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Abstract

Human multi-limb segmentation in RGB images has attracted a lot of interest
in the research community because of the huge amount of possible applications in
fields like Human-Computer Interaction, Surveillance, eHealth, or Gaming. Never-
theless, human multi-limb segmentation is a very hard task because of the changes in
appearance produced by different points of view, clothing, lighting conditions, occlu-
sions, and number of articulations of the human body. Furthermore, this huge pose
variability makes the availability of large annotated datasets difficult. In this work,
we introduce the HuPBA 8k+ dataset. The dataset contains more than 8000 labeled
frames at pixel precision, including more than 120000 manually labeled samples of
14 different limbs. For completeness, the dataset is also labeled at frame-level with
action annotations drawn from an 11 action dictionary which includes both single
person actions and person-person interactive actions. Furthermore, we also propose
a two-stage approach for the segmentation of human limbs. In a first stage, hu-
man limbs are trained using cascades of classifiers to be split in a tree-structure
way, which is included in an Error-Correcting Output Codes (ECOC) framework to
define a body-like probability map. This map is used to obtain a binary mask of
the subject by means of GMM color modelling and GraphCuts theory. In a second
stage, we embed a similar tree-structure in an ECOC framework to build a more
accurate set of limb-like probability maps within the segmented user mask, that are
fed to a multi-label GraphCut procedure to obtain final multi-limb segmentation.
The methodology is tested on the novel HuPBA 8k+ dataset, showing performance
improvements in comparison to state-of-the-art approaches. In addition, a baseline
of standard action recognition methods for the 11 actions categories of the novel
dataset is also provided.
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Abstract

La segmentación humana multi-extremidad en imágenes RGB ha atráıdo una
gran cantidad de interés en la comunidad cient́ıfica debido a la enorme cantidad
de posibles aplicaciones finales, tales como: Interacción Persona-Ordenador, Vigi-
lancia, eHealth, o juegos interactivos. Sin embargo, la segmentación humana multi-
extremidad es una tarea muy dif́ıcil debido a los cambios en apariencia producida por
diferentes puntos de vista, ropa, condiciones de iluminación, oclusiones, y el número
de articulaciones de el cuerpo humano. Además, esta enorme variabilidad en la pose
produce la disponibilidad de grandes volúmenes de datos con dif́ıciles anotaciones.
En este trabajo, presentamos la base de datos HuPBA 8k+. Esta base de datos
está compuesta por más de 8000 imágenes etiquetadas a nivel de ṕıxel, incluyendo
más de 120, 000 máscaras etiquetadas manualmente de 14 extremidades diferentes.
Para completar, el conjunto de datos es también etiquetado para cada imagen con
anotaciones de acciones que en total suma un diccionario de 11 acciones diferentes,
las cuales incluyen tanto las acciones de una sola persona y en las que se necesitan
dos personas. Por otra parte, también proponemos un enfoque de dos etapas para la
segmentación humana multi-extremidad. En una primera etapa, las extremidades
del cuerpo son entrenadas utilizando cascadas de clasificadores para ser divididos en
una estructura árbol, el cual es incluido en un marco de trabajo llamado Códigos
correctores de errores de salida (ECOC) para definir un mapa de probabilidad del
cuerpo humano. Este mapa se utiliza para obtener una máscara binaria del sujeto
por medio de modelos de mixturas gaussianas (GMM) de color y teoŕıa de corte de
grafos. En una segundo etapa, integramos una estructura de árbol similar al marco
de trabajo ECOC utilizado anteriormente para construir un conjunto más preciso de
mapas de probabilidad de las extremidades dentro de la máscara del sujeto segmen-
tada, que es enviada a un proceso de corte de grafos multi-etiqueta para la obtención
final de la segmentación de múltiples extremidades. La metodoloǵıa se prueba en
la nueva base de datos HuPBA 8k+, mostrando mejoras de rendimiento en com-
paración con las propuestas en el estado del arte. Además, una muestra de métodos
estándar de reconocimiento de gestos para 11 gestos es también proporcionado.
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Abstract

Segmentació multi-extremitat humana en imatges RGB ha atret una gran quan-
titat de interès en la comunitat cient́ıfica a causa de l’enorme quantitat de possi-
bles aplicacions finals com la Interacció Persona- Ordinador, Vigilància , eHealth,
o jocs interactius. No obstant això, la segmentació multi-extremitat és una tasca
molt dif́ıcil a causa dels canvis en aspecte prodüıda per diferents punts focals, roba,
condicions d’iluminació, oclusions, i el nombre d’articulacions de el cos humà. A
més, aquesta enorme variabilitat de la postura fa la disponibilitat de grans conjunts
de dades amb anotacions dif́ıcils. En aquest treball, presentem la base de dades
HuPBA 8k+. Aquesta base de dades conté més de 8000 imatges etiquetades a nivell
de ṕıxel, incloent més de 120.000 màscares manualment etiquetades de 14 extrem-
itats diferents. Per completar, la base de dades és també etiquetada per a cada
imatge les acciones a partir d’un diccionari de 11 accions diferents que inclou tant
les accions d’una sola persona i de múltiples persones. D’altra banda, també pro-
posem un enfocament de dues etapes per a la segmentació. En una primera etapa,
les extremitats humanes estan entranades amb cascades de classificadors per a ser
dividits en una estructura d’arbre, que s’inclou en un marc de treball anomenat
Codis correctors d’errors de sortida (ECOC) per construir un mapa de probabilitat
del cos humà. Aquest mapa s’utilitza per obtenir una màscara binària del subjecte
per mitjà de models de mixtures gaussianes (GMM) de color i teoria de tall de grafs.
En una segona etapa, integrem una estructura d’arbre similar al ECOC anterior per
construir un conjunt més prećıs de mapes de probabilitat de les extremitats del
cos humà dintre de la màscara binària del subjecte, que és enviada a un procés de
tall de grafs per obtenir una segmentació final multi-extremitat. La metodologia es
prova en la nova base de dades HuPBA 8k+, que mostra millores en el rendiment
en comparació de les propostes de l’estat de l’art. A més, una mostra de mètodes
estàndar de reconeixement de accions per 11 accions es també proporcionada.
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1 Introduction

Human analysis in RGB images is a challenging task because of the high variability of the
human body, including the wide range of human poses, lighting conditions, cluttering,
clothes, appearance, background, point of view, number of human body limbs, etc.
Even so, human analysis in visual data has become one of the more interesting areas of
research in Computer Vision and Pattern Recognition because of its capabilities in final
applications (i.e. human-computer interaction, surveillance, gaming, eHealth, interactive
virtual reality systems, etc.). In this sense, the common pipeline for human body analysis
in visual data uses to be defined in a bottom-up fashion. First, the human body limbs
are segmented and the body pose is estimated (often with a prior person/background
segmentation or person detection step). Then, once the body pose is estimated higher
abstraction analysis can be performed. Usually, the following step in the pipeline is
action/gesture recognition, since actions can be seen as a set of estimated body poses
varying over time.

1.1 State-of-the-art pose estimation

Human limb segmentation or pose estimation in RGB images has been a core problem
in the Computer Vision field since its early beginnings. In this particular problem the
goal is to provide with a complete segmentation of each of the defined human body parts
appearing in an image, discriminating human limbs from each other and from the rest of
the image. Usually, human body segmentation is treated in a two-stage fashion. First, a
human body part detection step is performed, and then, these human part detections are
used as a prior knowledge to be optimized by segmentation/inference strategies in order
to obtain the final human-limb segmentation. In literature one can find many works that
follow this two-stage scheme. Bourdev et. al. [5] used body part detections in an AND-
OR graph to obtain the pose estimation. Vinet et. al [35] proposed to use Conditional
Random Fields based on body part detectors to obtain a complete person/background
segmentation. Nevertheless, one of the methods that have generated more attraction
is the well known pictorial structure for object recognition introduced by Felzenszwalb
et al [18]. Some works have applied an adaptation of pictorial structures using a set of
joint limb marks to infer spatial probabilities [1, 31, 26, 27]. Later on, an extension
was presented by Yang and Ramanan [38, 39] which proposed a discriminatively trained
pictorial structure that models the body joints instead of limbs. In contrast, there is
also current tendency to use Graph Cuts optimization to segment the human limbs [21]
or full person segmentation [29].

1.2 State-of-the-art gesture recognition

The common step after estimating the pose of a subject within the pipeline of human
body analysis is analyzing non-verbal communication in terms of actions and/or gestures,
which can be interpreted as a set of poses varying over time. In this sense, in order to
deal with action/gesture recognition there exists a wide number of methods based on

9



dynamic programming algorithms for alignment and clustering of temporal series [40, 30].
One of the most common methods for Human Gesture Recognition based on dynamic
programming is Dynamic Time Warping (DTW) [28, 22, 30], since it offers a simple yet
effective temporal alignment between sequences of different lengths. Other probabilistic
methods such as Hidden Markov Models (HMM) or Conditional Random Fields (CRF)
have been commonly used in the literature [33]. Some other methods also considered for
action/gesture recognition include Neural Networks approaches, Boosting variants, and
Random Forest [15, 14].

1.3 Proposal

The Computer Vision community has been lately focusing their efforts on developing
methods for both pose estimation and action/gesture recognition. However, one of the
main problems is the necessity of public available data sets containing annotations of all
the variabilities the methods have to deal with. Substantial effort has been put on design-
ing datasets with different scenarios, people and illumination characteristics. Datasets
such as Parse [27], Buffy [19], UIUC People [34], and Pascal VOC [17] are widely used
to evaluate different pose estimation and action/gesture recognition methods. However,
these public available datasets fail to provide with a sound framework in which to validate
pose recovery systems (i.e. the number of samples per limb is small, the labeling is not
accurate, there are no interactions of actors, etc.). Given this lack of sound and refined
public datasets for human multi-limb segmentation and/or action/gesture recognition,
we introduce the HuPBA 8k+ dataset, which to the best of our knowledge is the biggest
RGB human-limb labeled dataset. The dataset contains more than 8000 labeled frames
at pixel precision and more than 120000 manually labeled samples of 14 different limbs.
In addition, the HuPBA 8k+ dataset is also labeled with action annotations drawn from
an 11 action dictionary which includes both single person actions and interactive actions
(actions performed by more than one person).

We also extend our work of [11] by proposing a two-stage approach for the segmen-
tation of human limbs. In a first stage, a set of human limbs are normalized by main
orientation to be rotation invariant, described using Haar-like features, and trained us-
ing cascades of Adaboost classifiers to be split in a tree-structure way. Once the tree-
structure is trained, it is included in a ternary Error-Correcting Output Codes (ECOC)
framework. This first classification step is applied in a windowing way on a new test
image, defining a body-like probability map, which is used as an initialization of a bi-
nary Graph Cuts optimization procedure. In the second stage, we embed a similar
tree-structured partition of limbs in a ternary ECOC framework and we use Support
Vector Machines (SVMs) with HOG descriptors to build a more accurate set of limb-like
probability maps within the segmented user binary mask, that are fed to a multi-label
GraphCut optimization procedure to obtain the final human multi-limb segmentation.
We tested our ECOC-Graph-Cut based approach in the novel HuPBA 8k+ dataset
and compared with state-of-the-art pose recovery approaches, obtaining performance
improvements in both person/background and multi-limb segmentation steps. For com-
pleteness, we also provide with action recognition results as a baseline for the HuPBA
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8k+ dataset. Summarizing, our key contributions are:

• We introduce the HuPBA 8k+ dataset, the largest RGB labeled dataset of human
limbs, with more than 120000 manually annotated limbs. The data set also includes
frame-level annotation for 11 action/gesture categories.

• We propose a two stage approach based on ECOC and Graph Cuts for the seg-
mentation of human limbs in RGB images.

• The proposed method is compared with state-of-the-art methods for human pose
estimation obtaining very satisfying results.

• We provide with a baseline for Action Recognition in the novel dataset.
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2 HuPBA 8K+ Dataset

Automatic human limb detection and segmentation, human pose recovery and human
behavior analysis are challenging problems in computer vision, not only for the intrinsic
complexity of the tasks, but also for the lack of large public and annotated datasets.
Usually, public available datasets lack of refined labeling or contain a very reduced
number of samples per limb (e.g. Buffy Stickmen V3.01, Leeds Sports and Hollywood
Human Actions [19, 23, 24]). In addition, large datasets often use synthetic samples
or capture human limbs with sensor technologies such as MoCap in very controlled
environments [12].

Being aware of this lack of public available datasets for multi-limb human pose detec-
tion, segmentation and action/gesture recognition, we present a novel fully limb labeled
dataset, the HuPBA 8k+ dataset. This dataset is formed by more than 8000 frames
where 14 limbs are labeled at pixel precision1. Furthermore, the HuPBA 8k+ dataset
also contains gesture/action annotations for 11 isolated and collaborative action cate-
gories. The main characteristics of the dataset are the followings:

1. The images are obtained from 9 videos (RGB sequences) and a total of 14 different
actors appear in those 9 sequences. In concrete, each sequence has a main actor
(9 in total) which during the video interacts with secondary actors performing a
set of different actions.

2. Each video (RGB sequence) was recorded with a mean 15 fps rate.

3. RGB images were stored with resolution 480× 360 in BMP file format.

4. For each actor present in an image 14 limbs (if not occluded) were manually tagged:
Head, Torso, R-L Upper-arm, R-L Lower-arm, R-L Hand, R-L Upper-leg, R-L
Lower-leg, and R-L Foot.

5. Limbs are manually labeled using binary masks and the minimum bounding box
containing each subject is defined.

6. The actors appear in a wide range of different poses and performing different
actions/gestures.

7. For each video we manually labeled a set of 11 gesture/action categories: Wave,
Point, Clap, Crouch, Jump, Walk, Run, Shake Hands, Hug, Kiss, and Fight.

Finally, the easy and challenging aspects of the HuPBA 8k+ dataset are listed in
Table 1.

1The whole number of manual labeled limbs exceeds 120000.
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Easy
Fixed Camera
Frontal point of view
Full body capture
The main actor is kept within a sequence
Several instances of each gesture/action
Gestures/actions differentiated by an idle pose in most cases
Fixed background across all video sequences

Challenging
Within each sequence:
Gestures/actions execution involve most limbs
Large variability of poses
Some gestures/actions imply the interaction of various actors
Some parts of the body may be occluded
Between sequences:
Variations in clothing, skin color, gender, height and corporal conditions
Some parts of the body may be occluded

Table 1: Easy and challenging aspects of the HuPBA 8k+ dataset.

2.1 Data Format and Structure

The dataset we introduce is composed by RGB images, labeled limbs (binary masks) and
additional information that has a specific structure to distinguish the location of limbs
and gestures/actions for each actor. Additionally, for each actor, a pair of structured
files are created to store the location of the bounding-boxes for each RGB image and
the start-end frames associated to the gestures/actions executed. The folder structure
that contains the HuPBA 8k+ dataset is shown in Fig. 1.

\HuPBA_dataset

README.txt

\actors

{\01, … ,\09}

\masks\images\csv_files

0X_boundingbox.csv

0X_gestures.csv

\video

Figure 1: Folders structure.
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2.1.1 Folder \images

In this folder, we store the set of frames for a given video sequence. The folder \images
contains the sequence of RGB images (480 × 360 pixels). Each image name has the
structure idActor numberFrame.bmp, where:

• idActor: Numerical identifier of the actor {01, 02, ..., 09}.

• numberFrame: Numerical identifier of the image in the sequence.

2.1.2 Folder \masks

This folder contains the binary masks for each one of the 14 limbs appearing on each
frame. In the case of two actors appearing in a frame, there will be an id for each
one in order to distinguish limbs. Each binary mask name has the structure idAc-
tor numberFrame idUser idLimb.bmp, where:

• idActor: Numerical identifier of the actor {01, 02, ..., 09}.

• numberFrame: Numerical identifier of the image in the sequence.

• idUser: Numerical identifier for the actor that appears in the image. Values
{1, 2, ..., n}. In case of appearing two actors: The main actor and another, the
main actor is 1, the second is 2, and so on.

• idLimb: Numerical identifier of the limb, which are described in Fig. 2.

Label 1: Head

Label 2: Torso

Label 3:
 L. Hand

Label 4: 
R. Hand

Label 5: 
L. ForearmLabel 6: 

R. Forearm

Label 7: L. Arm
Label 8: 
R. Arm

Label 9: L. Foot
Label 10: 
R. Foot

Label 11: L. LegLabel 12:
 R. Leg

Label 13: 
L. Thigh

Label 14: 
R. Thigh

Figure 2: Human-Limb labelling on the HuPBA 8k+ dataset.
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2.1.3 Bounding-boxes

In addition, for each sequence there is a file 0X boundingbox.csv located in the directory
\csv files that contains the bounding-boxes of all actors that appear in that sequence.
That is, for each actor that appears in an image, its bounding-box is given. In the case
of two actors appearing in an image, two bounding-boxes will be described, one for each
actor, as shown in Fig. 3. The csv file contains the following structure:

• id user: Numerical identifier for the actor that appears in the image. Values
{1, 2, ..., n}. In case of appearing two actors: The main actor and another, the
main actor is 1 and the second is 2. Thus, there will be two bounding-boxes, one
for 1, another for 2, and so on.

• number frame: Numerical identifier of the image in the sequence.

• x: Minimum position of X. That is, the leftmost.

• y: Minimum position of Y. That is, the uppermost.

• width: Width of the bounding-box.

• height: Height of the bounding-box.

Figure 3: Sample of two bounding-boxes in a frame.

2.1.4 Gestures/Actions

Besides of the human-limb labeling provided on the dataset, we also annotated ges-
tures/actions performed by the actors. The 11 gesture/action categories labeled are the
following: Wave, Point, Clap, Crouch, Jump, Walk, Run, Shake Hands, Hug, Kiss and
Fight. An example of key frames for the different gesture/action categories are shown
in Fig. 4. Each set of gestures/actions performed by an actor is associated to a file
./csv files/0X gestures.csv that contains the following structure:
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• id user: Numerical identifier for the actor that appears in the image. Values
{1, 2, ..., n}.

• label gesture: Numerical identifier related to the gesture/action performed. There
are gestures/actions that involve just one actor (i.e. walk or run), and others more
than one actor (i.e. fight or kiss).

• start frame: The number of image where the gesture/action starts.

• end frame: The number of the image where the gesture/action ends.

Finally, in Table 2 we compare the HuPBA 8k+ dataset characteristics with some
publicly available datasets. These public datasets are chosen taking into account the vari-
ability of limbs and gestures/actions. Once can see that the novel dataset offers higher
number of annotated limbs at pixel precision in comparison with state-of-the-art public
available datasets. In case of gestures/actions, there is more equality in the number
of gestures/actions set with the others datasets (i.e. HOLLYWOOD (HW), MMGR13,
Human Actions). In contrast, MMGR13 present much more variety of gestures/actions
and samples than the proposed dataset.

HuPBAPARSE[27]BUFFY[19]UIUC people[34]LEEDS SPORTS[23]HW[24]MMGR13[15]H.Actions[32]Pascal VOC[17]
Labeling at

pixel
precision

Yes No No No No - No No Yes

Number of
limbs

14 10 6 14 14 - 16 - 5

Number of
labeled limbs

124 761 3 050 4 488 18 186 28 000 - 27 532 800 - 8 500

Number of
frames

8 234 305 748 1 299 2 000 - 1 720 800 - 1 218

Full body Yes Yes No Yes Yes - Yes Yes Yes
Limb

annotation
Yes Yes Yes Yes Yes No Yes No Yes

Gesture
annotation

Yes No No No No Yes Yes Yes No

Number of
gestures

11 - - - - 8 20 6 -

Number of
gesture
samples

235 - - - - 430 13 858 600 -

Table 2: Comparison of public dataset characteristics.
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(a) Wave (b) Point (c) Clap

(d) Crouch (e) Jump (f) Walk

(g) Run (h) Shake hands (i) Hug

(j) Kiss (k) Fight (l) Idle

Figure 4: Different gesture categories labeled on the HuPBA 8k+ dataset. Images
from (a) to (g) illustrate single actor gestures/actions, and images from (h) to (k) show
gestures/actions that required interacting with a secondary actor. Additionally, (l) shows
an example of an existing idle gesture/action.
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3 ECOC and GraphCut based multi-limb segmentation

In the following subsections we describe the proposed system for automatic segmentation
of human limbs. To accomplish this task, we start by defining a framework divided in
a two-stage procedure. The first stage, focused on binary person/background segmen-
tation, is split in four main steps: a) Body part learning using cascade of classifiers, b)
Tree-structure learning of human limbs, c) ECOC multi-limb detection, and d) Binary
GrabCut optimization for foreground extraction. In the second stage, we segment the
person/background binary mask into different limb regions. This stage is split in the
following four steps: e) Tree-structure body part learning without background, f) ECOC
multi-limb detection, g) Limb-like probability map definition, and h) Alpha-beta swap
Graph Cuts multi-limb segmentation. The scheme of the proposed system is illustrated
in Fig. 5.

 
ECOC multilimb

detection

Binary GrabCut 
optimization for
foreground mask

extraction

Stage 1: Binary Segmentation

Stage 2: Multilimb Segmentation

 
Treestructure body

part learning without
background

 
Alphabeta swap

Graph Cuts 
multilimb

segmentation

● Haarlike features
● Cascade of AdaBoost

● LossWeighted decoding

● HOG features
● SVM+RBF Kernel
● LossWeighted decoding

 

ECOC multilimb
detection

(a) (b) (c) (d)

Bodylike 
probability map

Limblike
probability map 

definition

(e) (f) (g) (h)

Person/Background
segmentation input

Treestructure 
learning of 
human limbs

Input

(i)

Head
Torso 
Arms
Forearms
Thighs
Legs

Figure 5: Scheme of the proposed human-limb segmentation method.
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3.1 Body part learning using cascade of classifiers

The core of most human body segmentation methods in the literature relies on body part
detectors. In this sense, most part detectors in literature follow a cascade of classifiers
architecture [20, 25, 41, 13, 9]. Cascades of classifiers are based on the idea of learning
and unbalanced binary problem by using the negative outputs of a classifier di as an
input for the following classifier di+1. Particularly, this cascade structure allows any
classifier to refine the prediction by reducing the false positive rate at every stage of the
cascade. In this sense, we use AdaBoost as the base classifier in our cascade architecture.
In addition, in order to make the body part detection rotation invariant, all body parts
are rotated to the dominant gradient region orientation. Then, Haar-like features are
used to describe the body parts.

Because of its properties, cascade of classifiers are usually trained to split one visual
object from the rest of possible objects of an image. This means that the cascade of
classifiers learns to detect a certain object (body part in our case), ignoring all other ob-
jects (all other body parts). However, if we define our problem as a multi-limb detection
procedure, some body parts are similar in appearance, and thus, it makes sense to group
them in the same visual category. Because of this reason, we propose to learn a set of
cascade of classifiers where a subset of limbs are included in the positive set of a cascade,
and the remaining limbs are included as negative instances together with background
images in the negative set of the cascade. Applying this grouping for different cascades
of classifiers in a tree-structure way and combining them in an Error-Correcting Output
Codes (ECOC) framework enables the system to perform multi-limb detection [16].

3.2 Tree-structure learning of human limbs

The first issue to take into account when defining a set of cascades of classifiers is how
to define the groups of limbs to be learnt by each individual cascade. For this task, we
propose to train a tree-structure cascade of classifiers. This tree-structure defines the
set of meta-classes for each dichotomy (cascade of classifiers) taking into account the
visual appearance of body parts, which has two purposes. On one hand, we aim to avoid
dichotomies in which body parts with different visual appearance belong to the same
meta-class. On the other hand, the dichotomies that deal with classes that are difficult
to learn (body parts with similar visual appearance) are defined taking into account few
classes. An example of the body part tree-structure defined taking into account these
issues for a set of 7 body limbs is shown in Fig. 6(a). Notice that classes with similar
visual appearance (e.g. upper-arm and lower-arm) are grouped in the same meta-class
in most dichotomies. In addition, dichotomies that deal with difficult problems (e.g. d5)
are focused only in the difficult classes, without taking into account all other body parts.
In this case, class c7 denotes the background.
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Figure 6: (a) Tree-structure classifier of body parts, where nodes represent the defined
dichotomies. Notice that the single or double lines indicate the meta-class defined. (b)
ECOC decoding step, in which a head sample is classified. The coding matrix codifies
the tree-structure of (a), where black and white positions are codified as +1 and −1,
respectively. c, d, y, w, X, and δ correspond to a class category, a dichotomy, a class
codeword, a dichotomy weight, a test codeword, and a decoding function, respectively.

3.3 ECOC multi-limb detection

In the ECOC framework, given a set of N classes (body parts) to be learnt, n different
bi-partitions (groups of classes or dichotomies) are formed, and n binary problems over
the partitions are trained [3]. As a result, a codeword of length n is obtained for each
class, where each position (bit) of the code corresponds to a response of a given classifier
d (coded by +1 or −1 according to their class set membership, or 0 if a particular class
is not considered for a given classifier). Arranging the codewords as rows of a matrix,
we define a coding matrix M , where M ∈ {−1, 0,+1}N×n. During the decoding (or
testing) process, applying the n binary classifiers, a code x is obtained for each data
sample ρ in the test set. This code is compared to the base codewords (yi, i ∈ [1, .., N ])
of each class defined in the matrix M , and the data sample is assigned to the class with
the closest codeword [16].

The ECOC coding step has been widely tackled in the literature either by predefined
or problem-dependent strategies. However, recent works showed that problem-dependent
strategies can obtain high performance by focusing on the idiosyncrasies of the prob-
lem [2]. Following this fashion, we define a problem dependent coding matrix in order
to allow the inclusion of cascade of classifiers and learn the body parts. In particular,
we propose to use a predefined coding matrix in which each dichotomy is obtained from
the body part tree-structure described in previous section. Fig. 6(b) shows the coding
matrix codification of the tree-structure in Fig. 6(a).

20



3.3.1 Loss-weighted decoding using cascade of classifier weights

In the ECOC decoding step an image is processed using a windowing method, and then,
each image patch, that is, a sample ρ, is described and tested. In this sense, each classifier
d outputs a prediction whether ρ belongs to one of the two previously learnt meta-classes.
Once the set of predictions xρ1×n is obtained, it is compared to the set of codewords of
M , using a decoding function δ(xρ,M). Thus, the final prediction is the class with the
codeword that minimizes δ(xρ,M). In [16] the authors proposed a problem-dependent
decoding function (distance function that takes into account classifier performances)
obtaining very satisfying results. Following this core idea, we use the Loss-Weighted
decoding of Equation 1, where Mw is a matrix of weights and L is a loss function
(L(θ) = exp−θ).

δLW (xs, i) =

n∑
j=1

Mw(i, j)L(yij · dj(xs)) (1)

In Equation 1, Mw (weight matrix) corresponds to the product of cascade accuracies at
each stage. Thus, each column i of Mw is assigned a weight wi as,

wi =
k∏
j=1

TP (dij) + TN(dij)

TP (dij) + FN(dij) + FP (dij) + TN(dij)
, (2)

for a cascade of classifiers of k stages, where dij stands for the i-th cascade and stage
j, j ∈ [1, .., k], and TP, TN, FN, and FP computes the number of true positives, true
negatives, false negatives and false positives, respectively. Finally, a body-like probability
map P bl ∈ [0, 1]l×w, where l and w are the length and width of I, is build. This map
contains, at each position P blij , the proportion of body part detections for each pixel over
the total number of detections for the whole image. In other words, pixels belonging to
the human body will show a higher body-like probability than the pixels belonging to
the background. Examples of probability maps obtained from ECOC outputs are shown
in Fig. 9(e) and 9(g), respectively. (see also step (c) in Fig. 5).

3.4 Binary GrabCut optimization for foreground mask extraction

GrabCut [21] has been widely used for interactive background/foreground extraction
(binary segmentation). Formally, given a color image I, let us consider the array z =
(z1, ..., zq, ..., zQ) of Q pixels where zi = (Ri, Gi, Bi), i ∈ [1, ..., Q] in RGB space. The
segmentation is defined as an array α = (α1, ...αQ), αi ∈ {0, 1}, assigning a label to
each pixel of the image indicating if it belongs to background or foreground. A trimap
T is defined consisting of three regions: TB, TF and TU , each one containing initial
background, foreground, and uncertain pixels, respectively. Pixels belonging to TB and
TF are clamped as background and foreground respectively—which means GrabCut will
not be able to modify these labels, whereas those belonging to TU are actually the ones
the algorithm will be able to label. Color information is introduced by GMMs. A full
covariance GMM of U components is defined for background pixels (αi = 0), and another
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one for foreground pixels (αj = 1), parameterized as follows,

θ = {π(α, u), µ(α, u),Σ(α, u), α ∈ {0, 1}, u = 1..U}, (3)

being π the weights, µ the means and Σ the covariance matrices of the model. We
also consider the array u = {u1, ..., ui, ...uQ}, ui ∈ {1, ...U}, i ∈ [1, ..., Q] indicating the
component of the background or foreground GMM (according to αi) the pixel zi belongs
to. The energy function for segmentation E is then,

E(α,u,θ, z) = U(α,u,θ, z) + λV(α, z), (4)

where U is the likelihood potential based on the probabilities p(·) of the GMM,

U(α,u,θ, z) =
∑
i

−log p(zi|αi, ui,θ)− log π(αi, ui), (5)

and V is a regularizing prior assuming that segmented regions should be coherent in
terms of color, taking into account a neighborhood N around each pixel,

V(α, z) = γ
∑

{m,q}∈N

[αq 6= αm] exp (−β‖zm − zq‖2), (6)

where weight λ ∈ R+ specifies the relative importance of the boundary term against the
unary term U .

With this energy minimization scheme and given the initial trimap T , the final
segmentation is performed using a minimum cut algorithm. However, we propose to
omit the classical semiautomatic trimap initialization by an automatic trimap assignment
based on the human body probability map P bl ∈ [0, 1]l×w. In this sense, depending on
the probability of each pixel it will be assigned to a certain tag TB, TF and TU .

3.5 Tree-structure body part learning without background

Once the binary person/background segmentation is performed by means of GrabCut
(mask shown in Fig. 5(e)), we apply a second procedure in order to split the person
mask into a set of human limbs.

For this step, we define a new tree-structure classifier similar to the one described in
Section 3.2 without including the background class c7 shown in Fig. 6(a). An example
of the tree-structure body part taking into account the set of 6 body limbs is shown in
Fig. 7(a).

3.6 ECOC multi-limb detection

In order to obtain an accurate detection of human limbs within the segmented user mask,
we base on HOG descriptor [10] and SVM classifier which have shown to obtain robust
results in human estimation scenarios [10, 21, 20]. We extract HOG features for the
different body parts (previously normalized to dominant region orientation), and then,
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Figure 7: (a) tree-structure classifier of 6 body parts, (b) ECOC decoding step.

SVMs classifiers are trained on that feature space, using a Generalized Gaussian RBF
Kernel based on Chi-squared distance [37].

This stage follows a similar pipeline as the one described in Section 3.3. In this
sense, each SVM classifier learns a binary partition of human limbs but without taking
into account the background class. As shown in Fig. 6(b), we train n = 6 SVMs with
different binary human-limb partitions.

At the ECOC decoding step, we also use the Loss-Weighted decoding [16] function
shown in Equation 1 (an example is shown in Fig 7(b)). In this sense, for each RGB
test image corresponding to the binary mask shown in Fig. 5(e), we adopt a sliding
window approach and test each patch on our ECOC multi limb recognition system.
Then, based on the ECOC output we construct a set of limb-like probability maps.
Each map P c contains, at each position P cij , the probability of pixel at the entry (i, j) of
belonging to the body part class c, where c ∈ {1, 2, ..., 6}. This probability is computed
as the proportion of detections at point (i, j) over all detection for class c. Examples of
probability maps obtained from ECOC outputs are shown in Fig. 5(h). While Haar-like
based on AdaBoost gave us a very accurate and fast initialization of human regions for
binary user segmentation, in this second step, HOG-SVM is applied in a reduced region
of the image, providing better estimates of human limb locations.

3.7 Alpha-beta swap Graph Cuts multi-limb segmentation

We base our proposal on Graph Cuts theory to tackle our human-limb segmentation
problem [7, 21, 29, 6, 8]. In [8], Boykov et. al. developed an algorithm, named α-β
swap graph-cut, which is able to cope with the multi-label segmentation problem. The
α-β swap graph-cut is an extension of binary graph cuts that performs an iterative
procedure where each pair of labels (αq, αm), {m, q} ∈ {1, 2, ..., 6}, are segmented using
GraphCuts. This procedure segment all α pixels from β pixels with GraphCuts and the
algorithm will update the α-β combination at each iteration until convergence. However,
to cope with the multi-label case, an extension of the binary Graph Cuts optimization
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framework described in Section 3.4 is needed.
In this sense, αi ∈ {1, ..., c} and an initial labeling T ∈ {T1, ..., Tc} is defined by an

automatic trimap assignment based on the set of limb-like probability maps P c ∈ [0, 1]l×w

defined in previous section. In addition, the coefficient that multiplies the exponential
term in Equation 6, [αq 6= αm], is changed to Ω(cq, cm), which penalizes relations between
pixels zq and zm depending on their label assignations and a user-predefined pair-wise
cost to each possible combination of labels,

V(c, z) = γ
∑

{m,q}∈N

Ω(cq, cm) exp (−β‖zm − zq‖2). (7)

In concrete, in order to introduce prior costs between different labels, Ω(cq, cm) must
fulfill some constraints related to spatial coherence between the different labels, taking
into account the natural constraints of the human limbs (i.e. head must be closer to torso
than legs, arms are nearer to forearms than head, etc.). In particular, we experimentally
fixed the penalization function Ω as defined in Table 3.

Head Torso Arms Forearms Thighs Legs Background
Head 0 20 35 50 70 90 1
Torso 20 0 15 25 40 70 1
Arms 35 15 0 10 60 80 1

Forearms 50 25 10 0 30 60 1
Thighs 70 40 60 30 0 10 1
Legs 90 70 80 60 10 0 1

Background 1 1 1 1 1 1 1

Table 3: Prior cost between each pair of labels.
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4 Experimental results

In order to present the experimental results, we first discuss the data, experimental
settings, methods and validation protocol.

4.1 Data

We use the proposed HuPBA 8k+ dataset described in Section 2. We reduced the number
of limbs from the 14 available in the dataset to 6, grouping those that are similar by
symmetry (right-left) as arms, forearms, thighs and legs. Thus, the set of limbs of our
problem is composed by: head, torso, forearms, arms, thighs and legs. Although labeled
within the dataset, we did not include hands and feet in our multi-limb segmentation
scheme. Finally, in order to train the limb classifiers, ground truth masks are used to
normalize all limb regions per dominant orientation, and both Haar-like features and
HOG descriptors are computed based on the aspect ratio of each region, making the
descriptions scale invariant.

4.2 Methods and experimental settings

In this section we introduce the different methods compared for binary segmentation,
multi-limb segmentation and action/gesture recognition tasks. In addition, the
experimental settings for these methods are explained.

4.2.1 Binary segmentation methods

As the first stage of our approach computes a binary person/background segmentation,
we compare in this step the following methods:

• P.Detector+GbCut: The well-known Person Detector of [10] followed by Grab-
Cut segmentation.

• C.Class+GbCut: The cascade of classifiers proposed by Viola and Jones [36],
training one cascade of classifiers per limb and GrabCut segmentation.

• ECOC+GbCut: The proposed ECOC tree-structure body part classifier and
automatic GrabCut segmentation for person/background segmentation.

4.2.2 Multi-limb segmentation methods

To evaluate the performance of our proposal for multi-limb segmentation, we compare
our strategy with two state-of-the-art methods for multi-limb segmentation:

• FMP: This method was proposed by Yang and Ramanan [38, 39] and it is based on
Flexible Mixtures-of-Parts (FMP). We compute the average of each set of mixtures
for each limb and for each pyramid level in order to obtain the probability maps
for each limb category. In order to compute the probability map of the background
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category, we subtract 1 with the maximum probability ∈ [0, 1] of the set of limbs
detection at pixel location.

• IPP: This method is proposed by Ramanan [27] and it is based on an Iterative
Parsing Process (IPP). We use it to extract the limb-like probability maps followed
by α-β swap graph-cut multi-limb segmentation. The background category is
computed as shown in FMP method.

• ECOC+GraphCut: Our proposed human limb segmentation scheme shown in
Fig. 5.

4.2.3 Action/gesture recognition methods

In the case of the action recognition task our goal is to provide with a firm baseline of
the recognition of the 11 actions categories labeled within the HuPBA 8K+ dataset.In
order to do it, we compare performance of the following standard methodologies:

• Dynamic Time Warping using a random sample: We use the standard
DTW algorithm to recognize the different actions categories in the dataset [30]. In
order to compute the cost matrix for each of the gesture/action classes we choose
a sample of that category at random.

• Dynamic Time Warping using the mean sample: Following the trend in
[22], in order to compute the cost matrix we form a mean sample of each one of
the action classes. That is, we choose the sample of each category and align all
samples with it. Then, once all samples from the same class are aligned (they have
the same length) we compute the mean, an example is shown in Fig. 8.

Mean length sample

Warped Sequences

(a) (b) (c)

S

SN

S1

S̃1

S̃N

DTW

Mean sample

Figure 8: (a) Action samples and selected median length sample. (b) Aligned samples
with same length . (c) Computation of the mean sample.
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• Hidden Markov Model: We use the standard discrete HMM framework [33].
Each HMM, was trained using the Baum-Welch algorithm, and 3 states were ex-
perimentally set for the every action category, using a vocabulary of 50 symbols
computed using K-means over the training data features. Final recognition is per-
formed with temporal sliding windows of different wide sizes, based on the training
samples length variability.

The computation of the feature vector for training and testing the action recognition
approaches is based on the segmentation results of our approach. Given the multi-
segmentation of limbs, we computed the feature vector of a frame as the concatenation
of the 6 limb-like probability maps, resizing each one of them to a 40× 20 pixels region
and vectorizing that region. Obtaining a final vector of d = 40 ·20 ·6 = 4800 dimensions,
which is then reduced to d = 150 dimensions using the Random Projection algorithm [4].

4.2.4 Experimental settings

In a preprocessing step, we resized all limb sample to a 32×32 pixels region for computa-
tional purposes. Then, we used the standard Cascade of Classifiers based on AdaBoost
and Haar-like features [36], and we forced a 0.99 false positive rate and maximum of 0.4
false alarm rate during 8 stages. To detect limbs with trained cascades of classifiers, we
applied a sliding window approach with an initial patch size of 32×32 pixels up to 60×60
pixels. As a final part of the first stage, binary Graph Cuts were applied to obtain the
binary segmentation where the initialization values of foreground and background were
provided to the binary Graph Cut algorithm and tuned via cross-validation.

For the second stage, we set the following parameters for the HOG descriptor: 32×32
window size, 16×16 block size, 8×8 block stride, 8×8 cell size and 8 for number of bins.
Then, we trained SVMs with a Generalized Gaussian RBF kernel based on Chi-squared
distance, (see Fig.(a) 7). The parameters of the kernel, C and γ were tuned via cross-
validation. Finally, the model selection step was done via a leave-one-sequence-out cross-
validation. For multi-limb segmentation we used the alpha-beta GraphCut procedure,
where we set a 8 × 8 neighboring grid and tuned the λ parameter of GraphCut using
cross-validation.

For the action recognition experiments the cost-threshold and the action/gesture
model for both DTW experiments was obtained by cross-validation on training data,
using a leave-one-sequence-out procedure. For HMM method, each HMM and its corre-
sponding probability-threshold was obtained by cross-validation on training data, using
a leave-one-sequence-out procedure.

4.3 Validation measurement

In order to evaluate the results for the three different tasks: binary segmentation, multi-
label segmentation and gesture/action recognition, we use the Jaccard Index of overlap-

ping (J = A
⋂
B

A
⋃
B ) where A is the ground-truth and B is the corresponding prediction.
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4.4 Experimental Results

In this section we show results for the three different tasks: binary segmentation,
multi-label segmentation and action/gesture recognition.

4.4.1 Binary segmentation results

In Fig. 9 we can see an example of the person/background segmentation obtained by the
compared methodologies. In particular, we can see in Fig. 9(d) how the segmentation
obtained by the Person Detector+GbCut method yields a poor result, segmenting dark
regions of the image. Furthermore, when comparing Fig. 9(e) and 9(f), the improvement
in the body-like probability map obtained by the ECOC+GbCut approach over the
cascade class+GbCut method are clearly significant.

Moreover, we can see more results of our proposal in Fig. 10 and Fig. 11 that show
relevant results either individual person or two people although there are some regions
that are difficult to segment because of their variability in contrast with the fixed back-
ground. In addition, some results denote good segmentation in Fig. 12 and Fig. 13 since
most background around the person is removed.

In order to evaluate the performance of the compared methodologies, Table 4 shows
the mean overlapping obtained on the whole dataset together with the standard devia-
tion. From the results one can see the ECOC+GbCut method outperforms the compared
methodologies at least by a 5%. This improvement is the effect of two causes. The for-
mer is the Error-Correcting capabilities of the ECOC framework. The latter, is the
tree-structure definition of the coding matrix, which allows base classifiers to obtain
accurate results.

P.Detector+GbCut C.Class+GbCut ECOC+GbCut
49.60± 20.45 58.26± 17.31 61.79± 14.02

Table 4: Mean overlapping and standard deviation.

4.4.2 Multi-limb segmentation results

Firstly, we show the priors obtained from HOG descriptors and SVM classifiers for
different samples in Fig. 14 and Fig. 15 where some probability maps like head, torso,
thighs and legs are more accurate than arms and forearms. In concrete, the forearms
probability maps are the less representative for the 6 limb-like probability map categories.
Additionally, more results focusing on individual person probability maps are shown
in Fig. 16 and Fig. 17 in which we can see more precisely the limb categories more
discriminative for each other.

For the Multi-limb segmentation task, we show in Fig. 18, Fig. 19, Fig. 20 and Fig. 21
qualitative results for some samples of the HuPBA 8k+ dataset. When comparing the
qualitative results we can see how the FMP method [38, 39] performs worse than its
counter parts. In addition, one can se how IPP and our method obtain similar results
in most cases. However, the IPP lacks of a good person/background segmentation.
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Furthermore, we provide with quantitative results in terms of the Jaccard Index. In
Fig. 22 we show the overlapping performance obtained by the different methods, where
each plot shows the overlapping for a certain limb. In addition, we use a ’Do not care’
value which provides a more flexible interpretation of the results. Consider the ground
truth of a certain limb category in an image as a binary image, which pixels take value
1 when those pixels are labeled to belong to such limb. Then, the ’Do not care’ value is
defined as the number of pixels which are ignored at the limits of each one of the ground
truth instances. Thus, by using this approach we can compensate the pessimistic overlap
metric in situations when the detection is shifted some pixels. In this sense, we analyze
the overlapping performance as a function of a ’Do not care’ value that ranges from 0
to 4.

When analyzing quantitative results, we see how our method outperforms the com-
pared methodologies for some limb categories. In particular, for the head region both
methods obtain similar results, which is intuitive since the method used to detect the
head is the well known face detector. Finally, we see how FMP method is in almost all
cases obtaining the worst performance. As shown in Fig. 22(g), for the mean overlapping
considering all the segmented limbs our method outperforms the rest of approaches up
to 3 pixels of ”Do not care” evaluation.

4.4.3 Action recognition results

In this section we show some samples according to the gesture categories in Fig. 23,
Fig. 24 and Fig. 25 and quantitative results obtained by the different gesture recognition
methods in terms of the Jaccard Index. Furthermore, to allow a deeper analysis of the
proposed methodologies, in our evaluations we use a ’Do not care’ value which provides
a more flexible interpretation of the results. Consider the ground truth of a certain
action category in a video sequence as a binary vector, which activates when a sample
of such category is observed in the sequence. Then, the ’Do not care’ value is defined as
the number of bits (frames) which are ignored at the limits of each one of the ground
truth instances. Thus, by using this approach we can compensate the pessimistic overlap
metric in situations when the detection is shifted some frames. The Jaccard Index as a
function of the ’Do not care’ value for the 11 action categories and the mean Jaccard
Index among action categories are shown in Fig. 26.

When analyzing quantitative results we see how the DTW Mean methods outper-
forms for most action categories the standard DTW Random and HMM methods. In
addition, when computing the mean Jaccard Index among all gesture categories the
DTW Mean approach also ranks first, obtaining a mean Jaccard Index of 0.20. This
good result is due to the use of information from all action samples which encodes the
intra-class variability of the gesture categories. Finally, we can see how in all cases
Hidden Markov Model achieves the lowest performance.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9: (a) Original RGB image. (b) Multi-limb ground truth. (c) Probability map
obtained by the Person Detector method. (d) Person/background segmentation of the
Person Detector+GbCut approach. (e) Probability map yielded by the cascade class.
method. (f) Person/background segmentation of the cascade class method. (g) Proba-
bility map obtained from the ECOC method. (h) RGB segmentation obtained by the
ECOC+GbCut approach.
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Figure 10: Binary segmentation results of our proposal. From left to right, the columns
show the original RGB images, probability maps and ECOC+GbCut approach.
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Figure 11: Binary segmentation results of our proposal. From left to right, the columns
show the original RGB images, probability maps and ECOC+GbCut approach.
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Figure 12: Binary segmentation results of our proposal. From left to right, the columns
show the original RGB images, probability maps and ECOC+GbCut approach.
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Figure 13: Binary segmentation results of our proposal. From left to right, the columns
show the original RGB images, probability maps and ECOC+GbCut approach.
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Figure 14: Body-like probability maps obtained by applying HOG descriptors and SVM
classifiers. From left to right, the columns represent show the RGB image, head, torso,
arms, forearms, thighs and legs.
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Figure 15: Body-like probability maps obtained by applying HOG descriptors and SVM
classifiers. From left to right, the columns represent show the RGB image, head, torso,
arms, forearms, thighs and legs. 36



Figure 16: Body-like probability maps obtained by applying HOG descriptors and SVM
classifiers. From left to right, the columns represent show the RGB image, head, torso,
arms, forearms, thighs and legs.
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Figure 17: Body-like probability maps obtained by applying HOG descriptors and SVM
classifiers. From left to right, the columns represent show the RGB image, head, torso,
arms, forearms, thighs and legs.
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RGB                    GT             ECOC+GraphCut          FMP                    IPP

Figure 18: Multi-limb segmentation results for the three methods, for each sample, we
also show the RGB image and the ground-truth (GT).
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RGB                    GT           ECOC+GraphCut          FMP                   IPP

Figure 19: Multi-limb segmentation results for the three methods, for each sample, we
also show the RGB image and the ground-truth (GT).

40



RGB                    GT             ECOC+GraphCut          FMP                    IPP

Figure 20: Multi-limb segmentation results for the three methods, for each sample, we
also show the RGB image and the ground-truth (GT).
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RGB                    GT             ECOC+GraphCut          FMP                    IPP

Figure 21: Multi-limb segmentation results for the three methods, for each sample, we
also show the RGB image and the ground-truth (GT).
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 22: Jaccard Indexes for the different limb categories from (a) to (f). (g) Mean
Jaccard Index among all limb categories.
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Figure 23: Gesture categories with our multi-limb segmentation approach, for each sam-
ple, we also show the RGB image and the ground-truth (GT). For each row, top down,
we show the categories: wave, point, clap, crouch and jump.44



Figure 24: Gesture categories with our multi-limb segmentation approach, for each sam-
ple, we also show the RGB image and the ground-truth (GT). For each row, top down,
we show the categories: walk, run, shake hands, hug and kiss.
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Figure 25: Gesture categories with our multi-limb segmentation approach, for each sam-
ple, we also show the RGB image and the ground-truth (GT). For each row, top down,
we show the categories: fight and idle.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 26: Jaccard Indexes for the different action categories from (a) to (k). (l) Mean
Jaccard Index among all action categories.
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5 Conclusions

In this work, we introduced the HuPBA 8K+ dataset, which represents the largest
available multi-limb dataset on RGB data up to date, with more than 120000 man-
ually labeled limb regions. In addition, we proposed a novel two-stage method for
human multi-limb segmentation in RGB images. In the first stage, we perform a per-
son/background segmentation by training a set of body parts using cascades of classifiers
embedded in an ECOC framework. In the second stage, to obtain a multi-limb segmen-
tation we applied multi-label Graph Cuts to a set of limb-like probability maps obtained
from a problem-dependent ECOC scheme.

We compared our proposal with state-of-the-art pose-recovery approaches on the
novel dataset, obtaining very satisfying results in terms of both person/background and
multi-limb segmentation steps. For completeness, the novel dataset was also labeled with
different human actions drawn from an 11 gesture/action dictionary, including isolate
and collaborative behaviors. In this sense, we also provided with action recognition
baseline results on the novel dataset considering DTW and HMM strategies.
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