binary classifications in image processing applications. Clustering strategies

and the computation of a k-nearest neighbor similarity classifier is presented in [GDB08].

A Geometrical Support Vector Machine classifier has also been implemented using

GPGPU [HWS10]. It extends di↵erent GPGPU implementations for Neural Networks [YSMR10].

Adaboost is also a widely applied classifier. Based on a weak classifier, Adaboost defines

an additive model combining simple weak classifiers to define a strong binary classifier

with high generalization capability. Given its inherent parallel structure, its high perfor-

mance, and its simplicity in order to train –Adaboost does not require tuning classifier

parameters, Adaboost has a high potential for GPU applications.

Most of the previous approaches are binary by definition –they only learn to split from

two possible labels1. In order to deal with multi-class labelling, they need to be combined

in some way, for example, by means of a voting or a committee process. In this scope, the

Error-Correcting Output Codes (ECOC) is widely applied as a general framework in the

ML community in order to deal with multi-class categorization problems. The ECOC

framework allows to combine any kind of classifiers, improving classification accuracy by

correcting errors caused by the bias and the variance of the learning algorithm [DK95].

1Note that we use the terms classification and labelling indistinctly to refer the assignment of labels
to data samples.

Chapter 3. Classification problem 23

3.4 Proposal

Our automatic volume labeling system bases on the combination of a set of trained

binary classifiers. We consider the general ECOC framework to deal with multi-class

labeling. As a case study, we use Adaboost to train the sets of binary classifiers. Next,

we briefly review these two methodologies.

3.4.1 Error-Correcting Output Codes

Given a set of N classes (volume structures or regions with certain properties) to be

learnt in an ECOC framework, n di↵erent bi-partitions (groups of classes) are formed,

and n binary problems over the partitions are trained. As a result, a codeword of length n

is obtained for each class, where each position (bit) of the code corresponds to a response

of a given classifier h (coded by +1 or -1 according to their class set membership, or 0 if a

particular class is not considered for a given classifier). Arranging the codewords as rows

of a matrix, we define a coding matrix M , where M 2 {�1, 0,+1}N⇥n. Fig. 3.2(a) and

(b) show a volume data set example and a coding matrix M , respectively. The matrix

is coded using 15 classifiers {h1, ..., h15} trained using a few voxel samples for each class

of a 6-class problem {c1, ..., c6} of respective codewords {y1, ..., y6}. The classifiers h are

trained by considering the pre-labelled training data samples {(⇢1, l(⇢1)), ..., (⇢k, l(⇢k))},
for a set of k data samples (voxels in our case), where ⇢ is a data sample and l(⇢k) its

label. For example, the first classifier h1 is trained to discriminate c1 against c2, without

taking into account the rest of classes. Some standard coding designs are one-versus-all,

one-versus-one, and random [ASS02]. Mainly, they di↵er on the definition of the sub-

groups of classes in the partitions of each binary problem. Due to the huge number of

bits involved in the traditional coding strategies, new problem-dependent designs have

been proposed [ETP⇤08]. These strategies take into account the distribution of the data

in order to define the partitions of classes of the coding matrix M .

During the decoding or testing process, applying the n binary classifiers, a code X

is obtained for each data sample ⇢ in the test set. This code is compared to the base

codewords (yi, i 2 [1, .., N]) of each class defined in the matrix M , and the data sample is

assigned to the class with the closest codeword (e.g. in terms of distance). In fig. 3.2(b),

the new code X is compared to the class codewords {y1, ..., y6} using the Hamming

Decoding [ASS02], HD(X, yi) =
Pn

j=1(1� sign(xj · yji))/2, where Xj corresponds to the

j-th value of codeword X, and the test sample is classified by class c1 with a measure of

0.5. The decoding strategies most widely applied are Hamming and Euclidean [ASS02],

though other decoding designs have been proposed [EPR10].

Chapter 3. Classification problem 24

3.4.2 Adaboost classifier

In this work, we train the ECOC binary classifiers h using Adaboost classifier. Ad-

aboost is one of the main preferred binary classifiers in the ML community based

on the concept of Boosting [FHT98]. Given a set of k training samples, we define

hi ⇠ Fi(⇢) =
PM

m=1 cmfm(⇢), where each fm(⇢) is a classifier producing values ±1 and

cm are constants; the corresponding classifier is sign(F (⇢)). The Adaboost procedure

trains the classifiers fm(⇢) on weighed versions of the training sample, giving higher

weights to cases that are currently misclassified [FHT98]. Then, the classifier is defined

to be a linear combination of the classifiers from each stage. The binary Discrete Ad-

aboost algorithm used in this work is shown in Algorithm 3. Ew represents expectation

over the training data with weights w = (w1, w2, .., wk), and 1(S) is the indicator of the

set S (1 or 0 if S is or not satisfied). Finally, Algorithm 2 shows the testing of the final

decision function F (⇢) =
PM

m=1 cmfm(⇢) using Adaboost with Decision Stump ”weak

classifier”. A Decision Stump is a simple directional threshold over a particular feature

value. Each Decision Stump fm fits a threshold value Tm and a polarity (directionaly

over the threshold) Pm over the selected m-th feature. In testing time, ⇢m corresponds

to the value of the feature selected by fm(⇢) on a test sample ⇢. Note that cm value is

subtracted from F (⇢) if the classifier fm(⇢) is not satisfied on the test sample. Otherwise,

positive values of cm are accumulated. Finally decision on ⇢ is obtained by sign(F (⇢)).

ALGORITHM 1: Discrete Adaboost training algorithm.

1: Start with weights w
i

= 1/k, i = 1, .., k.
2: Repeat for m = 1, 2, .., (M):

(a) Fit the classifier f
m

(⇢) 2 �1, 1 using weights w
i

on the training data.
(b) Compute err

m

= E
w

[1(l(⇢) 6=fm(⇢)
], c

m

= log((1� err
m

)/err
m

).
(c) Set w

i

 w
i

exp[c
m

· 1(l(⇢i) 6=fm(⇢i)
], i = 1, 2, .., k, and normalize so that

P
i

w
i

= 1.

3: Output the classifier F (⇢) = sign[
PM

m=1 cmf
m

(⇢)].

ALGORITHM 2: Discrete Adaboost testing algorithm.

1: Given a test sample ⇢
2: F (⇢) = 0
3: Repeat for m = 1, 2, ..,M:

(a) F (⇢) = F (⇢) + c
m

(P
m

· ⇢m < P
m

· T
m

);
4: Output sign(F (⇢))

3.5 Proposal: General framework for multi-class volume

labeling

Here, we present our automatic system for multi-class volume labeling. The system per-

forms the following stages: a) All-pairs ECOC multi-class learning, b) ECOC submatrix

definition, c) Adaptive decoding, and d) Label mapping.

Chapter 3. Classification problem 25

3.5.1 All-pairs multi-class learning

Given a set of pre-labelled samples for each volume structure, we choose the one-versus-

one ECOC design of N(N �1)/2 classifiers to train the set of all possible pairs of labels.

An example of a one-versus-one ECOC coding matrix for a 6-class foot problem is shown

in Fig. 3.2(a) and (b). The positions of the coding matrix M coded by +1 are considered

as one class for its respective classifier hj , and the positions coded by -1 are considered

as the other one. For example, the first classifier is trained to discriminate c1 against

c2; the second one classifies c1 against c3, etc., as follows:

h1(x) =
n

1 if X 2 {c1}
�1 if X 2 {c2}

, .., h15(x) =
n

1 if X 2 {c5}
�1 if X 2 {c6}

(3.1)

(a) (b) (c) (d)

Figure 3.2: (a) True labels for a foot volume of six classes; (b) One-versus-one ECOC
coding matrix M for the 6-class problem. An input test codeword X is classified by
class c1 using the Hamming Decoding; (c) Submatrix S

M

defined for an interaction set
I = {{c1, c2, c4, c5}, {c3, c6}}; (d) Visualization in the new label space.

The selection of the one-versus-one design has two main benefits for our purpose. First,

though all pairs of labels have to be split in a one-versus-one ECOC design, the individual

problems that we need to train are significantly smaller compared to other classical

ECOC classifiers (such as one-versus-all). As a consequence, the problems to be learnt

are usually easier since the classes have less overlap. Second, as shown in Fig. 3.2,

considering binary problems that split individual labels allow us for combining groups

of labels on-demand just by the selection of a subgroup of previouly trained classifiers,

as we show next.

3.5.2 ECOC submatrix definition

Given a volume that can be decomposed into N di↵erent possible labels, we want to

visualize in rendering time the set of labels requested by the user. For this purpose,

we use a small set of ground truth voxels described using spatial, value, and derivative

features to train the set of N(N � 1)/2 Adaboost binary problems that defines the one-

versus-one ECOC coding matrix M of size N ⇥ n. Then, let us define the interaction

Chapter 3. Classification problem 26

of the user as the set I = {I0, .., Iz} = {{ci, .., cj}, ..{ck, .., cl}}, where I, |I| 2 {1, .., N}
is the set of groups of labels selected by the user, and I0 contains the background

(always referred as c1) plus the rest of classes not selected for rendering, I0 = {ci}, 8ci /2
{I1, .., Iz},

S
ci2I = {c1, .., cN},

T
ci2I = ;. Then, the submatrix SM 2 {�1, 0,+1}N⇥Z

is defined, where Z n is the number of classifiers selected from M that satisfies the

following constraint,

hi|9j,Mji 2 {�1, 1}, cj 2 I \ I0 (3.2)

For instance, in a 6-class problem of 15 one-versus-one ECOC classifiers (see Fig. 3.2(b)),

the user defines the interaction {c3, c6}, resulting in the interaction model I = {{c1, c2, c4, c5}, {c3, c6}}
in order to visualize two di↵erent labels, one for background and other one for those

voxels with label c3 or c6. Then, from the original matrix M 2 {�1, 0,+1}6⇥15, the sub-

matrix SM 2 {�1, 0,+1}6⇥9 is defined, as shown in Fig. 3.2(c). Note that the identifier

i of each classifier hi in SM refers to its original location in M .

3.5.3 Adaptive decoding

The proposed ECOC submatrix SM encodes the minimum required number of binary

classifiers from a one-versus-one coding matrix M to label the sets of structures defined

by the user in I. However, this novel definition of ECOC submatrices requires a read-

justment of the decoding function � applied. For instance, if we look at the matrix M

of Fig. 3.2(b), one can see that each row (codeword) of M contains the same number of

positions coded by zero. If one applies a classical Hamming decoding, obviously a bias

in the comparison with a test and a matrix codeword is introduced to those positions

comparing membership {�1, 1} to 0. Note that the zero value means that the class has

not been considered, and thus, it makes no sense to include a decoding value for those

positions. However, since in the one-versus-one design all the codewords contain the

same number of zeros, the bias error introduced for each class is the same, and thus, the

decoding measurements using classical decoding functions are comparable. In our case,

this constraint does not hold. Look at the submatrix SM of Fig. 3.2(c). The selection

of submatrices often defines coding matrices with di↵erent number of positions coded

to zero for di↵erent codewords. In order to be able to successfully decode a submatrix

SM we take benefit from the recent Loss-Weighted proposal [EPR10], which allows the

decoding of ternary ECOC matrices avoiding the error bias introduced by the di↵erent

number of codeword positions coded by zero. The Loss-Weighted decoding is defined as

a combination of normalized probabilities that weights the decoding process. We define

a weight matrix MW by assigning to each position of the codeword codified by {�1,+1}
a weight of 1

n�z , being z the number of positions of the codeword coded by zero. More-

over, we assign a weight of zero to those positions of the weight matrix MW that contain

a zero in the coding matrix M . In this way,
Pn

j=1MW (i, j) = 1, 8i = 1, ..., N . We assign

to each position (i, j) of a performance matrix H a continuous value that corresponds

Chapter 3. Classification problem 27

to the performance of the classifier hj classifying the samples of class ci as shown in

eq. 3.3. Note that this equation makes H to have zero probability at those positions

corresponding to unconsidered classes. Then, we normalize each row of the matrix H

so that MW can be considered as a discrete probability density function (eq. 3.5). In

fig. 3.3, a weight matrix MW for a 3-class toy problem of four classifiers is estimated.

Fig. 3.3(a) shows the coding matrix M . The matrix H of Fig. 3.3(b) represents the ac-

curacy of the classifiers testing the instances of the training set. The normalization of H

results in a weight matrix MW shown in Fig. 3.3(c). Once we compute the weight matrix

MW , we include this matrix in a loss-function decoding formulation, L(✓) = e�✓, where

✓ corresponds to yji · f(⇢, j), weighted using MW , as shown in eq. 3.6. The summarized

algorithm is shown in table 3.1.

Loss-Weighted strategy: Given a coding matrix M ,

1) Calculate the performance matrix H,

H(i, j) =
1

m
i

miX

k=1

'(hj(⇢i
k

), i, j) (3.3)

based on '(xj , i, j) =

⇢
1, if Xj = yj

i

,
0, otherwise.

(3.4)

2) Normalize H:
P

n

j=1 MW

(i, j) = 1, 8i = 1, ..., N :

M
W

(i, j) =
H(i, j)P
n

j=1 H(i, j)
, 8i 2 [1, ..., N], 8j 2 [1, ..., n]

(3.5)
3) Given a test data sample ⇢, decode based on,

�(⇢, i) =
nX

j=1

M
W

(i, j)L(yj
i

· f(⇢, j)) (3.6)

Table 3.1: Loss-Weighted algorithm.

3.5.4 Adaboost Look up table (LUT) representation

We propose to define a new and equivalent representation of cm and |⇢| that facilitate

the parallelization of the testing. We define the matrix Vfm(⇢) of size 3 ⇥ (|⇢| · M),

where |⇢| corresponds to the dimensionality of the feature space. First row of Vfm(⇢)

codifies the values cm for the corresponding features that have been considered during

training. In this sense, each position i of the first row of Vfm(⇢) contains the value cm

for the feature mod(i, |⇢|) if mod(i, |⇢|) 6= 0 or |⇢|, otherwise. The next value of cm

for that feature is found in position i + |⇢|. The positions corresponding to features

not considered during training are set to zero. The second and third rows of Vfm(⇢)

for column i contains the values of Pm and Tm for the corresponding Decision Stump.

Note that in the representation of Vfm(⇢) we lose the information of the order in which

the Decision Stumps were fitted during the training step. However, though in di↵erent

order, all trained ”weak classifiers” are represented, and thus, the final additive decision

Chapter 3. Classification problem 28

model F (⇢) is equivalent. In our proposal, each “weak classifier” is codified in a channel

of a 1D-Texture.

3.5.5 Label mapping

Given the submatrix SM and the user interaction model I, after classification of a

voxel ⇢ applying the Loss-Weighted decoding function, the obtained classification label

ci, i 2 {1, ..N} is relabelled applying the mapping,

LM (I, ci) =

8
><

>:

l1 if ci 2 I1

...

lz if ci 2 Iz

where li, i 2 {1, .., z} allows to assign RGB↵ or importance values to all voxels that

belong to the corresponding selected classes in Ii. These functions are useful to provide

flexibility to our framework in order to be applied in several visualization tasks, such

as importance-driven visualizations or automatic viewpoint selections. As an example,

applying the interaction model I = {{c1, c2, c4, c5}, {c3, c6}} for the 6-class problem of

Fig. 3.2(a), we obtain the submatrix SM of Fig. 3.2(c). Applying the Loss-Weighted

decoding over SW , and the mapping function {{c1, c2, c4, c5}, {c3, c6}} �! {0, 1}, the
new volume representation is shown n Fig. 3.2(d).

(a) (b) (c)

Figure 3.3: (a) Coding matrix of four classifiers for a 3-class toy problem, (b) Perfor-
mance matrix, and (c) Weight matrix.

3.6 Classification parallelization implementation

3.6.1 Introduction

In this section, we will explain in detail which part of the framework we have parallelized

and how we have done it. We will describe some possible parallelizations and select one

following the AIMparallel methodology. Additionally we will implement one of the

discarded implementations to compare the results and verify.

The slowest part on the framework is the classification, where depending on the number

of classes and voxels on the volume, can last about 5 hours on Matlab. For that reason,

on this thesis we parallelized the classification step of the framework, where many binary

Chapter 3. Classification problem 29

Adaboost classifiers are combined using an ECOC matrix, for obtaining labels from more

than two clases for each boxel.

3.6.2 Algorithm overview

In this section we describe the algorithm being parallelized, and the tasks it can be

decomposed into.

As shown in Algorithm 3, the critical section in our application is a triple iteration loop

to go through all voxels of the voxel model, VM , in an ordered traversal. Each iteration

performs three tasks: the gradient computation (Task 1), the X code word estimation

(Task 2), and the final labeling calculation (Task 3). These tasks are called T1, T2 and

T3, respectively in Algorithm 3, and are performed for each voxel vxyz.

ALGORITHM 3: Critical section serial pseudocode for the testing stage.

inputVolume : Original 3D voxel model with density values (d)
outputVolume : Multiclass labeled voxel model with single value samples
voxelFeatures : pointer to the 8 sample features for the voxel sample being processed
L : L matrix pointer containing the LUTs
X : code word of binary decission values for a single voxel sample
M : coding matrix
background value: density value threshold for the actual voxel sample to be processed

for z 0 to dim
z

do
for y 0 to dim

y

do
for x 0 to dim

x

do
d input[z][y][x] // d refers to the density value in the voxel model
if d > background value then

computeGradient(z, y, x, inputV olume[z][y][x], voxelFeatures); // T1
XCodeEstimation(voxelFeatures, L, X); // T2
FinalLabeling(X, M , outputV olume[z][y][x]); // T3

end
end

end
end

Specifically, the features of each vxyz are computed and stored in memory (pointed by

the voxelFeatures variable), at each iteration in the computeGradient function (T1).

Then, at the same iteration, a X code word of binary decision values is generated

by XCodeEstimation function (T2) for the actual vxyz voxel. In this function, the

voxelFeatures and the L variables are read to generate the contents of X. In order

to improve serial execution, we modified the Discrete Adaboost testing algorithm (see

Algorithm 2). The features are computed depending on the Pm values (lines 3(a) - 3(b)),

but the Adaboost Look Up Table allows to compute all the features without branching

depending on the weight. Then we are substituting conditional statements by more

e�cient arithmetical and logical operations. So, in our algorithm, lines 3(a) and 3(b)

are substituted by Equation 3.7.

Chapter 3. Classification problem 30

F (⇢) = F (⇢) + cm · ((2 · (Pm · ⇢m < Pm · Tm))� 1) (3.7)

Finally, before changing to the next voxel, the FinalLabeling function (T3) reads X

and the coding matrix, M , to generate a single class value for vxyz.

3.6.3 Generic parallelization proposals

In this section, we follow the methodology described in the theoretical environment we

defined, for each one of the tasks involved in the Discrete Adaboost testing algorithm (see

Section 3.6.2). At the end of the section, we comment the overheads for the interactions

between tasks (T1, T2 and T3).

3.6.3.1 Task 1 and high level overheads mapping

First we analyze the parallelization possibilities for Task 1 (T1), which is devoted to the

stencil gradient calculation, as we can see on Figure 3.4. In this task, the gradients gx, gy

and gz of a sampled voxel vxyz, as well as its magnitude |g|, are computed using central

di↵erences. T1 is a 7 point stencil operation. Thus, for each dimension, we need the two

neighbor voxel values of vxyz. This operation is data independent among voxel samples,

because the source data is not modified, and the results are 8 output-only values per

voxel.

Figure 3.4: Stencil operation used on T1. The neighbors indicated are used for
generating extra feature values of X.

As a first parallelization option T11 we could use a thread for each voxel and calculate

the gradients for all of them concurrently. This generates TMO but less than having

three threads per voxel, that in addition to more TMO, they would generate TCO and

WPO on the reduction operations.

Chapter 3. Classification problem 31

Figure 3.5: T11 implementation. On yellow the voxels for which we are calculating
the gradients. Infront and behind are stored on private memory, and yellow and blue
on local memory. The image corresponds to the data used by a workgroup of 32 ⇥ 4

work items.

As T12 option we can then focus on data locality to reduce TCO. The only way to do so

is by making threads to process more than one voxel, specifically voxels that share data

for calculating the gradients. This reduces the number of threads, therefore it produces

WPO but also reduces TMO and TCO. We can find in the literature several methods

for reducing TCO in this way like the Semi-stencil algorithm [dlCAPC10] that exploits

data locality. In our case, as we are using only one value per neighboring side, and we

are not using the central value, we can only do operations for the voxel corresponding

to the central value. Thus this technique is not useful. Depending on the architecture

we will calibrate the number of threads taking into account this analysis.

3.6.3.2 Task 2 and high level overheads mapping

Next, we propose several parallelization options for Task 2 (T2), which performs the

binary-classification step. T2 refers to the testing or decoding process, where the cor-

responding LUTs of the n binary classifiers are applied to each voxel vxyz (see Sec-

tion 3.4.1).

As we defined in Section 3.5.4, each L has three (|⇢|⇥Wc)-sized rows. Let dim(VM) be

the total amount of voxels of the model. Thus, the T2 cost is O(dim(VM)⇥ n⇥ (|⇢|⇥
Wc)). We propose multiple options for parallelizing T2:

• First one is called T21 and it consists of creating a thread for each voxel vxyz, as

shown in Fig. 3.6. Ideally, in a machine with dim(VM) processors, the final cost

of this option is O(n⇥ (|⇢|⇥Wc)). Among the three values dim(VM) will always

Chapter 3. Classification problem 32

be greater than n or (|⇢|⇥Wc). Also, there is no thread to thread communication

so we have a balance between parallelism (WPO) and communication (TCO), and

also thread management (TMO).

Figure 3.6: Parallelization option T21: a thread is created for each voxel v
xyz

.

• T22 is a second parallelization option of Task 2. In this option we increase paral-

lelism, as shown in Fig. 3.7. We can create dim(VM) ⇥ |⇢| ⇥Wc) threads. One

thread computes a value for each LUT-entry for each voxel (see Fig. 3.7). The

theoretical cost of this approach is O(n). However, threads that classify the same

voxel vxyz should communicate in order to compute the final sign sign(F (⇢)) for

vxyz. This behavior increases the thread communication overhead TCO defined

in Section 2.3.2. Moreover, this option also has WPO and TMO because there

are di↵erent numbers of threads being used on each step of T2. So the increased

parallelism is only e↵ective in some steps of T22.

Chapter 3. Classification problem 33

Figure 3.7: Parallelization option T22: one thread computes a single LUT value for
each LUT, for a single voxel. Some extra communication among threads should be

done in order to compute the final sign(F (⇢)) for each v
xyz

.

• Finally, T23 is the last parallelization option we propose for Task 2. It is based

on creating n⇥ dim(VM) threads. Each thread processes one voxel vxyz with one

LUT . Then, the final cost is O(|⇢|⇥Wc). In this solution, we deal with dim(VM)

groups of n threads with a value related to the same voxel vxyz. These n threads

can use this own generated values (ideally stored on local memories) to process

later T3 in parallel. This option still presents a big TCO because all the threads

need the data generated on T1 but it is possible to skip the final reduction step,

depending on the configuration of step T3. It has more WPO but less TCO than

T22.

Chapter 3. Classification problem 34

Figure 3.8: Parallelization option T23: one thread reads a full LUT, and a row of m
threads share the same value from the input data. Reading of the coding matrix M is

done concurrently.

Following the reasoning of the analysis on T12 we could try to recycle data, by making

each thread to process more than one voxel and storing the LUT values in local memories.

This reduces TCO and increases WPO. This can be applied in all three options T21,

T22 and T23 if the architecture o↵ers enough resources.

3.6.3.3 Task 3 and high level overheads mapping

Finally, the last analysis is for Task 3 (T3), which performs the Multi-class labeling.

T3 computes for each vxyz voxel the lowest distance from its X-code word to each of

the N rows of the coding matrix M . The row corresponding to the minimum distance

identifies the final class label. Thus, this process has a total cost of O(dim(VM) ⇥
dim(X)⇥N) where dim(X) = n. As in T2, we describe di↵erent options to parallelize

it, T31 and T32. T31 maintains a cost of O(dim(X) ⇥ N) by mapping one work item

per voxel as in T21. On the other hand, T32 uses one work item per voxel, X-code word

value. Thus it would have O(N). This second option is ideal to be implemented along

T23, since the number of threads through T23 and T32 is the same, avoiding TMO and

reduction operations between options TCO. The combination has a lower WPO as well,

but it still has a broadcast operation at the beginning of T23 and a reduction step at

the end of T32 that generate TCO.

Chapter 3. Classification problem 35

3.6.4 GPU implementation (high and low level merging)

In T1 we have to read repeated data from global memory. To avoid this problem, we

implemented T12 following the Micikevicius GPU stencil algorithm [Mic09] that moves

the repeated readings from global memory to local and private memory. This algorithm

uses dimx⇥dimy work items and a for loop for dimz. With this approximation, we work

with from 16384 work items (1283-sized voxel dataset) to 160000 work items (4003-sized

voxel dataset), that are good amounts of work items for a GPU. In real environments

this algorithm will scale to up to 4194304 work items with 20483 voxel datasets. If

needed we can increase the number of threads used by executing two or more equally

distant dimx ⇥ dimy planes in dimz. This planes will use the same algorithm for a

smaller volume. We could find the balance between increased TCO and reduced WPO

that way as a future work.

Considering T2, as we have seen on section 2.3.3.1, on GPU’s sTCO is the most relevant

overhead, and in T22 and T23 aTCO is bigger than in T21. We can approximate TCO

by calculating the total amount of Ncl in the work item communication operations.

This value is huge, thus we selected T21 as the best parallelization option. We also

implemented T22 in order to empirically check our assumptions. In both T12 and T21

we used dimx ⇥ dimy work items in order to take advantage of having the results in

private memories from the first task T1. Nevertheless both T22 and T23 can be good

candidates for the newly announced Dynamic Parallelism in the Tesla K20 NVIDIA card

and Maxwell cards [NVI12].

T2 generates a testing X code word, for each voxel. The size of each X code word is n

(the number of binary classifiers used). In our experiments n varies from 1 to 36. In the

worst case then we will have to store dim(VM) ⇥ 36 4byte elements that easily might

not fit into the GPU global memory. We solve this by following the same philosophy

as in T12, by processing one dimx ⇥ dimy plane in T1, reading the results on T2 and

storing the code words for only that plane. Once used by T3, the pointer used for

the code words is reused for the next plane. That way we only need a pointer of size

dimx ⇥ dimy ⇥ n⇥ 4bytes, to process all the voxel world.

When considering T3, we also have to consider how T2 stored the data on memory,

and in which memory. This will condition how the data can be read from T3 in an

e�cient manner. If we choose T21 or T22, then it is not worth to use T32 option since

it would mean storing in T2 and reading on T3 from global memory in a non coalesced

manner. Instead, T31 would maintain coalesced reads to global memory. But if we

where to use T23, then T32 would be the best. Again, the reduction steps in T32 make

it the option with more TCO, comparing to T31, but a good choice for testing Dynamic

Parallelism [NVI12]. We implemented T31 and integrated the three tasks in a single

kernel, using dimx ⇥ dimy work items.

Chapter 3. Classification problem 36

Figure 3.9: Data flow for all the three steps: 1) The results of T1 are kept on registers
to be read from T2; 2) The results of T2 are stored in global memory; 3) T3 reads the
results of T2 and reads the coding matrix from local memory since it will be read

throughout all z axis. Results are finally stored in global memory.

As it can be seen in Fig. 3.9, the data-flow between the three tasks using T21 and T31

is as follows:

1. The results of T1 are kept on registers to be read from T2.

2. The results of T2 are too big to be stored on registers or local memory so we use

global memory. In this case, GPUs with L2 cache reduce the overhead of using

this global memory. The LUT values are also stored in global memory because for

some values of n they don’t fit on local memory.

3. T3 reads the results of T2 and reads the coding matrix from local memory since

it will be read throughout all z axis. Results are finally stored in global memory.

As a final remark, considering the Host to Device memory transfer overhead, we decided

to transfer only the density value of each voxel to the GPU, and on the GPU calculate

the rest of the values in T1, like the voxel coordinates, gradients and magnitude. Also,

we are only reading from Host the final GPU results and not any intermediate value.

Chapter 3. Classification problem 37

3.6.5 OpenMP and GCD CPU implementations

A fair CPU-GPU comparison should exploit the parallelism both options o↵er and it

should compare similar price point CPUs and GPUs. For this purpose, we have used

both OpenMP and GCD for implementing two CPU versions. OpenMP is a well-known

API for shared-memory parallel programming in C, C++ and Fortran. On the other

hand, we explore GCD since it presents some novel concepts that we think can make it

technologically a better option than OpenMP.

3.6.5.1 Implementation decisions for OpenMP

For T1, T2 and T3, with OpenMP the limitation is the same, TMO. We have taken the

idea of one thread per voxel in a dimx⇥dimy plane in T12+T21+T31 and reduced it to

several voxels per thread. So we have parallelized the external for loop (see Algorithm 3)

by scheduling some z iterations to each thread. The scheduling we have chosen is the

OpenMP dynamic scheduling, because the work done for each x iteration depends on

an initial comparison. If the density value of the voxel is below a threshold, we will not

process this voxel. So we need to dynamically feed the threads. This dynamic scheduling

introduces TMO because there is a thread on runtime devoted to work scheduling, but

reduces WPO by balancing the work load.

3.6.5.2 Implementation decisions for CPU’s with GCD

For GCD we followed the same philosophy as with OpenMP. The di↵erence is that,

instead of having to analyze the work balancing and choose one of three scheduling

policies provided by OpenMP, we just had to convert the same external for loop, into

a GCD function that enqueues each iteration as a block, with an incremental variable

corresponding to the variable that represents dimz position and which the for loop

increments. Knowing the GCD specification, work balancing will be automatically done,

and we wanted to compare the execution times to the same parallelization strategy with

OpenMP on the same system.

3.6.5.3 Other architectures not implemented

As we mentioned in Section 3.6.4 the theoretical option T12 +T23 +T33 has a high po-

tential to be the best option for NVIDIA Dynamic Parallelism [NVI12]. With Dynamic

Parallelism, a parent grid (the same as an NDRange space of work items) would follow

Task 1 as in the GPU implementation (one thread per voxel for one plane). Then, each

thread would call a child grid with the proper dimensions to have one thread per LUT

(T23). The child grid would produce a test code word value per thread that will be

Chapter 3. Classification problem 38

compared to one of the corresponding coding matrix code word values. The child grids

will repeat the operation for each row on the coding matrix. The final step would be a

reduce-compare operation.

Following recent release of Adapteva’s Epiphany documentation [Ada13, Ada], we see

that this architecture follows a global memory and local memory space model, similar to

the GPU. It is also connected to a CPU with a system memory like in the case of GPU’s.

There are two di↵erences with GPU’s though: first each core is completely independent

of the others at execution level, and second the global memory space is distributed

among cores and accessed through a fast on-chip network. In this case we would feed

the data while reading results due to the limited amount of global memory. Each core

would be responsible for processing several voxels like on CPU implementations. Thus

we could store the coding matrix in local memory and the LUT’s in global memory.

Then process all the assigned voxels and finally send the results while receiving the next

voxels.

3.7 Simulations and results

This section describes the experimental setup and shows the performance evaluation in

terms of classification accuracy and execution time.

3.8 Setup

Data: We used three data sets, Thorax data set2 of size 400⇥400⇥400 represents a MRI

phantom human body; Foot and Brain3 of sizes 128⇥128⇥128 and 256⇥256⇥159 are CT

scans of a human foot and a human brain, respectively.

Methods: We use the one-versus-one ECOC design, Discrete Adaboost as the base classifier,

and we test it with di↵erent number of decision stumps. For each voxel sample ⇢, we

considered eight features: x, y, z coordinates, the respective gradients, g
x

, g
y

, g
z

, the

gradient magnitude, |g| and the density value, v. The system is compared in C++,

OpenMP, GCD, and OpenCL codes.

Hardware/Software: The details of the di↵erent CPU and GPU hardware configurations

used in our simulations are shown in Tables 3.2 and 3.3, respectively. The viewport size

is 700⇥650. We used the MoViBio software developed by the GIE Research Group at the

UPC university [mov].

Measurements: We compute the mean execution time from 500 code runs. For the accuracy

analysis, we performed 50 runs of cross-validation with a 5% stratified samplings.

2http://www.voreen.org
3http://www.slicer.org/archives

Chapter 3. Classification problem 39

CPU’s AMD Phenom 2 Intel Core 2 Intel Core
955 Duo P8800 i5 750

Frequency 3.2GHz 2.66GHz 2.66GHz to 3.2GHz
Cores 4 2 4
Threads per core 1 1 1
L3 cache 6MB 0MB 8MB
SSE level 4A 4.1 4.2

Table 3.2: Di↵erent CPU configurations used for evaluation.
GPU’s ATI NVIDIA

Processing Elements 720 448
Stream or CUDA cores 144 448
Compute Units 9 14
Max PE per WI 5f / 0d 1f / 1d
PE available per CU 80f / 0d 32f / 4d
Warp size 64 Work Items 32 Work Items
Memory type GDDR 5 GDDR 5
Global Memory size 1GB 1.28GB
Local Memory size 32KB 16KB or 48KB

Table 3.3: Di↵erent GPUs architectures used for evaluation, where ’d’ and ’f’ stands
for double and float, respectively.

3.9 Classification accuracy analysis

Figure 3.10: Classification accuracies for the di↵erent data set structures and number
of decision stumps in the Adaboost-ECOC framework.

(a)

(b) (c)

Figure 3.11: Comparison of the pre-labelled (left) and the classified data set (right)
for (a) the Brain, (b) Foot, and (c) Thorax data sets, respectively.

Fig. 3.10 shows the classification accuracy of the framework for the data sets considering

di↵erent number of decision stumps M. The accuracies are shown individually for each

Chapter 3. Classification problem 40

volume structure. From Fig 3.10 one can see that even for di↵erent complexity of volume

structures, most of the categories obtain upon 90% of accuracy.

In the case of the Foot data set, accuracy achieves near 100% for all the categories.

In Fig. 3.11(b), we show the same section of the full pre-labelled Foot data set for six

classes and the obtained classification with our proposal. In Fig. 3.12, we show selections

and di↵erent shadings of the visualizations to demonstrate the flexibility of submatrix

testing and the label mapping for di↵erent interaction models I.

Figure 3.12: Case study of the 6-class foot volume: c1 is the background, c2, c3,
c4 are the bone structures of the palm, ankle and tooth, respectively, and c5 and
c6 are the soft tissue of the palm/ankle and tooth, respectively. Color Plates show
the user interaction sets (from left to right) I = {{c1}, {c2}, {c4}, {c5}, {c6}}, I =

{{c1}, {c2, c3}, {c5}, {c6}}, and I = {{c1}, {c2}, {c3}, {c4}}, respectively.

In case of the Brain data set, we have trained nine classes of di↵erent structures of the

brain that shares the same density and gradient values, achieving accuracies between

90% and 100%, where the lowest value is for the class c6, with values near 90%. The

highest accuracy corresponds to the class c9. In Fig. 3.11(a), we show two sections of the

pre-labelled brain structures together with the results obtained by our multi-classifiers.

Note that classification inaccuracies do not present significant artifacts in the rendering.

In Fig. 3.13 we also present some illustrative visualizations of this multi-classified data

set applying di↵erent user interactions I. Finally, Fig. 3.11(c) shows an example of a

full Thorax volume classification for di↵erent structures4.

Figure 3.13: Case study of the 9-class Brain volume: the classes corresponds to
di↵erent structures of the brain such as hemispheres, optical nerves and cerebellum

with di↵erent shading techniques.
4Note that the proposed multi-class GPU-ECOC framework is independent of the classification/seg-

mentation strategy applied. Thus, di↵erent feature sets as well as labeling strategies could be considered,
obtaining di↵erences in classification accuracy.

Chapter 3. Classification problem 41

3.10 Execution time analysis

We compared the time performance of our GPU parallelized testing step in relation

to the CPU-based implementations based on sequential C-code, OpenMP and GCD

approaches. In table 3.4, for each implementation we show an averaged time of the 500

executions. We employ di↵erent sized data sets with several number of classes to be

labelled and distinct user-selections. Our proposed OpenCL-based optimization has an

average of speed up of 109x, 31.11x, and 31.14x over the sequential C-coded algorithm,

the OpenMP and the GCD based algorithms, respectively. The results are remarkably

promising considering that the whole tested data sets fit in the GPU memory card. We

are planning to expand our implementation using well-known bricking techniques. In

table 3.4, we can observe that time values are proportional to three features: the data

set sizes, the number of classes,N , and the number of classifiers, Z, used for the selected

classes. Specifically, the most influential feature in the time value is the size of the data

set (see rows 6, 10 and 16 of table 3.4). Thus, including more classifiers hardly a↵ect

the time performance of the system. In addition, we obtain real-time in the Foot data

set.

Data
set

N Sel.
classes

Z CPU OpenMP GCD OpenCL

Foot 3 2 2 0.387 0.111 0.111 0.008
3 3 3 0.577 0.165 0.165 0.002
4 3 5 0.948 0.271 0.271 0.020
4 4 6 1.139 0.325 0.325 0.038
6 6 15 4.986 0.760 0.769 0.062
9 9 36 8.319 1.787 1.777 0.091

Brain 9 2 15 39.396 11.190 11.177 0.358
9 4 26 68.485 19.475 19.615 0.649
9 6 33 87.558 24.947 24.875 0.848
9 9 36 96.859 27.642 27.557 1.263

Thorax2 2 1 26.849 7.604 7.600 2.694
8 2 13 321.768 94.589 94.579 2.011
8 4 22 564.577 160.801 160.784 3.532
8 8 28 754.203 220.430 220.388 6.007
9 7 35 923.225 260.751 259.489 5.955
9 9 36 971.915 270.751 269.751 7.763

Table 3.4: Testing step times in seconds of the di↵erent datasets using a submatrix
S
M

depending on the subset of selected classes. The whole matrix M is used when all
classes are selected. The CPU, OpenMP and GCD times are tested on a Intel Core i5

750 (see Table 3.2). OpenCL times are tested on a GTX 470 (see Table 3.3).

In Table 3.5 we observe time values of our OpenCL implementation for di↵erent parallel

platforms: the ATI Radeon, the Nvidia Geforce GTX470, and the AMD Quad Core. We

conclude that the best performance is achieved on the Nvidia graphic card whose time

ranges from a few seconds in the worst case to some miliseconds for the best one. In

addition, we executed the OpenCL code in the AMD CPU and we obtained speed ups of

1.02x, 1.06x, and 1.2x over the corresponding OpenMP implementation for 9 classes and

36 classifiers of the three data sets, Foot, Brain and Thorax, respectively. We observe

that the greater dataset, the better OpenCL performance.

Chapter 3. Classification problem 42

3.11 Conclusions

In volume visualization, users usually face with the problem of manually defining regions

of interest. To cope with this problem, we proposed an automatic framework for general

multi-class volume labelling on-demand. The system is decomposed into a two-level

GPU-based labelling algorithm that computes in time of rendering voxel labels using the

ECOC framework with the Adaboost classifier. After a training step using few volume

voxel features from di↵erent structures, the user is able to ask for di↵erent volume

visualizations and optical properties. Additionally, to exploit the inherent parallelism

of the proposal, we implemented the testing stage in C++, OpenMP, GCD, and GPU-

OpenCL. Our empirical results indicate that the proposal have the potential to deliver

worthwile accuracy and speeds up execution time. Overall, the proposal of this paper

presents a novel, automatic, and general-purpose multi-decision framework that performs

real-time computation.

Data
set

N Selected
classes

Z ATI NVIDIA AMD Quad

Foot 3 2 2 0.028 0.008 0.236
4 3 5 0.066 0.020 0.495

Brain 9 2 15 1.498 0.358 7.114
9 4 26 2.636 0.649 12.393
9 6 33 3.403 0.848 16.047
9 9 36 3.818 0.959 18.446

Thorax 8 2 13 8.750 2.011 56.374
8 4 22 14.860 3.532 95.657
8 6 27 18.340 4.467 118.978
8 8 28 19.150 4.752 125.454

Table 3.5: Di↵erent timings for di↵erent parallel architectures obtained by the ATI-
Radeon, Nvidia GTX470 and AMD Phenom 2 955.

There exists several points in this novel framework that deserve future analysis. We plan

to analyze the e↵ect of classifier generalization reducing the initial number of voxels in

the ground truth training set, look for di↵erent feature space representations including

contextual information, study the use of di↵erent base strategies in the ECOC frame-

work from both learning and segmentation points of view, as well as new parallelization

optimizations. In order to avoid possible memory usage limitations for larger volume

data sets, we will also analyze bricking strategies. Finally, we plan to embed the train-

ing step in the visualization pipeline so that online learning and forbidden steps can be

performed on-demand in the rendering.

Chapter 4

Parallel system proposal

Additionally to all the work presented, we show a proposal of a parallel system, that

tries to be scalable and simplify parallel programming.

4.1 Introduction

Having a parallel computing system with all of its processing units busy with program

code most of the time for the execution of a parallel program, is the main problem

to solve in Parallel Computing Science. There are plenty of improvements in one area

or another (hardware, algorithms, compiler, languages, operating systems), in order to

make parallel systems more e�cient, scalable, and easy to program. Sometimes, for

improving scalability, sacrificing some programability may turn to be a success, as is

the case for GPGPU’s. Other times, making it easier to parallelize a code, may be

successful too, like with OpenMP. Some other works have tried to make any parallel

code, portable across architectures, like OpenCL. Others try to ease the programming

burden for supercomputer programmers, like OmpSs [BSC], but don’t make it easier for

the average programmer.

In this proposal we describe a Self Organizing Multi Agent System that tries to exploit

Agents natural parallel and decentralized working. We start by considering that a com-

puter parallel program, is programed in any sequential language like C, C++, Java,

etc... but adding the concepts already found in Apple’s GCD [App09]. Mainly, the

concepts of code Block and FIFO or concurrent queues that allow to define concurrency

or serialization across Blocks.

Starting from this point, we already have a lot of instruction blocks that point to data

they need to read or write, in a single memory space. We consider this conceptual

environment like a market in where Self Organizing Agents have the only goal to manage

to be as much time as possible consuming Blocks. They can have code Blocks, but they

43

Chapter 4. Parallel system proposal 44

may lack the data necessary to execute them. So they trade with both code Blocks

and Data, and set their expected selling or buying prices, according to this code-data

matching. The more matchings a resource (either Block or Data) is giving to an agent,

the more valuable it is for the same agent, since it will allow him to execute more

instructions.

We don’t specifically define how a Data resource transaction is done (from a computer

architecture perspective), since depending on the architecture it can be more e�cient

to consider buying a byte, or a set of bytes (a page for instance). So when we refer to

data, we talk about a conceptual unit of data with a unique global identifier. Also, each

agent has it’s own global unique identifier.

The rest of the section continues as follows. The next subsection, Definitions, presents

more specific definitions regarding the Agent behavior, how do they set prices (agent

local view of the value of a resource), and how do they negotiate (agree on resource

transactions). On the Experiments section we describe the experiment we set to start

testing this computing paradigm and be able to observe how the blocks and the data

spread across agents, as well as analyzing how much time are the agents waiting for

resources. On section Results we sow and discuss the experiment results, and some

conclusions, and finally on the Conclusions section we discuss what are the conclusions

we extract from our own proposal, experiments and results, as well as possible future

work.

4.2 Previous work

Some works on schedulers, and programming languages like OmpSs [BSC], are already

implementing many of the features we pursue with this proposal.

• Data a�nity: in some systems it is possible to know in which memory the data of

a given piece of code is, and therefore send the corresponding thread to the device

or node containing this data [Bol01, TTG95, BMD⇤11]

• Hierarchical scheduling: sometimes there are many tasks to schedule and having a

single core or node to do all the scheduling work in run time can prove to be very

ine�cient. If the language allows to generate new tasks in execution time, it is

possible for the master node to delegate further scheduling of the tasks generated

in a particular piece of code [HSSY00]

• Add asynchronicity to pieces of code with annotations over serial code [App09,

BSC]

All this features are achieved with very varied implementations, but none is implement-

ing all of them by concept. We try to define a system where all this features and more

Chapter 4. Parallel system proposal 45

are built in to the design of the Agents, and the Multi Agent System, in a natively

decentralized manner.

4.3 Definitions

On this section, we describe in detail how the system works. We define the resources,

pricing mechanism, agent behavior and all the necessary definitions in order to be able

to simulate the system.

4.3.1 Blocks and Data

We now show some figures representing a Block and a Data element.

(a) (b)

Figure 4.1: (a) Instruction Block and (b) data element

As seen on Figure 4.1 (a), a Block is made of instructions that use Data elements. We

only describe the need for an instruction to use a Data element with a certain unique

global ID. Blocks also have a global and unique ID that on normal systems is the memory

position in where the code of the Block starts.

As seen on Figure 4.1 (b), a Data element is formed by a global unique ID, and data.

We will only define the ID for our experiments, since we focus on scheduling. The size of

the data (like using pages of data) is something we will consider in further work, towards

a real implementation of the system.

4.3.2 Negociation

We define negotiation as an comparison on expected prices (each agent has it’s own

expected price) for a given resource. A selling action is performed when the two agents

Chapter 4. Parallel system proposal 46

involved agree on the price. A price agreement is a condition where the buyer agent sets

an expected price equal or higher than the price set by the seller agent.

4.3.3 System initialization and global market

The system starts by creating FIFO and concurrent queues (as defined on GCD). There

is a global market, responsible for doing that, and enqueueing Blocks that will be shown

to the agents so they can buy them, along with the necessary data. Te same way as in

GCD a Block can enqueue another Block in a queue, but we restrict FIFO queues to be

owned only by the queue creator agent. For the sake of simplicity, on this paper we skip

the possibility of a Block to have parameters defined. With this scheme, the problem of

data dependencies is solved, the same way as in GCD.

The global market is generating only the blocks that are called from the main program.

The global market does not execute any block. So even Block creation is distributed as

in hierarchical scheduling.

The global market sets a Market Value (MV) for all the resources, either Data or Blocks.

It also adds Transmission Costs (TC) that may vary depending on the real hardware

implementation. MV may be equal to all Blocks, or the global market may analyze the

amount of work present in a Block, and set a price depending on that.

4.3.4 Agents and trading

We define a negotiation SOMAS where the following conditions are assumed:

• An agent can perform seller and buyer roles.

• The resources an agent can trade with are either asynchronous instruction blocks,

or data elements used by the instruction blocks in a single memory space.

• There is a global source of resources (the market) with a fixed or variable price,

that has already defined the instruction blocks in a way pretty similar as in

GCD [App09]. The programmer should be then aware of the dependencies and

generate blocks that are not accessing other blocks variables on the wrong order

(like in GCD). A way to further improve this could be to add dependency control

as in OmpSs [BSC]. But we start defining a more simple system focusing on the

system collaborative behavior.

• When we say that an Agent buys, we mean that there has been a price agreement

in favor of the buyer, and he gets the resource. The opposite for the seller. This are

not true roles, but a way of explaining the Agent behavior. There is no currency,

Chapter 4. Parallel system proposal 47

the only thing exchanged between Agents are Blocks or Data elements, that we

call resources.

• A resource has a value V composed of a primary value PV and Rr. Each agent has

a private view of V so he is responsible to calculate V for all resources he sees or is

aware of. PV is calculated by the amount of computation that the resource allows

the agent to do. The instruction blocks have enabled and disabled instructions (to

simplify we could enable or disable the full block). An instruction is enabled when

the agent has the data used on this instruction. So a data resource may enable a

number of instructions, or an instruction block may have more or less instructions

activated according to the data that the agent has. The PV for a resource grows

with the number of enabled instructions available on the agent due to this specific

resource.

• An agent has a limit in the number of resources it can own. This limit is a↵ecting

V . If the agent is almost full of resources, V will decrease, so he will sell cheaper

(more) and buy cheaper (less). On the contrary, if the agent has few resources the

V will be increased, so he will sell more expensive (less) and be able buy more

expensive (more). The result is V = PV + Rr where Rr = Resourceratio is a

value that quantifies the number of resources available for the agent to execute

blocks (memory, cores etc...).

• When an agent is performing the buyer role, it sets it’s expected price for the

resource by calculating the V for that resource according to the previous rules.

• When an agent is performing the seller role, it sets it’s expected selling price

by calculating the V for that resource, plus adding the ”transport fares”. So

it is adding the costs (based on transfer time) of sending the resource to the

other agent, taking into account the performance costs of sending data or blocks

through the network. Setting this extra cost allows to regulate how prioritary it is

for the system to do reduce communication, depending on the hardware used for

connecting agents.

When an agent evaluates a resource, it compares the resource V he calculated, with the

V that a limited amount of neighbors have calculated. The Agent that gives the greatest

value is the buyer and takes the resource.

4.3.5 Expected behaviors

With this definition, we expect the system to automatically use hierarchical scheduling

as we previously mentioned. Also it will perform data a�nity scheduling, since it is

controlling how much a data element is matching one or another agent. The Blocks are

Chapter 4. Parallel system proposal 48

created with a syntax similar to annotations. Additionally, the system can adapt to

di↵erent network latencies and bandwidths.

We can expect data-flow behaviors, where some agents keep the same blocks of code,

but the data moves as an stream through spontaneously pipelined agents.

We can also expect blocks of code flowing and moving from agent to agent, if the data

owned is used by many blocks in each agent, and only few blocks need the data on other

agents at a certain point.

As we can see, the intention is to take advantage of the Agent programming spirit to allow

many sorts of scheduling that will spontaneously happen as the most e�cient scheduling,

depending on data and block a�nities, agent available resources, and communication

costs.

4.4 A hardware proposal for the system

Some may argue that all the Agent processing is a huge overhead, and that a system

like this can not be e�cient. The first clue towards thinking otherwise is the actual

existence of multi agent systems for grid computing [SHL⇤06, MB05]. In this systems,

the network has a huge cost, so the overhead of the Agent program, is compensated by

the e�cient communication policies.

Additionally to this, the tendency on parallel systems is to increase the number of cores

more and more. Some projects even use low power mobile processors, and lots of them,

to create supercomputers [mon11]. But the cost of the network increases. The networks

have di�culties keeping performance on pair with the amount of data the processors can

consume. Moreover, the cores are increasingly cheap. That means, that from a market

point of view, it makes sense to devote some hardware to only the Agent program, and

some other hardware to do the calculations.

An ideal platform for experimenting would be the Adapteva’s parallella board [par13].

This board is a complete systems with CPU, ram, hard disc, and all peripheral connectors

expected on a PC. It uses two ARM CortexA9 cores traditionally used on mobile phones,

paired with an Epiphany 3 or 4 chip with 16 or 64 very low power cores, specialized on

floating point operations. The two ARM cores can be devoted to execute the OS and the

Agent program. The blocks then would be Epiphany kernels, and a virtual distributed

unified memory system should be also implemented in software using pagination. The

Agent should have some tables with information of owned kernels and memory pages,

along with a copy of the pages of few neighboring boards.

Chapter 4. Parallel system proposal 49

4.5 Experiments and results

In this section we present the simulator we created, the experiments performed with it

and the results, along with some conclusions.

4.5.1 The simulator

We implemented a simple simulator following a simplified version of the definitions. The

simulator is written in Python, for faster programming. With this version we are able

to create Agents that have the purpose of executing instructions that need data to be

executed.

Each Agent is performing two tasks, executing Block instructions (including raising

data requests), and managing the data requests he has stored. This two actions happen

serially on the simulator, but on real systems that could be simultaneous.

For simplicity, these two actions are performed in a single time step. The agent will

execute the next time step when all the rest of the agents have executed it own time

step.

The variables we can modify to see experimental results are the following:

• Number of agents on the grid.

• Number of Blocks.

• Number of data elements.

• Number of instructions for each Block.

• Number of data requests the agent will raise to the grid on a single time step.

• Number of instructions the agent will fetch on each time step.

Mainly, the question being analyzed on this work, is the e↵ects of all this variables on the

number of data requests on the grid. This can be taken as a performance metric, since

every data request will have a cost in any system, and will reduce the overall execution

performance.

We will now explain a bit deeper each class on the simulator, on the next subsections.

• Block class: This class represents a simplified GCD Block. We defined a Block as

a sequence of instructions without branches or function calls. All the instructions

read one data element. For simplicity we haven added write instructions and all

the instructions have the same execution cost.

Chapter 4. Parallel system proposal 50

We represented the sequence of instructions in a Python List. Each element of

the list contains a number that represents the dataID that the instruction would

read. So there are no real instructions, but only the information of the data that

the instruction would read.

The class has a method that simulates the fetch operation of an instruction. It

searches for the data element on a data table (another Python List ”dataTable”

owned by the agent). If the data is on that table, the instruction is considered to be

executed, and is erased from the list ”dataSequence”. If the data element was not

on the ”dataTable”, the method returns the dataID so the agent knows that the

instruction needs data that is not available at the moment. RequestsManager class

This class is a small one, that allows to control both the data ID requested by any

block on the Agent, and the number of times it has been requested. The purpose

of storing the number of times a data ID has been requested, is implemented on a

method called ”popPriorityRequest”. This methond searches for the data ID with

the greatest number of requests, erases it from the lists, and returns the data ID,

since the agent will put the request on the grid.

• Agent class: This class represents an Agent. The Agent class contains a Python

List of Block objects, and another List of integers that represent data ID.

It has two main methods. The first, ”senseResoruces”, has that name to refer to

the concept of an agent process executing in a di↵erent peace of hardware than

the one that is executing Block instructions. The Blocks might be executing and

at a certain time interval, the Agent senses the state of the blocks and stores the

information. What the method really does, is to do what in theory was already

done. It executes a number of instructions and stores the data requests if any.

The second method is ”manageRequests”. This method uses the requestManager

object to get the priority data ID and raise a data request on the grid.

The number of instructions executed on the ”senseResources” method and the

number of data requests raised to the grid on the ”manageResources” method are

set on every call. This is on the purpose of analyzing the e↵ects in the number of

data requests by changing these values. There is a this method called by the grid,

that informs the agent that someone in the grid is asking for a given data ID. The

functionality of the method is simplified to directly return the data ID and erase

the data ID from the Agent ”dataTable”.

• Grid class: This class represents a grid. This grid is very simplified. It does not

represent space, so the agents have no distance between them. All the cost of

communication is the same for all the agents. This is one of the first things to

improve on next versions, although grid access is analyzed, and can be used to

compute an access cost using the Agent ID.

Chapter 4. Parallel system proposal 51

This class has several methods. The constructor takes all the data and all the

Blocks, and generates two Python Lists with as many Lists as Agents each. Each

sublist contains a list of data elements for the first list and a list of Blocks for the

second list. Each pair of sublists will be assigned to a di↵erent Agent. The data is

spread almost randomly, as well as the Blocks. Future work will include distribut-

ing blocks and data, as well as instructions in a block, according to parallelization

strategies and algorithms to enrich the analysis.

Two methods are made for initialization purposes. They create the agents with a

pair of Block and dataTable sublists as arguments, as well as the grid itself and

an agent ID. ”finished” method increments a counter to know when all the agents

have finished. It also includes methods for reading the number or data requests

and for sending the data requests to the proper agent.

4.5.2 The experiments

The simulator was written in Python, an interpreted language that compared to other

compiled languages like C, is very slow. For this reason, the number of experiments we

have don is quiet limited, but show that the simulator works and shows the expected

behavior. Also, the information being analyzed is quite collective. The interactions

between Agents are limited to data queries, and so the possible situations are quite

predictable.

Experiment 1 The configuration for the experiment is the following:

• Agents = 100

• Blocks = 200

• Data elements = 100000

• Block Size = 100

• Requests = 1

• Instructions = 100

The number of total data requests was 19743

This is the smallest experiment. We did it just to confirm that using less Blocks and

Agents will translate into less data requests.

Experiment 2 The configuration for the experiment is the following:

• Agents = 1000

Chapter 4. Parallel system proposal 52

• Blocks = 3000

• Data elements = 100000

• Block Size = 100

• Requests = 1000

• Instructions = 100

The number of total data requests was 299567

We can see as the number of data requests on the grid has increased due to an increased

number of both Agents and Blocks. This experiment has two values that should be

suboptimal comparing to the other experiments. When the number of requests sent to

the grid on each time step, is bigger than the number of instructions executed, it means

that at each step, all the requests generated on the agent will be sent to the grid, erasing

the possibility of doing a single grid data request for several internal agent data requests

that can be coincidental.

Experiment 3 The configuration for the experiment is the following:

• Agents = 1000

• Blocks = 3000

• Data elements = 100000

• Block Size = 100

• Requests = 10

• Instructions = 1000

The number of total data requests was 299451

The di↵erence is almost not noticeable on the total number of requests comparing to

the previous experiment, but in this one the results are better. We expect a greater

di↵erence when the number of blocks is bigger. Now, each Agent has only 3 blocks, so

the request grouping can be very big.

Experiment 4 The configuration for the experiment is the following:

• Agents = 1000

• Blocks = 3000

• Data elements = 100000

Chapter 4. Parallel system proposal 53

• Block Size = 100

• Requests = 100

• Instructions = 1000

The number of total data requests was 299486

The number of requests for this experiment is quite smaller than the experiment 2. This

is normal taking into account the way agents manage requests internally.

Chapter 5

Conclusions and future work

We have seen that Parallelism, as a Computer Science research topic, and as a tool, is

deeply connected to AI. First, many AI algorithms share common purposes and appli-

cations, but some are more parallelizable than others. This can be an advantage since

this parallelization allows to add more complexity for increased accuracy on execution

time constrained applications. Second, AI techniques can be applied for decision making

when scheduling tasks on a system or when deciding which resources to use for a given

task. This could lead to a software substitution of the parallel programmers that does

a combination of preprocessing and runtime work, so any code can run parallel.

Adaboost and the ECOC framework showed a wide range of granularity, that can be

exploited in di↵erent ways. The results we obtained where satisfactory, and there is room

for improvement on accuracy and execution time with bigger volumes. On the accuracy

side we could use more neighbor data, like generating gradients reading more than two

neighbors on each dimension, and reading classification decisions from the neighbors to

do a second classification round with this extra data to automatically correct errors.

Self Organizing Multi Agent Systems seem promising for grid computing and smaller

systems that every time have more cores. The Agent programming is a perfect paradigm

for local and distributed scheduling sytems, autonomy, and resilience, a concept that is

a growing concern on the design of exa-scale supercomputers, where the provability of

a node failure is growing, due to the huge amount of nodes.

As a future work we could explore further algorithm improvements for the classification

problem, both for accuracy and execution times, and on the parallel system, we could

create a full simulator either with standar languages or with Multi Agent System lan-

guages like 2APL that can use platforms like JADEX for distributed computing and it’s

own java environment interface to interact with other languages like OpenCL, C, etc...

54

Chapter 6

Appendix A (OpenCL summary)

6.1 Introduction

High performance computing (HPC) has traditionally been limited to scientific or mili-

tary codes, since in contrast personal computing was evolving much more a↵ordably with

general purpose and serial processors. Parallelism and heterogeneity was very limited

to big budget projects. Also, the programming languages, tools and paradigms where

limited since there was not a bit number of projects using parallelism.

In the last years there has been an expansion of HPC thanks to the adoption of com-

modity general purpose CPU’s. This CPU’s have included vector processing units but

overall they are much cheaper to improve at architecture level, since the architecture

used is sold in high volumes. This is what is traditionally called economies of scale,

architectures that are a↵ordable to improve because they are sold in volume.

Until now, there was just the x86 and ARM architectures fitting on the idea of volume

production architectures. ARM was not enough computationally powerful to be used

on HPC, although recently research is being done to use it as the base of a Supercom-

puting system [1]. So most of the HPC systems where (and still are) based on x86 64.

Nevertheless, some years ago, another very di↵erent architecture, that was and still is

being sold in volume to the mass market, acquired some general purpose capabilities.

They are called Graphics Processing Units (GPU), and their purpose was specific for

games and visualization.

The market for GPU’s is almost as big as CPU’s, since nowadays, the need to visualize

data or user interfaces is a given for mass market products. The GPU, has been tra-

ditionally a fixed function pipeline processor, but with the introduction of programable

shaders, it became possible to create visual e↵ects that run fast on the GPU without

fixed function circuitry. Scientists saw that this had potential for matrix computations

55

Appendix A OpenCL summary 56

and started what was called General Purpose GPU. The GPU companies started to of-

fer some programing models to harness the potential of the GPU’s, ideally for any code

(NVIDIA CUDA, ATI CAL) but there was no standard. Apple was very interested on

it and so created along with the GPU companies OpenCL, that pretends to allow eas-

ier GPGPU programming than doing so with shaders. OpenCL is an Apple registered

trademark used with Apple’s permit by the Krhonos group.

The situation was that for the first time, a mainly specific purpose architecture was

available at consumer prices for data intensive and matrix computations, perfect for a

lot of scientifical codes. Also, some tasks as simulations for industrial component design

and film special e↵ects, or simply scientifical experiments related to particle simulation

and others, could be done on a PC with one or more high end GPU’s. That marked

the return of the workstation. So, it was then possible that the historical trend of a

general purpose CPU absorbing or surpassing all specific technologies could be changed,

and instead, have more heterogeneous systems, with two or more di↵erent architectures,

each one with it’s strengths and weaknesses.

6.2 OpenCL description

OpenCL (Open Computing Language) is an open royalty-free standard for general pur-

pose parallel programming across CPUs, GPUs and other processors, giving software

developers portable and e�cient access to the power of these heterogeneous processing

platforms.

OpenCL consists of an API for coordinating parallel computation across heterogeneous

processors (OpenCL Host Code), and a cross-platform programming language with a

well-specified computation environment (OpenCL Device Code).

The concepts behind OpenCL can be grouped in the following list:

• Platform Model

• Execution Model

• Memory Model

• Programming Model

Next we will explain one by one the concepts behind this items.

Appendix A OpenCL summary 57

Figure 6.1: OpenCL Platform Model

6.2.1 Platform Model

The platform model defines a virtual architecture, where the system hardware is de-

scribed in an abstract way. The typical hardware, conformed by one or more CPU’s

sharing the same physical memory, and an Operating System executing the main pro-

gram and managing communication and scheduling is called the Host. A GPU, FPGA

or any other hardware set as a plugin device, that communicates with the Host through

any kind of I/O and/or driver, is called a Device. Nevertheless, a CPU is also considered

a Device. So a CPU is both part of the Host and a Device.

Next we list some facts about the OpenCL Platform organization:

• A Host system can have one or more OpenCL devices, and use them concurrently.

• A device can contain several Compute Units, that are responsible of one or more

execution flows.

• Each Compute Unit (CU) contains one or several Processing Elements (PE), that

are those who execute the code. In most cases a PE is an Arithmetical Logical

Unit (ALU).

6.2.2 Execution Model

The execution of an OpenCL program occurs in two parts: a Host program (Host code)

that is written in C or C++ with OpenCL calls and data types, and one or more device

Kernels (Device code) that execute on OpenCL Devices, and is written in OpenCL C

language. The OpenCL C language is based on ANSI C, with some restrictions and

built-in data types and functions.

Appendix A OpenCL summary 58

6.2.2.1 Host code

The Host code manages the execution of the kernels and the data transfers between the

Host and the Devices. It is programmed explicitly through OpenCL calls and objects.

The OpenCL objects involved on the Execution Model are the following:

• Device objects. This objects represent an OpenCL device.

• Kernel objects. A kernel object represents a compiled kernel device program, for

an specific device, ready to be executed on that device.

• Program objects. This objects represent the source code, and are used to compile

it on run time, for a given device.

• Memory objects. This objects represent pointers. They are divided into bu↵er

and image memory objects. The host and any device in the same context as the

memory object can access the contents of a memory object through OpenCL API

calls.

• Platform objects. This object allows to use di↵erent OpenCL implementations

within the same program. If a manufacturer o↵ers an OpenCL implementation for

it’s hardware, and another manufacturer a di↵erent implementation for di↵erent

hardware, the way to access all of them from a single program is to use a platform

object for each hardware manufacturer. As seen on figure 2, any OpenCL object

can only belong to a single platform.

• Context objects. A context object is defined for a given platform, and a given

device or set of devices from the same platform.

• Queue objects. This objects are used to send data to or read from memory objects

and to send kernels to a device for execution. A queue is attached exclusively to

a single device.

6.2.2.2 Device code

The programming model of the OpenCL kernels for GPU’s is based on the NDRange

space. An NDRange space is defined by N dimensions from 1 to 3, where each element

is a Work Item (WI), exactly like a CUDA thread. By default, the code of a NDRange

kernel is executed by all the WI’s. It is possible to assign di↵erent data or even di↵erent

tasks to each WI, in a way similar to MPI. The index of the WI can be used as a pointer

index (do the same for di↵erent data), or as a conditional expression argument (assign

di↵erent tasks to each WI).

Appendix A OpenCL summary 59

Figure 6.2: OpenCL Execution Model diagram

To better map the WI to GPU hardware, they are grouped in Work Groups (WG), the

same as the CUDA thread blocks. There is a hardware defined limit for the number of

WI in a WG, and a hardware defined limit for the number of WI in a given dimension

of the NDRange kernel.

Regarding synchronization, the programmer must take into account that the OpenCL

specification doesn’t ensure synchronization between WI’s. So WI’s can execute the

same instruction in any order. It is true that on GPU’s, due to hardware scheduling,

there is a synchronization between blocks of 32 or 64 WI’s (depending on the model).

But to make portable code, the programmer must not take that into account, and try

to solve any possible synchronization problem between WI’s.

The only way to synchronize WI’s is through barriers and memory fences. Barriers

produce that all WI’s stop on the barrier call until all the WI have executed the barrier.

That way the programmer ensures that no WI will do something before something else

is done. The memory fences, produce that all or specific memory operations stop in the

memory fence call, until all WI’s have executed the memory fence. The barrier implicitly

calls a memory fence.

6.2.3 Memory Model

The memory model is again based on the GPU memory model. It applies to kernels

only (device code). This memory model allows to specify which kind of memory on the

hierarchy will be used for each pointer, in order to improve the execution times.

Appendix A OpenCL summary 60

Figure 6.3: OpenCL memory model

The memory model components are the following:

• global: this is the slowest memory on the GPU, and also the biggest. It can be

read or written by any WI on the kernel.

• local: this is like a programable cache. Is fast, not as registers but very close,

but is also small. It can only be accessed by the WI’s in the same WG. WI’s from

di↵erent WG’s can not share data through local memory.

• private: this are the registers. The tag private is not necessary since any

variable declared inside the kernel without any memory tag, is automatically con-

sidered private. The variables declared as private can only be accessed by the

WI that has declared it.

• constant: this is a portion of the global memory with size n, that is read-only

and has the ability to broadcast one value to m WI’s. n and m depend on the

device model, but n uses to be small.

Figure 3 shows the relationship between memory layers. Optimizing the memory hier-

archy use, is one of the most important matters in order to optimize GPU code.

cm

Chapter 7

Appendix B (SimpleOpenCL)

7.1 Introduction

OpenCL tries to provide an abstraction that can be used to access all possible di↵erent

processors, from a single program, and with the same code. Nevertheless, the center of

the first release was GPGPU, since it is the most successful coprocessor or accelerator

of today. Actually, there are several businesses that are developing implementations

of OpenCL for FPGA’s [Alt14, zii10], or their own parallel CPU architecture [Ada13].

Also, on version 1.2, OpenCL is providing access to fixed function circuits.

Given that massive compatibility, OpenCL has a hard tradeo↵. It is very slow to write,

since it requires to know a lot of concepts and to write a lot of code lines to manage all the

OpenCL objects, their relationship, and their behavior. In this sense, SimpleOpenCL

provides a way to write OpenCL code, without having to know anything about OpenCL

objects or their functionality. This saves programming time. It is implemented using

the functionality that OpenCL provides, plus basic ANSI C libraries. That way, Sim-

pleOpenCL is as compatible as OpenCL, and so there is no need to modify compilers,

operating systems or drivers in order to develop SimpleOpenCL.

7.2 SimpleOpenCL description

OpenCL host code is very complex and demands a lot of coding to do simple things.

For that reason, we have developed SimpleOpenCL. It is a library that allows to forget

about the OpenCL objects on the host code side of the program. With SimpleOpenCL

the user only interacts with normal C pointers, and maps them to the memory hierarchy

of the GPU in a single function call.

SimpleOpenCL provides the main functionality of automatic OpenCL object manage-

ment. We provide this functionality through the following:

61

Appendix B SimpleOpenCL 62

• SimpleOpenCL functions: this are functions that implement some typical steps

and o✏oad the programmer from this tasks.

• SimpleOpenCL data types: this are mainly two data types that encapsulate all

the OpenCL objects in two main concepts, hardware and software.

Next we describe the SimpleOpenCL functions and data types.

7.3 SimpleOpenCL functions

We classify the SimpleOpenCL functions in di↵erent abstraction levels. We classified

the functions in three levels, depending on their proximity to OpenCL or to the goals of

SimpleOpenCL.

We defined this abstraction levels to help the project contributors to better understand

our goals, and to better show that some functions serve some others inside the library,

and should not be used directly by all users. In addition, there could be some third

party libraries that o↵er advanced functionalities that increase execution performance

and can be accessed from SimpleOpenCL from the adequate abstraction level (typically

the second level). The levels are the following:

• Third level: at this level we use native OpenCL functions and what we call Sim-

pleOpenCL third level functions. This third level functions perform basic tasks

such as reading .cl source files and putting them on a char pointer, printing the

error code names, etc...

• Second level: in this level we provide SimpleOpenCL second level functions that

help with most common Host code tasks, reducing the code needed, but also gives

most of the control to the programmer. Also this level is the place to use other

libraries that give some advanced low level automatism or functionality. That is

the case of GMAC [5] and AMD virtual memory support [7]. In SimpleOpenCL,

GMAC would be considered a second level or maybe second and third level library,

and would be used to improve first level function’s performance. This changes don’t

a↵ect the first level functions, so the user will get the benefits without changing

it’s code.

• First level: in this level we o↵er the functions that are the primary goal for this

library. This functions make using OpenCL much more easy and short to write as

shown on SimpleOpenCL web page [6].

With this abstraction layers we obtain a modular library. Furthermore, a program using

exclusively first level functions would automatically get all the benefits of improving

Appendix B SimpleOpenCL 63

Figure 7.1: SimpleOpenCL programming levels.

Figure 7.2: SimpleOpenCL first level function example.

SimpleOpenCL second level functions with or without third party libraries, without

changing the user code. That’s also the goal of first level functions, to give a reduced

and stable set of functions with a stable set of parameters, that will automatically

use whichever available low level improvements. The only requirement we put is that

all features provided by SimpleOpenCL must be based on what the OpenCL standard

provides and standard C, but must not be OS dependent. That means that we want

SimpleOpenCL to only require an standard OpenCL installation in order to work. We

are not hiding Device code complexity, so we expose the Device memory hierarchy to

the programmer in the Host code side.

As shown in figure 5, the function sclManageArgsLaunchKernel takes as arguments an

sclHard variable (a single device), a sclSoft variable (a single kernel function), the sizes

for the NDRange space, a constant string and a variable number of undefined type

arguments.

The last two arguments, are an string that contains the information of what are the

arguments coming next. This is similar to the printf function. We arbitrarily defined

which letters mean a type or a number of arguments expected as see on table 7.3. On

SimpleOpenCL web page there is a detailed explanation of what is the syntax to specify

Appendix B SimpleOpenCL 64

any possible argument. For some arguments OpenCL needs to know the size of the

pointer, so when specifying an argument that is a pointer, the function is expecting two

arguments, first the size, and then the pointer itself.

Figure 7.3: Table showing what characters to use on the string sent as parameter to
the sclManageArgsLaunchKernel function.

This function takes as arguments standard C pointers, creates the necessary bu↵ers,

transfers the necessary data, orders kernel execution, and reads the needed results. This

behavior is specified on the string argument. This string argument becomes then a sort

of host code programming script, that can be enhanced to be able to o↵er more advanced

programming options.

7.4 SimpleOpenCL types

One of the things we wanted to simplify is the management of the devices. We wanted

to use a single data type to manage all needed to execute any kernel on one device. Also

we wanted a function that can return an array of devices available on the system each

one encapsulated in this type. The user must only need to initialize a variable of this

data type and pass it to a function as a parameter, along with other parameters, and

this should be everything needed to execute a kernel. No need to know about platforms,

contexts, queues, device types etc etc etc.

For that purpose we created the following data types:

• sclHard: this is an struct that contains pointers to all the necessary OpenCL

objects in order to access a device. The idea is to use this type as the only one

required by any first or second level function. The initialization of this data type

Appendix B SimpleOpenCL 65

takes into account other devices present on the system. Any of the hardware

initialization functions uses (or is going to use) the sclGetAllHardware function

that checks if two or more devices are from the same vendor and have the same

characteristics in order to create a single context for all of them. This allows the

devices to share memory objects. By now, this feature can be useful only from

second level functions.

• sclSoft: this is also an struct that contains both the program and kernel objects

for an OpenCL C source file, and an string with the name of the kernel function

being used. The idea is to have an sclSoft variable for each kernel function.

Bibliography

[Ada] Adapteva: Epiphany SDK Reference Manual:

http://adapteva.com/docs/epiphanysdkref.pdf.Tech.rep., Adapateva.

[Ada13] Adapteva: Epiphany Architecture Reference:

http://adapteva.com/docs/epiphanyarchref.pdf.Tech.rep., Adpateva, 2008�
2013.

[Alt14] Altera: Altera OpenCL webpage: http://newsroom.altera.com/press-

releases/nr-opencl-v14-0-altera.htm?GSApos = 1WT.ossr = 1WT.oss =

opencl.T ech.rep., Altera, 2014.

[App09] Apple: http://developer.apple.com/library/mac/#documentation/Performance/Reference/GCD libdispatch Ref/Reference/reference.html.

Tech. rep., Apple, 2009.

[APT08] Abellan P., Puig A., Tost D.: Focus+context rendering of structured

biomedical data. In EG VCBM 2008 : Eurographics workshop on visual

computing for biomedicine (2008), pp. 109–116.

[ASS02] Allwein E., Schapire R., Singer Y.: Reducing multiclass to binary:

A unifying approach for margin classifiers. JMLR 1 (2002), 113–141.

[BG08] Bell N., Garland M.: E�cient Sparse Matrix-Vector Multiplication on

CUDA. NVIDIA Technical Report NVR-2008-004, NVIDIA Corporation,

Dec. 2008.

[BHW⇤07] Burns M., Haidacher M., Wein W., Viola I., Groeller E.: Fea-

ture emphasis and contextual cutaways for multimodal medical visualiza-

tion. In Eurographics / IEEE VGTC Symposium on Visualization 2007

(May 2007), pp. 275–282.

[BMD⇤11] Bueno J., Martinell L., Duran A., Farreras M., Martorell X.,

Badia R., Ayguade E., Labarta J.: Productive cluster programming

with ompss. In Euro-Par 2011 Parallel Processing, Jeannot E., Namyst

R., Roman J., (Eds.), vol. 6852 of Lecture Notes in Computer Science.

Springer Berlin Heidelberg, 2011, pp. 555–566.

66

Appendix B SimpleOpenCL 67

[Bol01] Boland V.: A�nity scheduling of data within multi-processor computer

systems, July 31 2001. US Patent 6,269,390.

[BPS97] Bajaj C. L., Pascucci V., Schikore D.: The contour spectrum. In

IEEE Visualization’97 (1997), pp. 167–174.

[BSC] BSC:. //http://pm.bsc.es/ompss-docs/specs/OmpSsSpecification.pdf.

[DK95] Dietterich T., Kong E.: Error-correcting output codes corrects bias

and variance. In S. Prieditis and S. Russell (1995), of the 21th Interna-

tional Conference on Machine Learning P., (Ed.), pp. 313–321.

[dlCAPC10] de la Cruz R., Araya-Polo M., Cela J.: Introducing the semi-

stencil algorithm. In Parallel Processing and Applied Mathematics (2010),

vol. 6067, pp. 496–506.

[dSOG10] d. S. Oliveira B. C., Gibbons J.: Scala for generic programmers.

Journal of Functional Programming 20, 3,4 (2010), 303–352. Revised

version of the WGP2008 paper.

[EPR10] Escalera S., Pujol O., Radeva P.: On the decoding process in

ternary error-correcting output codes. IEEE Transactions on Pattern

Analysis and Machine Intelligence 32 (2010), 120–134.

[ETP⇤08] Escalera S., Tax D., Pujol O., Radeva P., Duin R.: Sub-

class problem-dependent design of error-correcting output codes. In

IEEE Transactions in Pattern Analysis and Machine Intelligence (2008),

vol. 30, pp. 1–14.

[FHT98] Friedman J., Hastie T., Tibshirani R.: Additive logistic regression:

a statistical view of boosting. Annals of Statistics 28 (1998).

[FPT06] Ferré M., Puig A., Tost D.: Decision trees for accelerating unimodal,

hybrid and multimodal rendering models. The Visual Computer 3 (2006),

158–167.

[FWG09] Fuchs R., Waser J., Gröller M. E.: Visual human-machine learning.

IEEE TVCG 15, 6 (Oct. 2009), 1327–1334.

[GDB08] Garcia V., Debreuve E., Barlaud M.: Fast k nearest neighbor

search using gpu.

[GLD⇤08] Govindaraju N. K., Lloyd B., Dotsenko Y., Smith B., Man-

ferdelli J.: High performance discrete fourier transforms on graphics

processors. In Proceedings of the 2008 ACM/IEEE Conference on Super-

computing (Piscataway, NJ, USA, 2008), SC ’08, IEEE Press, pp. 2:1–

2:12.

Appendix B SimpleOpenCL 68

[GMK⇤92] Gerig G., Martin J., Kikinis R., Kubler O., Shenton M., Jolesz

F.: Unsupervised tissue type segmentation of 3-d dual-echo mr head data.

Image and Vision Computing 10, 6 (1992), 349–36.

[HGLS07] He B., Govindaraju N. K., Luo Q., Smith B.: E�cient gather

and scatter operations on graphics processors. In Proceedings of the 2007

ACM/IEEE Conference on Supercomputing (New York, NY, USA, 2007),

SC ’07, ACM, pp. 46:1–46:12.

[HSSY00] Hamscher V., Schwiegelshohn U., Streit A., Yahyapour R.:

Evaluation of job-scheduling strategies for grid computing. In Grid Com-

puting — GRID 2000, Buyya R., Baker M., (Eds.), vol. 1971 of Lecture

Notes in Computer Science. Springer Berlin Heidelberg, 2000, pp. 191–

202.

[HWS10] Herrero S., Williams J., Sanchez A.: Parallel multiclass classifica-

tion using svms on gpus. In ACM International Conference Proceeding

Series, Proceedings of the 3rd Workshop on General-Purpose Computa-

tion on Graphics Processing Units (2010), vol. 425, pp. 2–11.

[JD04] Jeffrey Dean S. G.: Mapreduce: Simplified data processing on large

clusters. OSDI’04: Sixth Symposium on Operating System Design and

Implementation, San Francisco, CA, December, 2004. (2004).

[JDM00] Jain A. K., Duin R. P., Mao J.: Statistical pattern recognition: A

review. IEEE Transactions on Pattern Analysis and Machine Intelligence

22 (2000), 4–37.

[KBKG08] Kohlmann P., Bruckner S., Kanitsar A., Gröller M.: The

LiveSync Interaction Metaphor for Smart User-Intended Visualization.

Tech. Rep. TR-186-2-08-01, Institute of Computer Graphics and Algo-

rithms, Vienna University of Technology, Favoritenstrasse 9-11/186, A-

1040 Vienna, Austria, Jan. 2008.

[KD98] Kindlmann G., Durkin J.: Semi-automatic generation of transfer func-

tions for direct volume rendering. In IEEE Symposium on Volume Visu-

alization (October 1998), IEEE Press, pp. 79–86.

[KH10] Kirk D. B., Hwu W.-m. W.: Programming Massively Parallel Proces-

sors: A Hands-on Approach, 1st ed. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 2010.

[KKH01] Kniss J., Kindlmann G., Hansen C.: Interactive volume render-

ing using multi-dimensional transfer functions and direct manipulation

widgets. In Proc. of the conference on Visualization 2001 (2001), IEEE

Press., pp. 255–262.

Appendix B SimpleOpenCL 69

[KSW06] Krüger J., Schneider J., Westermann R.: Clearview: An interac-

tive context preserving hotspot visualization technique. IEEE Trans. on

Visualization and Computer Graphics (Proc. Visualization / Information

Visualization 2006) 12, 5 (sep- oct 2006).

[MAB⇤97] Marks J., Andalman B., Beardsley P. A., Freeman W., Gibson

S., Hodgins J., Kang T., Mirtich B., Pfister H., Ruml W., Ryall

K., Seims J., Shieber S.: Design galleries: a general approach to setting

parameters for computer graphics and animation. Computer Graphics 31,

Annual Conference Series (1997), 389–400.

[MB05] Manvi S. S., Birje M. N.: An agent-based resource allocation model

for grid computing. In Services Computing, 2005 IEEE International

Conference on (July 2005), vol. 1, pp. 311–314 vol.1.

[Mic09] Micikevicius P.: 3d finite di↵erence computation on gpus using cuda. In

Proceedings of 2nd Workshop on General Purpose Processing on Graphics

Processing Units (2009), pp. 79–84.

[mon11] 2011. http://montblanc-project.eu/home.

[mov] //movibio.lsi.upc.edu/website.

[NL07] Nyland L. Harris M. P. J.: Fast n-body simulation with CUDA. 2007.

[NVI12] NVIDIA: Cuda dynamic parallelism programming guide.

[par13] 2013. http://www.parallella.org.

[PLB⇤01] Pfister H., Lorensen B., Baja C., Kindlmann G., Shroeder W.,

Avila L., Raghu K., Machiraju R., Lee J.: The transfer function

bake-o↵. IEEE Computer Graphics & Applications 21, 3 (2001), 16–22.

[Rob] Roberts M.:. //www.cs.colostate.edu/⇠ mroberts/toolbox/c++/

sparseMatrix/sparsematrixcompression.html.

[SHL⇤06] Shi Z., Huang H., Luo J., Lin F., Zhang H.: Agent-based grid

computing. Applied Mathematical Modelling 30, 7 (2006), 629 – 640.

Parallel and Vector Processing in Science and Engineering Parallel and

Vector Processing in Science and Engineering.

[TLM03] Tzeng F. Y., Lum E., Ma K. L.: A novel interface for higher dimen-

sional classification of volume data. In Visualization 2003 (2003), IEEE

Computer Society Press, pp. 16–23.

[TM04] Tzeng F.-Y., Ma K.-L.: A cluster-space visual interface for arbi-

trary dimensional classification of volume data. In Proceedings of the

Joint Eurographics-IEEE TVCG Symposium on Visualization 2004 (May

2004).

Appendix B SimpleOpenCL 70

[TTG95] Torrellas J., Tucker A., Gupta A.: Evaluating the performance of

cache-a�nity scheduling in shared-memory multiprocessors. Journal of

Parallel and Distributed Computing 24, 2 (1995), 139 – 151.

[VKG05] Viola I., Kanitsar A., Gröller M. E.: Importance-driven feature

enhancement in volume visualization. IEEE Trans. on Visualization and

Computer Graphics 11, 4 (2005), 408–418.

[YSMR10] Yudanov D., Shaaban M., Melton R., Reznik L.: Gpu-based sim-

ulation of spiking neural networks with real-time performance and high

accuracy. In WCCI-2010, Special Session Computational Intelligence on

Consumer Games and Graphics Hardware CIGPU-2010 (2010).

[zii10] Ziilabs o�cial OpenCL webpage: http://www.ziilabs.com/products/software/opencl.php.

Tech. rep., Ziilabs, 2010.

